A Message from the New Jersey American Water President

To Our Valued Customer:

New Jersey American Water is proud to be your local water service provider, and I am pleased to share some very good news about the quality of your drinking water. As you read through our Annual Water Quality Report, you will see that we continue to supply water that meets or surpasses all state and federal water quality standards. Additionally, the price you pay for this high-quality water service remains a great value as one of the lowest household utility bills.

We never forget that at the end of every water pipe there’s a family depending on us to provide one of life’s resources. New Jersey American Water has the expertise of more than 800 experienced professionals, the right technologies in use, and a demonstrated commitment to replacing and upgrading our infrastructure so that your drinking water is clean, safe and reliable.

Our team of experts monitors, maintains and upgrades our facilities so that they operate efficiently and meet all regulatory standards. This requires investing millions of dollars each year in our infrastructure, including treatment plants, tanks, pump stations, pipes, fire hydrants and metering equipment. We do this because we care about our customers as much as we care about water. Statewide, we invested more than $375 million in 2019 alone to improve our water treatment and delivery systems.

Additionally, in 2020, during the COVID-19 public health emergency, New Jersey American Water activated business continuity plans to strengthen our ability to provide reliable, high-quality service to our customers, continue to deliver water and wastewater services and protect our employees and customers. According to the U.S. Environmental Protection Agency (EPA) based on current research, the risk to water supplies is low. The EPA has also relayed that Americans can continue to use and drink water from their tap as usual.

New Jersey American Water remains committed to the delivery of safe, reliable water. That includes continued operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

We have an exceptional track record when it comes to water quality and drinking water regulatory compliance. In fact, we take water quality so seriously that five of our surface water treatment plants have been nationally recognized with Directors Awards from the U.S. EPA’s Partnership for Safe Water program for surpassing federal and state drinking water standards.

Please take the time to review this report. It provides details about the source and quality of your drinking water, using the data from water quality testing conducted for your local system between January and December 2019. If you have any questions, I encourage you to visit the Water Quality page of our website at www.newjerseyamwater.com, or call our Customer Service Center at 800-272-1325.

Sincerely,

Cheryl Norton
President, New Jersey American Water

This report contains important information about your drinking water. If you do not understand it, please have someone translate it for you.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

교사가 이해할 수 있으니, 이해할 수 없으면 누군가의 도움을 받으시기 바랍니다.

Our Commitment to Quality

Once again we proudly present our annual water quality report which details the results of water quality testing completed from January to December 2019. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Included in this report are details about where your water comes from, what it contains, and how our water quality results compare to federal and state standards.

We are pleased to tell you that we had no Safe Drinking Water Act violations again in 2019. We are committed to delivering high quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection,
We want you to be informed about your drinking water. For more information about this report, or for any questions relating to your drinking water, please contact our 24-hour Customer Call Center toll-free at 1-800-272-1325.

Share This Report:
Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail. Additional copies of this report are available by contacting customer service at 1-800-272-1325.

About New Jersey American Water
New Jersey American Water, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 2.7 million people. For more information, visit www.newjerseyamwater.com and follow New Jersey American Water on Twitter and Facebook.

About American Water
With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to an estimated 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit www.amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

How to Contact Us
Thank you... for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers protect our water sources. Please call our Customer Call Center toll-free at 1-800-272-1325 if you have questions:

- **New Jersey American Water**
 - 1 Water Street
 - Camden, NJ 08102
 - www.amwater.com

Water Information Sources
- **New Jersey Department of Environmental Protection Bureau of Safe Drinking Water:**
 - (609) 292-5550 • www.state.nj.us/dep
- **New Jersey Board of Public Utilities:**
 - (973) 648-2350 • Two Gateway Center, Newark, NJ 07102
- **Division of Customer Relations:**
 - 1-800-624-0241 • www.state.nj.us/bpu
- **US Environmental Protection Agency:**
 - www.epa.gov/safewater
- **Safe Drinking Water Hotline:** 1-800-426-4791
- **American Water Works Association:** www.awwa.org
- **Centers for Disease Control and Prevention:** www.cdc.gov

Public Participation
How You Can Get Involved
Customers can participate in decisions that may affect the quality of water by:
- Reading the information provided in bill inserts and special mailings
- Contacting the company directly with questions or to discuss issues
- Responding to company requests for participation in focus groups and roundtables
- Attending open houses conducted by the company
- Responding to survey requests

Where Your Water Comes From
Protecting Your Water Source
- **Ocean City - PWSID # 0508001**
 - New Jersey American Water – Ocean City is a public community water system consisting of 9 wells.

 This system’s source water comes from Atlantic City “800-foot” sand aquifer, Kirkwood-Cohansey water-table aquifer system.

What is S.W.A.P.
The Source Water Assessment Program (SWAP) is a program of the New Jersey Department of Environmental Protection (NJDEP) to study existing and potential threats to the quality of public drinking water sources throughout the state. Sources are rated depending upon their contaminant susceptibility.

