A Message from Illinois American Water President

To Our Valued Customer:

Illinois American Water is proud to be your local water service provider. In this report you will find information related to the high-quality and reliable water that we supply to your community and communities across Illinois every day. We are proud to provide water that meets or surpasses all state and federal water quality regulations.

Illinois American Water has an exceptional track record in providing safe, clean and reliable drinking water. We utilize state-of-the-art technology and rely on the expertise and experience of our highly-qualified, professional team of employees to treat and deliver water to more than 1.3 million residents across the state.

We know you have high expectations for your drinking water. Our employees monitor and test at every stage of the water treatment process to ensure the water coming from your tap is high quality.

Annually, Illinois American Water invests approximately $70-100 million in water lines, hydrants and treatment facility enhancements. This keeps your local water infrastructure efficient and reliable.

We have dedicated employees who provide educational opportunities to the communities in which our customers work and live. You may see our mobile education center at a local school or event with our employees on-board, sharing their knowledge and offering hands-on learning opportunities.

Our customers are at the center of everything we do and we are committed to providing you with the highest quality of drinking water possible. Please take time to review this annual report, which will provide further detail about the drinking water delivered to your community in 2018.

Sincerely,

Bruce Hauk
President
Illinois American Water
What is a Water Quality Report?
Illinois American Water issues a report annually describing the quality of your drinking water in compliance with state and United States Environmental Protection Agency (USEPA) regulations. The purpose of this report is to increase understanding of drinking water standards and raise awareness of the need to protect your drinking water sources.

At our state-of-the-art research laboratory in Belleville, Illinois, we conduct thousands of tests per year, checking drinking water quality at every stage of the water treatment and delivery process. In 2018, we conducted tests for hundreds of contaminants, including those with federal and state maximum allowable levels. This report provides an overview of last year's (2018) water quality results. It includes details about your water and what it contains.

Source Water Information
The source of water for the River Grange community of our Chicago Metro District is well water purchased from the City of St. Charles. To determine St. Charles' susceptibility to groundwater contamination, the following documents were reviewed: a Well Site Survey, published in 1992 by the Illinois EPA; and a Source Water Protection Plan prepared by the Village of St. Charles, published by Burns and McDonnell in May of 1996. Based on the information obtained in these documents there are 121 potential sources of groundwater contamination that could pose a hazard to groundwater utilized by the St. Charles community water supply wells. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of Illinois EPA indicated several additional sites with on-going remediation which may be of concern. Based upon this information, the Illinois EPA has determined that the St. Charles Community Water Supply's source water has a low susceptibility to SOC contamination. In addition, Wells #3, #4, and #8 have a low susceptibility to IOC and VOC contamination. However, Wells #7, #9 and #11 have a high susceptibility to IOC and VOC contamination. These susceptibility ratings are a result of monitoring conducted at the wells and entry point to the distribution system, the land use activities and source water protection initiatives (refer to the following section of this report) by the city. Furthermore, in anticipation of the U.S. EPA's proposed Ground Water Rule, the Illinois EPA has determined that St. Charles' community water supply wells have a low susceptibility to viral contamination. This determination is based upon the completed evaluation of the following criteria used in the Vulnerability Waiver Process: the community's wells are properly constructed with sound integrity and proper site conditions; all potential routes and sanitary defects have been mitigated such that the source water is adequately protected; monitoring data did not indicate a history of disease outbreak; and the sanitary survey of the water supply did not indicate a viral contamination threat. However, having stated this, the "[U.S.] EPA is proposing to require States to identify systems in karst, gravel and fractured rock aquifer systems as sensitive and these systems must perform routine source water monitoring". Because the community's wells are constructed in both confined bedrock and unconfined sand and gravel aquifers, the Illinois EPA evaluated the well hydraulics associated with St. Charles' well fields. Wells #7, #9 and #11 have an appreciable amount of overburden (the wells range from approximately 90 to 175 feet deep with the last 20 feet open to the aquifer) above the portion of the aquifer contributing a significant quantity of groundwater to the screened interval. This should provide an adequate degree of filtration to prevent the movement of pathogens into the wells.

