A Message from Illinois American Water President

To Our Valued Customer:

Illinois American Water is proud to be your local water service provider, and I am pleased to share with you good news about the quality of your drinking water. Each year, we provide you with our Annual Water Quality Report - and like so many years prior – we continue to supply water that meets or surpasses all state and federal water quality regulations.

This is no small task. Our employees, many of whom are also your neighbors, work hard every day to provide services critical for public health, safety and economic development. Your drinking water is monitored around the clock and tested at every stage of the treatment process. Our team is proud of this commitment to you. They are also proud of our commitment to the community in which they not only work, but live.

We know first-hand how precious our water is, so we work hard to not only protect it, but to educate about the value of water and wise water use. You may see us at local community events or hear about our mobile education center visiting your child’s classroom to offer hands-on water lessons at www.illinoisamwater.com.

Our team has also continued our commitment to infrastructure investments – investments that keep water pipes, fire hydrants, and water treatment facilities in good condition. Annually, we invest approximately $70 - $100 million to ensure quality water service delivered right to your tap.

At Illinois American Water, our customers are our top priority. We are committed to providing you with the highest quality drinking water and service possible. Please take time to review this water quality report as it provides details about the source and quality of the drinking water delivered to you in 2016.

Thanks for allowing us to serve you.

Sincerely,

Bruce Hauk
President
What is a Water Quality Report?
Illinois American Water issues a report annually describing the quality of your drinking water in compliance with state and United States Environmental Protection Agency (USEPA) regulations. The purpose of this report is to increase understanding of drinking water standards and raise awareness of the need to protect your drinking water sources.

At our state-of-the-art research laboratory in Belleville, Illinois, we conduct thousands of tests per year, checking drinking water quality at every stage of the water treatment and delivery process. In 2016, we conducted tests for hundreds of contaminants, including those with federal and state maximum allowable levels. This report provides an overview of last year’s (2016) water quality results. It includes details about your water and what it contains.

Source Water Information
The source of water for the Chicago Suburban District is surface water originating in Lake Michigan and purchased from the Village of Glenview, through the Village of Wilmette, which is surface water. In March 2016, our Chicago Suburban District acquired Plum Creek Condominiums, switching their source from groundwater to purchased surface water originating from Lake Michigan.

Illinois EPA considers all surface water sources of public water supply susceptible to potential pollution problems. Hence the reason for mandatory treatment of all public water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration, and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems), and shoreline erosion.

The IEPA has completed a source water assessment for the Village of Wilmette and a copy is available. A workgroup from the Great Lakes States was organized to develop a protocol for assessing the Great Lakes. The mission of the Great Lakes Protocol was to develop a consistent procedure allowing the flexibility necessary to properly conduct source water assessments of the Great Lakes as a drinking water source. This flexibility takes into account the variability of these sources and site-specific concerns for determination of source sensitivity and susceptibility (Illinois EPA, 1999). Sensitivity is defined as the intrinsic ability of surface water to be isolated from contaminants by the physical attributes of the hydrologic or geologic setting. With this in mind, the degree of sensitivity becomes the prevailing factor in the susceptibility determination for intakes on the Great Lakes. Intakes located close to shore, or close to a major shipping lane will be more sensitive and thus more susceptible to potential contamination. The sensitivity analysis of both Wilmette’s intakes are located far enough offshore that shoreline impacts are not considered a factor on water quality. However, at certain times of the year the potential for contamination exists due to wet-weather flows from the North Shore Channel. If currents are flowing in a northerly direction, contaminants from these flows could migrate to Wilmette’s intakes and compromise water quality. Correlation between Evanston’s rainfall data, North Shore Channel discharge dates and Wilmette’s coliform data show the potential effect of these flows on Wilmette’s water quality. In addition, the proximity to a major shipping lane adds to the susceptibility should there be a spill near the intakes. Water supply officials from Wilmette are active members of the West Shore Water Producers Association. Coordination regarding water quality situations (i.e., spills, tanker leaks, exotic species, etc) is frequently discussed during the association’s quarterly meetings. Lake Michigan, as well as all the Great Lakes, has many different organizations and associations that are currently working to either maintain or improve water quality. Since the predominant land use within Illinois’ boundary of Lake Michigan watershed is urban, a majority of watershed protection activities in this document is aimed at this purpose.

To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation / recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Environmental Stewardship
Water is one of the earth’s most precious natural resources. Protecting the environment helps to ensure adequate water supply for generations. Our efforts include student education, community events, environmental partnerships and internal initiatives.

