A Message from the Missouri American Water President

To Our Valued Customers:

Nothing is more important than the safety and quality of the drinking water that we provide to you.

We are proud to share that Missouri American Water continues to meet or surpass all state and federal drinking water standards. Our scientists conduct more than 500,000 water quality tests each year to help maintain compliance with ever-increasing health and environmental regulations, so you receive safe, high quality water.

In addition to complying with current regulations, our water quality experts are also at the forefront of research identifying and treating for emerging contaminants. These scientists work closely with the Missouri Department of Natural Resources (MDNR) and the U.S. Environmental Protection Agency (EPA) as new standards and treatment techniques are developed.

We’re especially proud of our recognition with the Partnership for Safe Water, which is a voluntary initiative developed by six prestigious drinking water organizations, including the EPA and the American Water Works Association, to recognize water utilities that consistently surpass federal regulations. All six of Missouri American Water’s surface-water treatment plants are recognized by the program, an honor achieved by less than 1% of all water utilities.

We hope you will take a few minutes to review the important information included in this water quality report. If you have any questions, please reach out to us on our website or by phone at (866) 430-0820.

Debbie Dewey
President
Water Quality Statement

Once again, we are pleased to report that during the past year, the water delivered to your home or business complied with all state and federal drinking water requirements. For your information, we have compiled tables showing the results of our most recent water quality data available. For additional information concerning our results, please contact our customer service department at (toll-free) (866) 430-0820. Monitoring is also done under the EPA Unregulated Contaminant Monitoring Rule (UCMR). Data is available on the USEPA’s web site.

There are many unforeseen and unpredictable factors that may introduce contaminants into our source water. The MDNR routinely monitors all public water supplies to protect public health. Source Water Assessments have been assembled by the MDNR to evaluate the susceptibility of contamination to our drinking water sources. For more information about these assessments call the MDNR at (800) 361-4827.

What is a Water Quality Report?

To comply with MDNR and EPA regulations, Missouri American Water issues a report annually describing the quality of your drinking water. The purpose of this report is to let consumers know the results of our water quality testing. It also includes details about where your water comes from and the need to protect drinking water sources. We conduct tests for hundreds of contaminants.

We ask that landlords, employers, and anyone else who receives the water bill for other water users share this report with them.

About Missouri American Water

Missouri American Water, a subsidiary of American Water Works Company, Inc. (NYSE: AWK), is the largest investor-owned water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 1.5 million people.

With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit www.amwater.com and follow American Water on Twitter, Facebook, and Linkedin.

How to Contact Us

For more information regarding this report or any of the other services provided by Missouri American Water, please call our Customer Service Center at (toll-free) (866) 430-0820, or you may visit us at www.missouriamwater.com.

Partnership for Safe Drinking Water Program

Missouri American Water’s surface treatment plants are members of the Partnership for Safe Water. The Partnership is a national voluntary initiative developed by the EPA and five other water organizations to recognize water suppliers that consistently achieve water treatment standards that surpass EPA requirements. Fewer than one percent of water utilities in the U.S. have achieved this recognition. All six of the company’s surface treatment plants – including all four in St. Louis County, a fifth in Joplin, and a sixth in Jefferson City – have received 15-year Director’s Awards from the Partnership.

Source Water Information

Missouri American Water supplies quality drinking water to around 365,000 customers in St. Louis County, St. Charles County, and Northern Jefferson County. Approximately 80% of our surface water comes from the Missouri River, which borders our service area on the north and the west. About 20% comes from the Meramec River in south St. Louis County. Both rivers have a plentiful supply of water. Missouri American Water occasionally purchases a small quantity of water from the City of St. Louis Water Division, which also uses the Missouri River as its source. For more information about this water supply, contact the City of St. Louis Water Division at (314) 868-5640. More information on your source water is available at http://drinkingwater.missouri.edu. To access the information for your water system, you will need the state-assigned code (PWSID), which is printed at the top of this report.