The IEPA has completed a source water assessment for the City of St. Charles and a copy is available. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation / recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://dataservices.epa.illinois.gov/swap/factsheet.aspx.

Environmental Stewardship / Protecting Your Drinking Water Supply
Water is one of the earth's most precious natural resources. Protecting the environment helps to ensure adequate water supply for generations. Our efforts include student education, community events, environmental partnerships and internal initiatives. Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

What Can You Do? Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Dispose of pharmaceuticals, household chemicals, oils and paints at proper waste collection sites. Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground. Contact your county waste authority to find out how to dispose of these materials properly.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag in the trash.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Look for local opportunities to take part in watershed activities.
- Report any spills, illegal dumping or suspicious activity to Agency [IEPA].
What Are We Doing? Our vision is Clean Water for Life. Our priority is to provide reliable, quality drinking water for our customers. The source of supply is an important part of that mission. We work to understand and reduce potential risks to your drinking water supply. Here are a few of the efforts underway to protect our shared water resources:

- **Student Education**: Illinois American Water reaches thousands of students each year through educational efforts. Our water quality team visits local schools to demonstrate the water treatment process. Our Mobile Education Center (MEC), an 18-foot learning center, offers hands-on water testing and fun lesson plans. We partner with Illinois leaders on Science, Technology, Engineering, Mathematics (STEM) education efforts. Students participate in annual community events like the Clean Water Celebration held in Peoria and the Water Festival in Godfrey.

- **Community Involvement**: We participate in the “It’s Our River Day” celebrations each September across the state. These events promote education, recreation and conservation within Illinois watersheds. Illinois American Water employees volunteer at the Two Rivers Family Fishing Fair in Grafton. We also contribute to river cleanup efforts with the Illinois River Sweep, Vermillion River Clean Up, Living Lands and Waters Great Mississippi River Clean Up, and more.

- **Environmental Partnerships**: As a part of our Environmental Grant Program over $200,000 has been awarded to over 51 Illinois water source protection projects since 2009. In 2018, we presented over $20,000 for seven environmental projects focused on the improvement, restoration and protection of water sources in our communities. We are continuing our multi-year agreement with Great Rivers Land Trust to reduce sedimentation of the Piasa Creek and Mississippi River. The agreement has been highlighted as a model by the USEPA. Our Champaign County team partners on the Mahomet Aquifer Consortium to protect our precious resources.

- **Pharmaceutical Disposal Programs**: Illinois American Water has collaborated with communities to implement over 35 pharmaceutical disposal programs across the state. These efforts have led to the prevention of flushing medications and the proper disposal of hundreds of thousands pounds of unwanted medications. To learn more or to find a disposal location near you, please visit www.illinoisamwater.com under Water Quality.

- **Internal Initiatives**: On a daily basis, our facilities utilize technologies such as variable frequency motors and motion sensor lighting to ensure efficient energy use. Recycling programs at company facilities also help to reduce waste and protect the environment. Illinois American Water incorporates native and prairie plantings on company property whenever possible to reduce water use and mowing costs.

The company’s water treatment plant in Champaign County earned the first LEED® certification for a water treatment facility in Illinois. LEED is the nation’s leading program for the design, construction and operation of high-performance green buildings. In addition, an upgrade at the water treatment plant in Peoria includes the incorporation of ultraviolet (UV) technology to enhance water quality.

Illinois American Water’s Pontiac and Streator Districts installed ultrasonic units to effectively control algae and reduce the use of treatment chemicals. Illinois American Water also implemented solar power in the Peoria and Interurban (Metro East) Districts, decreasing electricity costs and benefiting our customers.

American Water

With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 7,100 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 14 million people in 46 states and Ontario, Canada. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

Illinois American Water

Illinois American Water, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 1.3 million people. American Water also operates a customer service center in Alton and a quality control and research laboratory in Belleville.

Questions?