Student Education: Illinois American Water reaches thousands of students each year through educational efforts. Our water quality team visits local schools to demonstrate the water treatment process. Our Mobile Education Center (MEC), an 18-foot learning center, offers hands-on water testing and fun lesson plans. We partner with Illinois leaders on Science, Technology, Engineering, Mathematics (STEM) education efforts. Students participate in annual community events like the Clean Water Celebration held in Peoria and the Water Festival in Godfrey.

Community Events: We participate in the “It’s Our River Day” celebrations each September across the state. These events promote education, recreation and conservation within Illinois watersheds. Illinois American Water employees volunteer and contribute to river cleanup efforts with the Illinois River Sweep, Vermillion River Clean Up, Living Lands and Waters Great Mississippi River Clean Up, and more.
Environmental Partnerships: As a part of our Environmental Grant Program over $175,000 has been awarded to over 45 Illinois water source protection projects since 2009. In 2016, we presented over $15,000 for six environmental projects focused on the improvement, restoration and protection of water sources in our communities. We are continuing our multi-year agreement with Great Rivers Land Trust to reduce sedimentation of the Piasa Creek and Mississippi River. The agreement has been highlighted as a model by the USEPA. Our Champaign County team partners on the Mahomet Aquifer Consortium to protect our precious resources.

Pharmaceutical Disposal Programs: Illinois American Water has collaborated with communities to implement over 35 pharmaceutical disposal programs across the state. These efforts have led to the prevention of flushing medications and the proper disposal of hundreds of thousands pounds of unwanted medications. To learn more or to find a disposal location near you, please visit www.illinoisamwater.com under Water Quality.

Internal Initiatives: On a daily basis, our facilities utilize technologies such as variable frequency motors and motion sensor lighting to ensure efficient energy use. Recycling programs at company facilities also help to reduce waste and protect the environment. Illinois American Water incorporates native and prairie plantings on company property whenever possible to reduce water use and mowing costs.

The company’s water treatment plant in Champaign County earned the first LEED® certification for a water treatment facility in Illinois. LEED is the nation’s leading program for the design, construction and operation of high-performance green buildings. In addition, an upgrade at the water treatment plant in Peoria includes the incorporation of ultraviolet (UV) technology to enhance water quality.

Illinois American Water’s Pontiac and Streator Districts installed ultrasonic units to effectively control algae and reduce the use of treatment chemicals. Illinois American Water also implemented solar power in the Peoria and Interurban (Metro East) Districts, decreasing electricity costs and benefiting our customers.

American Water
With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly-traded water and wastewater utility company. The company employs more than 6,700 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to an estimated 15 million people in 47 states and Ontario, Canada. More information can be found by visiting www.amwater.com.

Illinois American Water
Illinois American Water, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 1.3 million people. American Water also operates a customer service center in Alton and a quality control and research laboratory in Belleville.

Questions?
To learn more about water quality, visit our website at: www.illinoisamwater.com. For questions or copies, contact Laura Marcasciano, Water Quality Specialist, at 630-739-8846.

Illinois American Water
www.illinoisamwater.com

United States Environmental Protection Agency
www.epa.gov/ground-water-and-drinking-water

Illinois Environmental Protection Agency (IEPA)
www.epa.illinois.gov

Envirofacts
Access to U.S. environmental data
https://www3.epa.gov/enviro

Centers for Disease Control and Prevention
www.cdc.gov

American Water Works Association
www.drinktap.org

Safe Drinking Water Hotline: 800-426-4791
https://www.epa.gov/ground-water-and-drinking-water/safe-drinking-water-hotline

Surf Your Watershed
Locate your watershed and a host of information
http://cfpub.epa.gov/surf/locate/index.cfm
Substances Expected to be in Drinking Water
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material and substances resulting from the presence of animals or from human activity.

Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, may also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

To ensure that tap water is of high quality, USEPA prescribes regulations limiting the amount of certain substances in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Illinois American Water’s advanced water treatment processes are designed to reduce any such substances to levels well below any health concern.

Important Health Information
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline 800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline 800-426-4791.