Susceptibility Ratings for New Jersey American Water — Ocean City System
The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system’s source water assessment report. Source Water Assessment Reports and Summaries are available for public water systems at
Contaminant Categories
The NJDEP considered all surface water highly susceptible to pathogens, therefore, all intakes received a high rating for the pathogen category. For the purpose of the SWAP, radionuclides are more of a concern for ground water than surface water. As a result, surface water intakes’ susceptibility to radionuclides was not determined and a low rating was assigned.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

As a result of the assessments, NJDEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

Source water protection is a long-term dedication to clean and safe drinking water. It is more cost effective to prevent contamination than to address contamination after the fact. Every member of the community has an important role in source water protection. NJDEP recommends controlling activities and development around drinking water sources, whether it is through land acquisition, conservation easements or hazardous waste collection programs. We will continue to keep you informed of SWAP’s progress and developments.

Susceptibility Chart Definitions
- **Pathogens:** Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.
- **Nutrients:** Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus.
- **Volatile Organic Compounds:** Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.
- **Pesticides:** Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.
- **Inorganics:** Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.
- **Radionuclides:** Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.
- **Radon:** Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394.
- **Disinfection By-product Precursors:** A common source is naturally occurring organic matter in surface water. Disinfection by-products are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.

<table>
<thead>
<tr>
<th>Ocean City</th>
<th>Pathogens</th>
<th>Nutrients</th>
<th>Pesticides</th>
<th>Volatile Organic Compounds</th>
<th>Inorganics</th>
<th>Radionuclides</th>
<th>Radon</th>
<th>Disinfection By-Product Precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>H M L</td>
</tr>
<tr>
<td>Wells – 11</td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>GUDI - 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Our Water Research Efforts
Cryptosporidium is a protozoan found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, people with severely weakened immune systems have a risk of developing a life-threatening illness. We encourage such people to consult their doctors regarding appropriate precautions to take to avoid infection.

Cryptosporidium must be ingested to cause disease. It can also be spread through means other than drinking water. Researchers with American Water have developed a new, more accurate test for Cryptosporidium in water. For additional information regarding cryptosporidiosis and how it may impact those with weakened immune systems, please contact our customer service center at 1-800-272-1325 or speak with your personal health care provider.

Lead Education Statement
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. New Jersey American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. We take steps to reduce the potential for lead to leach from your pipes into the water. This is accomplished by maintaining the quality of your water leaving our treatment facilities. There are steps that you can take to reduce your
household’s exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize your exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. For more information, please review our Lead and Drinking Water Fact Sheet https://amwater.com/nj/water-quality/lead-and-drinking-water. You may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

What’s in the Source Water Before We Treat It?
In general, the sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or from human activities.

Substances That May Be Present in Source Water Include:

- **Microbiological Contaminants**: such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations or wildlife.
- **Inorganic Contaminants**: such as salts and metals which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- **Pesticides and Herbicides**: which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.
- **Organic Chemical Contaminants**: including synthetic and volatile organic chemicals which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff and septic systems.
- **Radioactive Contaminants**: which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.

What is Radon?
Radon is a radioactive gas that occurs naturally in some groundwater. It may pose a health risk when the gas is released from water into air, as occurs when showering, washing dishes and performing other household activities. Radon can move up through the ground and into a home through cracks in the foundation. Compared to radon entering the home through soil, radon entering through tap water is, in most cases, a small source of radon in indoor air. Inhalation of radon gas has been linked to lung cancer, however, the effects of radon ingested in drinking water are not yet clear. If you are concerned about radon in your home, tests are available to determine the total exposure level.

The EPA is developing regulations to reduce radon in drinking water. Radon in the air is inexpensive to test and easy to correct. For additional information, call the EPA’s Radon Hotline at 1-800-SOS-RADON.

Do I Need to Take Special Precautions?
To ensure that tap water is safe to drink, the EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.
How Do I Read the Table of Detected Contaminants?

First, determine which table you should read by finding your town in the Towns Served by this System. Starting with the Contaminant, read across from left to right. A “Yes” under Compliance Achieved means the amount of the substance met government requirements. The column marked MCLG, Maximum Contaminant Level Goal, is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. The shaded column marked MCL, Maximum Contaminant Level, is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. The column marked Range Detected shows the highest and lowest test results for the year. The column marked Highest Level Detected shows the highest test results during the year. Typical Source shows where this substance usually originates. Compare the Range Detected values with the MCL column. To be in compliance, the Highest Level Detected must be lower than the MCL.

As you can see from the table, our system had no MCL violations again this year. The footnotes and the definitions below will help you interpret the data presented in the Table of Detected Contaminants.

Table Definitions

90th Percentile Value: Of the samples taken, 90% of the values of the results were below the level indicated in the table.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

NA: Not applicable

ND (None Detected): Laboratory analysis indicates that the constituent is not present.

ppb (Parts per Billion): Corresponds to one part substance in one billion parts of water.

ppm (Parts per Million): Corresponds to one part substance in one million parts of water.

pCi/L (Picocuries per Liter): A measure of the radioactivity in water.