2019 System Improvements

Missouri American Water installed emergency generators at our largest treatment facility supplying the St. Louis County / St. Charles County area. The generators help guard against water service interruptions due to electrical power loss and enhance system resiliency and reliability. In addition to the generators, new submersible pumps were installed at our intake structure that pulls in water from the Meramec River. The pumps help improve our ability to bring in water for treatment even during major flooding events. Also, one of our largest storage tanks was updated, which improves our ability to maintain high quality water in the distribution system.
Protecting Our Water Quality at the Source

It takes a community effort to protect our drinking water at its source. We all live in a watershed – an area of land that drains to a waterway. When it rains or snows, water travels across the ground on its journey to a river or stream. Along the way, it picks up any pollutants that may be found on lawns, streets, and farmland.

Working together, we can minimize these pollutants and protect our rivers with these eight simple steps:

- Recycle – don’t litter
- Remember that storm inlets drain to rivers – dispose of household chemicals, oils, and paints at proper waste collection sites
- Plant native plants. They support wildlife, help preserve our natural diversity and require no fertilizer or herbicides
- Clean up after your pets and limit the use of fertilizers and pesticides
- Check for leaks from automobiles and heating fuel tanks and clean with absorbent materials like cat litter
- Plant a rain garden to capture runoff from rainwater
- Join a local stream clean-up team
- Do not flush or pour pharmaceuticals down the drain – please dispose at dedicated collection sites
Substances Expected to be in Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

In order to provide safe tap water, the MDNR prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Missouri Department of Health and Senior Services regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally-occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or be the result of energy production and mining activities.

For more information about the contaminants and potential health effects, call the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Special Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as those with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control and Prevention guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Missouri American Water is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Steps are taken to reduce the potential for lead to leach from your pipes into the water. This is accomplished by maintaining the quality of your water leaving the treatment facilities. There are steps that you can take to reduce your household’s exposure to lead in drinking water. For more information, please review our Lead and Drinking Water Fact Sheet https://amwater.com/moaw/water-quality/lead-and-drinking-water. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.
How to Read the Tables

Missouri American Water conducts extensive testing to monitor compliance with water quality standards. The most recent results of our monitoring are reported in the following tables. Certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting these tables, see the “Definitions of Terms” section.

1. Starting with a **Substance**, read across
2. **Year Sampled** is most recent test year
3. **MCL** shows the highest level of substance (contaminant) allowed
4. **MCLG** is the goal level for that substance (this may be lower than what is allowed)
5. **Average Amount Detected** represents the measured amount (less is better)
6. **Range** tells the highest and lowest amounts measured
7. A **Yes** under **Compliance Achieved** means the amount of the substance met government requirements
8. **Typical Source** tells where the substance usually originates

Definitions of Terms

AL (Action Level): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

HAA5: Haloacetic Acids (mono-, di-, and tri-chloroacetic acid, and mono- and di-bromoacetic acid) as a group.

HAA6Br: Haloacetic Acids (mono-, di-, and tri-bromoacetic acid, bromochloroacetic acid, bromodichloroacetic acid, chlorodibromoacetic acid) as a group.

HAA9: Haloacetic Acids from HAA5 and HAA6Br as a group.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

NA: Not applicable

ND: Not detected at testing limits

pCi/L (picocuries per liter): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

ppb (parts per billion): One-part substance per billion parts water, or micrograms per liter.

ppm (parts per million): One-part substance per million parts water, or milligrams per liter.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

TTHM: Total Trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) as a group.

90th Percentile Value: Of the samples taken, 90% were below the level indicated in the table.
Water Quality Results