To learn more about water quality, visit our website at: www.illinoisamwater.com. For questions or copies, contact Laura Marcasciano, Water Quality Supervisor, at 630-739-8846.
Substances Expected to be in Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can acquire naturally occurring minerals, in some cases, radioactive material and substances resulting from the presence of animals or from human activity.

Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, may also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

To ensure that tap water is of high quality, USEPA prescribes regulations limiting the amount of certain substances in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Illinois American Water’s advanced water treatment processes are designed to reduce any such substances to levels well below any health concern.

Important Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline 800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Illinois American Water is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The City of St. Charles and Illinois American Water take steps to reduce the potential for lead to leach from your pipes into the water. This is accomplished by adding a corrosion inhibitor to the water leaving our treatment facilities. There are steps that you can take to reduce your household’s exposure to lead in drinking water. For more information, please review our Lead and Drinking Water Fact Sheet www.illinoisamerican.com under Water Quality → Lead and Drinking Water.

How to Read the Data Tables

Illinois American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the data tables. While most monitoring was conducted in 2018, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting these tables, see the “Table Definitions” section and footnotes.
Table Definitions and Abbreviations

- **Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **Action Level Goal (ALG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.
- **Avg:** Regulatory compliance with some MCLs are based on running annual average of monthly samples.
- **Compliance Achieved:** Indicates that the levels found were all within the allowable levels as determined by the USEPA.
- **Highest Level Detected:** In most cases this column is the highest detected level unless compliance is calculated on a Running Annual Average or Locational Running Annual Average. If multiple entry points exist, the data from the entry point with the highest value is reported.
- **Level 1 Assessment:** A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
- **Level 2 Assessment:** A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
- **MCL (Maximum Contaminant Level):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **MCLG (Maximum Contaminant Level Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MRDL (Maximum Residual Disinfectant Level):** The highest level of a disinfectant routinely allowed in drinking water. Addition of a disinfectant is necessary for control of microbial contaminants.
- **MRDLG (Maximum Residual Disinfectant Level Goal):** The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.
- **NA:** Not applicable.
- **ND:** Not detectable at testing limits.
- **pCi/L (picocuries per liter):** Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).
- **ppm (parts per million):** One part substance per million parts water, or milligrams per liter.
- **ppb (parts per billion):** One part substance per billion parts water, or micrograms per liter.
- **Range Of Detections:** The range of individual sample results, from lowest to highest, that were collected during the sample period.
- **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water.

2018 Water Quality Information

We are pleased to report that during the past year, the water delivered to your home or business complied with, or was better than, all state and federal drinking water requirements.

For your information, we have compiled a table showing what substances were detected in your drinking water during 2018. Although all of the substances listed are under the Maximum Contaminant Level (MCL) set by the U.S. Environmental Protection Agency (USEPA), we feel it is important that you know exactly what was detected and how much of the substance was present in your water.
Water Quality Results

2018 Regulated Substances Detected in the River Grange Distribution

The next several tables summarize contaminants detected in your drinking water supply.

Lead and Copper (collected at customers taps)

<table>
<thead>
<tr>
<th></th>
<th>Date Sampled</th>
<th>MCLG</th>
<th>Action Level (AL)</th>
<th>90th Percentile</th>
<th># Sites Over AL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>2018</td>
<td>1.3</td>
<td>1.3</td>
<td>0.438</td>
<td>0</td>
<td>ppm</td>
<td>No</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead¹</td>
<td>2018</td>
<td>0</td>
<td>0.4</td>
<td>10.5</td>
<td>1</td>
<td>ppb</td>
<td>No</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits.</td>
</tr>
</tbody>
</table>

1 If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at http://www.epa.gov/safewater/lead.

Disinfectants & Disinfection Byproducts

<table>
<thead>
<tr>
<th>ByProducts</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAs (Halolacetic Acids)</td>
<td>2017</td>
<td>7.9</td>
<td>7.9 - 7.9</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>TTHMs (Total Trihalomethanes)</td>
<td>2017</td>
<td>22.2</td>
<td>22.2 - 22.2</td>
<td>No goal for the total</td>
<td>80</td>
<td>ppb</td>
<td>No</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Chlorine²</td>
<td>2018</td>
<td>0.7</td>
<td>0.4 - 1.7</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>ppm</td>
<td>No</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

2 Chlorine and chloramines are disinfecting agents added to control microbes that otherwise could cause waterborne diseases or other water quality concerns. Most water systems in Illinois are required by law to add either chlorine or chloramines. Levels well in excess of the MRDL could cause irritation of the eyes or nose in some people. The values reported reflect multiple locations in the service area.