RUL: Recommended upper limit

Water Quality Statement

The data presented in the Table of Detected Contaminants is the same data collected to comply EPA and New Jersey state monitoring and testing requirements. We have learned through our testing that some contaminants have been detected, however, these contaminants were detected below the levels set by the EPA to protect public health. To assure high quality water, individual water samples are taken each year for chemical, physical and microbiological tests. Tests are done on water taken at the source, from the distribution system after treatment and, for lead and copper monitoring, from the customer’s tap. Testing can pinpoint a potential problem so that preventative action may be taken. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals, and synthetic organic chemicals. Our system has received monitoring waivers for synthetic organic chemicals and asbestos.

NJDEP Water Conservation Message...Because Remember, Every Drop Counts
Vulnerable Populations Statement
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC (Center for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial pathogens are available from the Safe Drinking Water Hotline (1-800-426-4791).

Ocean City System - PWS ID# NJ0508001
Table of Detected Contaminants – 2019
Towns Served By This System: Beesleys Point | Marmora | Ocean City
Regulated contaminants not listed in the data table were not detected in the treated water supply.

Regulated Substances

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride (2017)^1</td>
<td>ppm</td>
<td>Yes</td>
<td>4</td>
<td>4</td>
<td>0.16 to 0.21</td>
<td>0.21</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>Yes</td>
<td>10</td>
<td>10</td>
<td>ND to 0.09</td>
<td>0.09</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Treatment By-Products Stage-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes [TTHMs]</td>
<td>ppb</td>
<td>Yes</td>
<td>NA</td>
<td>80</td>
<td>14 to 27.3</td>
<td>26^1</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids [THAA5]</td>
<td>ppb</td>
<td>Yes</td>
<td>NA</td>
<td>60</td>
<td>4.7 to 10.7</td>
<td>10^1</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Disinfectants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>Yes</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>0.69 to 1.13</td>
<td>0.9^2</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Radioactive Substances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Emitters (2017)^1</td>
<td>pCi/L</td>
<td>Yes</td>
<td>0</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Combined Radium (226/228) (2017)^1</td>
<td>pCi/L</td>
<td>Yes</td>
<td>0</td>
<td>5</td>
<td>ND to 1.3</td>
<td>1.3</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Tap water samples were collected from 31 homes in the service area

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Action Level</th>
<th>MCLG</th>
<th>Amount Detected (90th % tile)</th>
<th>Homes Above Action Level</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>0.187</td>
<td>None</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>None</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

Secondary Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Secondary RUL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (2017)^2</td>
<td>ppm</td>
<td>0.2</td>
<td>ND to 0.35</td>
<td>0.35</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Iron</td>
<td>ppm</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppm</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Sodium (2017)^3</td>
<td>ppm</td>
<td>50</td>
<td>25.6 to 39</td>
<td>39^6</td>
<td>Naturally occurring</td>
</tr>
</tbody>
</table>
New Jersey American Water participated in the Unregulated Contaminant Monitoring Rule. Unregulated contaminants are those for which the EPA has not established drinking water standards. The fourth Unregulated Contaminant Monitoring Rule (UCMR 4) was published in the Federal Register on December 20, 2016. UCMR 4 requires monitoring for 30 chemical contaminants between 2018 and 2020 using analytical methods developed by EPA and consensus organizations. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether regulation is warranted. For testing conducted in the Ocean City System, the following substances were found.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MRL</th>
<th>Average Level Detected</th>
<th>Range Detected</th>
<th>Use or Environmental Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>ppb</td>
<td>0.4</td>
<td>3.3</td>
<td>ND – 7.2</td>
<td>Naturally present in the environment; used in steel production, fertilizer, batteries, and fireworks; drinking water and wastewater treatment chemical</td>
</tr>
<tr>
<td>Brominated Haloacetic Acid (HAA) Group Assessment Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAA9 Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromochloroacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>2.1</td>
<td>1.3 – 3.2</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Bromodichloroacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>2.3</td>
<td>0.9 – 3.5</td>
<td></td>
</tr>
<tr>
<td>Dibromoacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>1.3</td>
<td>0.73 – 2.4</td>
<td></td>
</tr>
<tr>
<td>Monobromoacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>0.04</td>
<td>ND – 0.30</td>
<td></td>
</tr>
<tr>
<td>Tribromoacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Chlorodibromoacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>1.2</td>
<td>0.52 – 2.2</td>
<td></td>
</tr>
<tr>
<td>Dichloroacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>2.5</td>
<td>1.6 – 3.2</td>
<td></td>
</tr>
<tr>
<td>Monochloroacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Trichloroacetic Acid</td>
<td>ppb</td>
<td>N/A</td>
<td>3.2</td>
<td>2.1 – 4.7</td>
<td></td>
</tr>
</tbody>
</table>

1 This level represents the highest annual quarterly Locational Running Average calculated from the data collected
2 This level represents the highest annual quarterly average calculated from the data collected
3 The State of New Jersey allows us to monitor for certain contaminants less than once a year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative, are more than one year old.
4 The recommended upper limit for iron is based on unpleasant taste of the water and staining of the laundry. Iron is an essential nutrient, but some people who drink water with iron well above the recommended upper limit could develop deposits of iron in a number of organs of the body.
5 The recommended upper limit for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from levels which would be encountered in drinking water.
6 For healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be of concern to individuals on a sodium restricted diet.