Regulated Substances (Water Entering the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Missouri River Facilities</th>
<th>Meramec River Facilities</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (ppb)</td>
<td>2019</td>
<td>70</td>
<td>70</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>Yes Runoff from herbicide used on row crops</td>
</tr>
<tr>
<td>Atrazine (ppb)</td>
<td>2019</td>
<td>3</td>
<td>3</td>
<td>0.7</td>
<td>0.2</td>
<td>ND – 0.2</td>
<td>Yes Runoff from herbicide used on row crops</td>
</tr>
<tr>
<td>Chloramines (ppm)</td>
<td>2019</td>
<td>TT</td>
<td>NA</td>
<td>3.6</td>
<td>2.0 – 3.6</td>
<td>3.4</td>
<td>2.1 – 3.4 Yes Water additive used to control microbes</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>2019</td>
<td>4</td>
<td>4</td>
<td>0.7</td>
<td>0.6 – 0.7</td>
<td>0.6</td>
<td>0.6 Yes Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>2019</td>
<td>10</td>
<td>10</td>
<td>1.7</td>
<td>0.6 – 1.7</td>
<td>0.5</td>
<td>0.3 – 0.5 Yes Runoff from fertilizer use; leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrite [as Nitrogen] (ppm)</td>
<td>2019</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>ND – 0.1</td>
<td>ND</td>
<td>ND Yes Discharge from petroleum and metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Selenium (ppb)</td>
<td>2019</td>
<td>50</td>
<td>50</td>
<td>2</td>
<td>2</td>
<td>ND</td>
<td>ND Yes Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>2019</td>
<td>TT</td>
<td>NA</td>
<td>4.0</td>
<td>2.5 – 4.0</td>
<td>3.0</td>
<td>1.1 – 3.0 Yes Naturally present in the environment</td>
</tr>
</tbody>
</table>

Turbidity – A Measure of the Clarity of the Water (Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Missouri River Single Measurement</th>
<th>Meramec River Single Measurement</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>2019</td>
<td>TT</td>
<td>NA</td>
<td>0.39</td>
<td>0.16</td>
<td>Yes</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

Bacterial Results (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Percentage Detected</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli</td>
<td>2019</td>
<td>TT</td>
<td>0</td>
<td>0.3%</td>
<td>Yes</td>
<td>Human and animal fecal waste</td>
</tr>
<tr>
<td>Total Coliform</td>
<td>2019</td>
<td>TT</td>
<td>NA</td>
<td>0.9%</td>
<td>Yes</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Regulated Substances (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Result</th>
<th>Range Low-High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (ppm)</td>
<td>2019</td>
<td>MRDL = 4</td>
<td>MRDLG = 4</td>
<td>3.7</td>
<td>0.5 – 3.7</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Haloacetic Acids (HAAS) (ppb)</td>
<td>2019</td>
<td>60</td>
<td>NA</td>
<td>27.02</td>
<td>8.1 – 39.9</td>
<td>Yes</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>TTHMs [Total trihalomethanes] (ppb)</td>
<td>2019</td>
<td>80</td>
<td>NA</td>
<td>55.02</td>
<td>2.8 – 87.0</td>
<td>Yes</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>
Lead and Copper Results (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Action Level</th>
<th>MCLG</th>
<th>Number of Samples</th>
<th>90th Percentile</th>
<th>Number of Samples Above Action Level</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>2019</td>
<td>AL = 1.3</td>
<td>1.3</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>2019</td>
<td>AL = 15</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Additional Water Quality Parameters of Interest (Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Missouri River</th>
<th>Meramec River</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Highest Result</td>
<td>Range Low-High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highest Result</td>
<td>Range Low-High</td>
<td></td>
</tr>
<tr>
<td>Calcium (ppm)</td>
<td>2019</td>
<td>26</td>
<td>25 – 26</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Chlorate (ppm)</td>
<td>2019</td>
<td>NA</td>
<td>NA</td>
<td>By-product of disinfection process; Agricultural defoliant or desiccant; Used in production of chlorine dioxide</td>
</tr>
<tr>
<td>Chloride (ppm)</td>
<td>2019</td>
<td>20</td>
<td>18 – 20</td>
<td>Naturally occurring; Runoff from road de-icing, fertilizers, septic tanks, industrial uses</td>
</tr>
<tr>
<td>Magnesium (ppm)</td>
<td>2019</td>
<td>13</td>
<td>10 – 13</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Potassium (ppm)</td>
<td>2019</td>
<td>8</td>
<td>8</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Silica (ppm)</td>
<td>2019</td>
<td>10</td>
<td>10</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>2019</td>
<td>18</td>
<td>16 – 18</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Strontium (ppb)</td>
<td>2019</td>
<td>100</td>
<td>100</td>
<td>Naturally occurring element; historically, commercial use of strontium has been in the faceplate glass of cathode-ray tube televisions to block x-ray emissions</td>
</tr>
<tr>
<td>Sulfate (ppm)</td>
<td>2019</td>
<td>86</td>
<td>76 – 86</td>
<td>Naturally occurring; Mining or industrial waste</td>
</tr>
<tr>
<td>Total Dissolved Solids (ppm)</td>
<td>2019</td>
<td>236</td>
<td>210 – 236</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Vanadium (ppb)</td>
<td>2019</td>
<td>5</td>
<td>4 – 5</td>
<td>Naturally occurring elemental metal; used as vanadium pentoxide which is a chemical intermediate and a catalyst</td>
</tr>
</tbody>
</table>