2018 Regulated Substances Detected (Measured in the St. Charles Facility)

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2018</td>
<td>0.84</td>
<td>0.045 - 0.84</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>No</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Chromium</td>
<td>2018</td>
<td>8</td>
<td>0 – 8</td>
<td>100</td>
<td>100</td>
<td>ppb</td>
<td>No</td>
<td>Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.</td>
</tr>
<tr>
<td>Fluoride³</td>
<td>2018</td>
<td>1.01</td>
<td>1.01 - 1.01</td>
<td>4</td>
<td>4.0</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Iron⁴</td>
<td>2018</td>
<td>0.26</td>
<td>0.028 – 0.26</td>
<td>NA</td>
<td>1</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of naturally occurring deposits</td>
</tr>
<tr>
<td>Manganese³</td>
<td>2018</td>
<td>72</td>
<td>1.3 – 72</td>
<td>150</td>
<td>150</td>
<td>ppb</td>
<td>No</td>
<td>Erosion of naturally occurring deposits</td>
</tr>
<tr>
<td>Selenium</td>
<td>2018</td>
<td>5.5</td>
<td>0 – 5.5</td>
<td>50</td>
<td>50</td>
<td>ppb</td>
<td>No</td>
<td>Erosion of naturally occurring deposits</td>
</tr>
<tr>
<td>Sodium⁶</td>
<td>2018</td>
<td>100</td>
<td>11 – 100</td>
<td>NA</td>
<td>NA</td>
<td>ppm</td>
<td>No</td>
<td>Erosion of naturally occurring deposits; By-product of home water softening</td>
</tr>
<tr>
<td>Zinc</td>
<td>2018</td>
<td>0.014</td>
<td>0.006 – 0.014</td>
<td>5</td>
<td>5</td>
<td>ppm</td>
<td>No</td>
<td>This contaminant is not currently regulated by the USEPA. However, the state regulates. Naturally occurring; discharge from metal factories.</td>
</tr>
</tbody>
</table>
Fluoride is added to the water supply to help promote strong teeth. The Illinois Department of Public Health recommends a fluoride level of 0.7 mg/L.

Iron is currently not regulated by USEPA. However, the state has set an MCL for iron for supplies serving a population of 1000 or more. Iron is not a health concern but can cause staining of plumbing and fixtures. River Grange adds a phosphate based sequestering agent to control the aesthetic impacts of iron.

Manganese is currently not regulated by USEPA. However, the state has set an MCL for manganese for supplies serving a population of 1000 or more. Manganese is not a health concern but can cause staining of plumbing and fixtures.

There is no state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about this level of sodium in the water.

<table>
<thead>
<tr>
<th>Radiological Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Radium 226/228</td>
<td>2018</td>
<td>4</td>
<td>0 – 4.2</td>
<td>0</td>
<td>5</td>
<td>pCi/L</td>
<td>No</td>
<td>Erosion of natural deposits.</td>
</tr>
<tr>
<td>Gross Alpha emitters</td>
<td>2017</td>
<td>7</td>
<td>0 – 7.44</td>
<td>0</td>
<td>15</td>
<td>pCi/L</td>
<td>No</td>
<td>Erosion of natural deposits.</td>
</tr>
</tbody>
</table>

Note: The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Therefore, some of this data may be more than one year old.

Violation Summary Table
We are happy to announce that no monitoring, reporting, treatment technique, maximum residual disinfectant level, or maximum contaminant level violations were recorded during 2018.