LEAD
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Illinois American Water is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

How to Read the Data Tables
Illinois American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the data tables. While most monitoring was conducted in 2016, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting these tables, see the “Table Definitions” section and footnotes.
Table Definitions and Abbreviations

- **Action Level (AL):** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- **Compliance Achieved:** Indicates that the levels found were all within the allowable levels as determined by the USEPA.
- **Highest Level Detected:** In most cases, this column is the highest detected level unless compliance is calculated on a Running Annual Average or Locational Running Annual Average. If multiple entry points exist, the data from the entry point with the highest value is reported.
- **MCL (Maximum Contaminant Level):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **MCLG (Maximum Contaminant Level Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MRDL (Maximum Residual Disinfectant Level):** The highest level of disinfectant routinely allowed in drinking water. Addition of a disinfectant is necessary for control of microbial contaminants.
- **MRDLG (Maximum Residual Disinfectant Level Goal):** The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.
- **NA: Not applicable**
- **ND: Not detectable at testing limits**
- **pCi/L (picocuries per liter):** Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).
- **ppm (parts per million):** One part substance per million parts water, or milligrams per liter.
- **ppb (parts per billion):** One part substance per billion parts water, or micrograms per liter.
- **Range Of Detections:** The range of individual sample results, from lowest to highest, that were collected during the sample period.

2016 Water Quality Information

We are pleased to report that during the past year, the water delivered to your home or business complied with, or was better than, all state and federal drinking water requirements.

For your information, we have compiled a table showing what substances were detected in your drinking water during 2016. Although all of the substances listed are under the Maximum Contaminant Level (MCL) set by the U.S. Environmental Protection Agency (USEPA), we feel it is important that you know exactly what was detected and how much of the substance was present in your water.
Water Quality Results

2016 Regulated Substances - Measured in the Chicago Suburban distribution system

The next several tables summarize contaminants detected in your drinking water supply.

<table>
<thead>
<tr>
<th>Lead and Copper</th>
<th>(Collected at customers’ taps)</th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2014</td>
<td>1.3</td>
<td>1.3</td>
<td>0.071</td>
<td>0</td>
<td>ppm</td>
<td>No</td>
<td></td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead¹</td>
<td>2014</td>
<td>0</td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>ppb</td>
<td>No</td>
<td></td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

¹ If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at http://www.epa.gov/safewater/lead.

Other Compounds - Measured in the Chicago Suburban distribution system

<table>
<thead>
<tr>
<th>Disinfectants & Disinfection Byproducts</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAs (Halolacetic Acids)</td>
<td>2016</td>
<td>16</td>
<td>12.6-16.5</td>
<td>No</td>
<td>60</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>TTHMs (Total Trihalomethanes)</td>
<td>2016</td>
<td>38</td>
<td>24-48.6</td>
<td>No</td>
<td>80</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chlorine²</td>
<td>2016</td>
<td>0.9</td>
<td>0.7-1.0</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>ppm</td>
<td>No</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

² Chlorine and chloramines are disinfecting agents added to control microbes that otherwise could cause waterborne diseases or other water quality concerns. Most water systems in Illinois are required by law to add either chlorine or chloramines. Levels well in excess of the MRDL could cause irritation of the eyes or nose in some people. The values reported reflect multiple locations in the service area.

Other Compounds - Measured at the Plum Creek Condominiums

<table>
<thead>
<tr>
<th>Disinfectants & Disinfection Byproducts</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAs (Halolacetic Acids)</td>
<td>2016</td>
<td>17.8</td>
<td>13.2-17.8</td>
<td>No</td>
<td>60</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>TTHMs (Total Trihalomethanes)</td>
<td>2016</td>
<td>50.8</td>
<td>39.2-50.8</td>
<td>No</td>
<td>80</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
</tbody>
</table>

Note: The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be more than one year old.
2016 Regulated Substances - Measured in the water leaving the Village of Wilmette treatment facility

<table>
<thead>
<tr>
<th>Substance (Units)</th>
<th>Year Sampled</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2016</td>
<td>0.021</td>
<td>0.021 - 0.021</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2016</td>
<td>0.8</td>
<td>0.8 - 0.8</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>2016</td>
<td>0.37</td>
<td>0.37 - 0.37</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>No</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium¹</td>
<td>2016</td>
<td>13</td>
<td>13 - 13</td>
<td>NA</td>
<td>NA</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of naturally occurring deposits; By-product of water softening</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th></th>
<th>Limit (Treatment Technique)</th>
<th>Level Detected</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest Monthly % Meeting Limit</td>
<td>0.3 NTU</td>
<td>100 %</td>
<td>No</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Highest Single Measurement</td>
<td>1 NTU</td>
<td>0.12 NTU</td>
<td>No</td>
<td>Soil Runoff</td>
</tr>
</tbody>
</table>

Total Organic Carbon (Measured in the water leaving the Village of Wilmette treatment facility)

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violation section. The Village of Wilmette had no violations.

3 There is no state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about this level of sodium in the water.

4 Turbidity is a measure of the cloudiness of the water caused by suspended particles. The Village monitors it because it is a good indicator of water quality and the effectiveness of the Water Plant’s filtration system and disinfectants.