1 The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

2 This level represents the highest annual Locational Running Average calculated from the data collected.

Unregulated Contaminants Rule

Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is necessary. Every five years, the EPA issues a new list of no more than 30 unregulated contaminants to be monitored. Information on all the contaminants that were monitored for, whether regulated or unregulated, can be obtained from this water system or MDNR.

Unregulated Contaminants (Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Missouri River</th>
<th>Meramec River</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Highest Result</td>
<td>Range Low-High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highest Result</td>
<td>Range Low-High</td>
<td></td>
</tr>
<tr>
<td>2-Methoxyethanol (ppb)</td>
<td>2019</td>
<td>5.7</td>
<td>0.4 – 5.7</td>
<td>Naturally occurring element; used in synthetic cosmetics, perfumes, fragrances, hair preparations, and skin lotions</td>
</tr>
<tr>
<td>Manganese (ppb)</td>
<td>2019</td>
<td>4.9</td>
<td>0.5 – 4.9</td>
<td>Naturally occurring element; used in steel production, fertilizer, batteries and fireworks; essential nutrient</td>
</tr>
</tbody>
</table>
Unregulated Contaminants (In the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Highest Result</th>
<th>Range Low-High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAA6Br [Haloacetic Acids] (ppb)</td>
<td>2019</td>
<td>8.8</td>
<td>0.7 – 8.8</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>HAA9 [Haloacetic Acids] (ppb)</td>
<td>2019</td>
<td>43</td>
<td>9 - 43</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

Substances Tested for But Not Detected in 2019 (Water Leaving the Treatment Facility)

1,1,1-Trichloroethane Barium – Total Hexachlorocyclopentadiene
1,1,2-Trichloroethane Bentazon Iron – Total
1,1-Dichloroethene Benzene Lead - Total
1,2,4-Trichlorobenzene Benzo(a)pyrene Manganese - Total
1,2-Dibromo-3-chloropropane Beryllium – Total Mercury – Total
1,2-Dibromoethane (EDB) Boron – Total Bromoform Methiocarb
1,2-Dichlorobenzene Cadmium - Total Methomyl
1,2-Dichloroethane Carbaryl (Sevin) Methoxychlor
1,2-Dichloropropane Carbofuran Methyl tert-Butyl ether (MTBE)
1,4-Dichlorobenzene Carbon tetrachloride Methylene chloride
2,4,5-T Chlorobenzene Molybdenum – Total
2,4,5-TP (Silvex) Chromium - Total Monobromoacetic Acid
2,4-DB cis-1,2-Dichloroethene Nickel - Total
3,5-Dichlorobenzoic Acid Cobalt - Total Oxamyl (Vydate)
3-Hydroxycarbofuran Copper - Total Pentachlorophenol
Acifluorfen Cyanide, Total Perchlorate
Alachlor Dacthal Picloram
Aldicarb Dalapon Silver – Total
Aldicarb Sulfone Di(2-ethylhexyl)adipate Simazine (Princep)
Aldicarb Sulfoxide Di(2-ethylhexyl)phthalate Styrene
Aluminum - Total Dicamba Technical Chlordane
Antimony - Total Dichlorodiprop Tetrachloroethene (PCE)
Arochlor-1016 Dibenzofuran Thallium - Total
Arochlor-1221 Diquat Toluene
Arochlor-1232 Endothall Total PCBs
Arochlor-1242 Endrin Toxaphene
Arochlor-1248 Ethyl Benzene trans-1,2-Dichloroethene
Arochlor-1254 Gamma-BHC (Lindane) Trichloroethene (TCE)
Arochlor-1260 Glyphosate Vinyl chloride
Arsenic – Total Heptachlor Xylene (total)
Atrazine (Aatrex) Heptachlor epoxide Zinc – Total