A Message from the Pennsylvania American Water President

At Pennsylvania American Water, our customers are at the center of everything we do. That’s why we work 24 hours a day, seven days a week to protect our water supplies and provide our communities with safe, clean tap water that meets or surpasses drinking water standards. We care about protecting our precious water resources, and we invest millions of dollars in technology and equipment to test and monitor our drinking water supplies.

I am pleased to share with you another excellent report on the quality of your drinking water. As you read through this annual water quality information, you will see that we continue to supply high quality drinking water to keep your life flowing.

Last year, we invested $366 million to upgrade our water and wastewater treatment and pipeline systems across the Commonwealth. That means we invested more than $500 for every one of our water and wastewater customers in 2019 alone. These investments allowed us to improve water quality, water pressure and service reliability for our customers.

We take water quality so seriously that 33 of our water treatment plants have been nationally recognized with Directors Awards from the U.S. Environmental Protection Agency’s (EPA) Partnership for Safe Water program for surpassing federal and state drinking water standards. And, we remain committed to protecting our sources of drinking water. We utilize advanced technology and detection methods that are paving the way for source water protection across the country.

In the fall of 2019, we completed our lead and copper sampling program, which is required every three years by the EPA. This effort included collecting 1,300 water samples from homes across the Commonwealth – above and beyond the 15,000 water samples we collect across our systems throughout the year for other routine testing. I am proud to share that all of our systems meet state and federal regulations for lead and copper, which demonstrates that our corrosion control treatment continues to be effective in protecting our customers’ health.

We hope our commitment to you and our passion for water shines through in this report detailing the source and quality of your drinking water in 2019. We will continue to work to keep your life flowing – today, tomorrow and for future generations.

Proud to be your local water service provider,

F. Michael Doran
Senior Vice President, Mid-Atlantic Division &,
President, Pennsylvania American Water
Our Mark of Excellence

With a history dating back to 1886, American Water Works Company, Inc. (NYSE:AWK) is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to help keep their lives flowing. For more information, visit www.amwater.com and follow American Water on Twitter, Facebook and LinkedIn.

Pennsylvania American Water Company, a subsidiary of American Water, is the largest investor-owned water utility in the Commonwealth, providing high-quality and reliable water and/or wastewater services to approximately 2.4 million people.

Your Drinking Water Supply

The raw drinking water supply is a combination of surface water and ground water sources. Cold Stream Reservoir, Blue Spring and five wells are the sources of supply for the Philipsburg service area. Pennsylvania American Water maintains two treatment facilities, with a combined capacity of 3.8 million gallons of water a day (MGD). The Philipsburg treatment facility (2.3 MGD) utilizes the Cold Stream Reservoir, Blue Spring and three wells as its sources. The Penn Five treatment facility (1.5 MGD) utilizes two wells as its sources located within the Trout Run Watershed. The watershed above the Cold Stream dam is classified as a high quality, cold-water fishery. The Cold stream watershed is comprised of approximately 6100 acres. The contributing area for the wells and the spring is comprised of approximately 11,100 acres. The water supply is distributed for residential, commercial, and industrial use. Approximately 99 percent of the contributing watershed is forested. Learn more about local waterways at https://watersgeo.epa.gov/mywaterway and groundwater conditions at https://water.usgs.gov/ogw.

The Pennsylvania Department of Environmental Protection (DEP) completed a source water assessment for the Philipsburg System in 2003 to meet Federal requirements of the Safe Drinking Water Act. The study looked at the drainage area and ranked its vulnerability to contamination. The water supplies are considered vulnerable to transportation spills as well as oil and gas well drilling activities. DEP ranked the susceptibility high because the water supplies are above the ground and exposed or a groundwater source in close proximity. To get a copy of the assessment, contact DEP at (717) 705-4732 or visit: http://www.depgreenport.state.pa.us/elibrary/

Protecting Your Drinking Water Supply

Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies.

What Can You Do? Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Dispose of pharmaceuticals, household chemicals, oils and paints at proper waste collection sites. Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground. Contact your county waste authority to find out how to dispose of these materials properly.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag in the trash.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Look for local opportunities to take part in watershed activities.
- Report any spills, illegal dumping or suspicious activity to DEP here: https://www.dep.pa.gov/About/ReportanIncident/Pages/default.aspx

What Are We Doing? Our vision is Clean Water for Life. Our priority is to provide reliable, quality drinking water for our customers. The source of supply is an important part of that mission. We work to understand and reduce potential risks to your drinking water supply.
We have developed a Source Water Protection Plan under the Pennsylvania Source Water Protection Technical Assistance Program (SWPTAP). This is a voluntary program to identify and address potential threats to drinking water supplies. Stakeholder involvement is an important part of the program. We partner with DEP to host annual meetings to review progress on the plan with stakeholders. We also welcome input on the plan or local water supplies through our online feedback form.

Here are a few of the efforts underway to protect our shared water resources:

- **Community Involvement**: We have a proactive public outreach program to help spread the word and get people involved. This includes school education, contests, and other community activities. For more information, visit: https://amwater.com/paaw/news-community/community-involvement

- **Environmental Grant Program**: Each year, we fund projects that improve water resources in our local communities. In 2019, eight organizations received grant funds totaling around $40,000 for local watershed projects. For more information on the program, visit: https://amwater.com/paaw/news-community/environmental-grant-program.

- **Pharmaceutical Collection**: We sponsor drop box locations across the Commonwealth for residents to safely dispose of unwanted drugs for free. This helps keep pharmaceutical products from entering water supplies. For drop box locations near you, visit: https://amwater.com/paaw/water-quality/pharmaceuticals-and-drinking-water.

To learn more about your water supply and local activities, please contact the regional Source Water Protection Lead, Josh Dunkle, at 724-873-3667.

Other Water Quality Parameters of Interest

Is there lead in your water?
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Pennsylvania American Water is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. We do take steps to reduce the potential for lead to leach from your pipes into the water. This is accomplished by adding a corrosion inhibitor to the water leaving our treatment facilities. There are also steps that you can take to reduce your household’s exposure to lead in drinking water. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. For more information, please review our Lead and Drinking Water Fact Sheet at https://amwater.com/paaw/water-quality/lead.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at: [U.S. Environmental Protection Agency Web Page on Lead](https://amwater.com/paaw/water-quality/lead).

Does your water contain nitrates?
PAW’s normal range of nitrate levels is well below the MCL of 10 ppm. Nitrates enter the water supply from fertilizers used on farms and natural erosion of deposits in the watershed.

Levels above 10 ppm are a health risk for infants under six months of age and can cause blue baby syndrome. Check with your physician if you have questions.

How hard is your water?
Hardness is a measure of the concentration of two minerals naturally present in water – calcium and magnesium. High hardness levels cause soap not to foam as easily as it would at lower levels. Hardness levels range from 12 ppm to 46 ppm, or 1 to 3 grains per gallon of water.

How much sodium is in your water?
The sodium level is approximately 9 ppm.

What is the pH (acidity) range of your water?
Water entering the distribution system averaged 7.4 pH units. A pH of 7.0 is considered neutral, neither acidic nor basic.
Is there fluoride in your water?
Pennsylvania American Water adds fluoride to a level of approximately 0.7 ppm to assist in prevention of dental cavities.

Partnership for Safe Drinking Water Program

Phase IV Presidents Award
In 2014, the Philipsburg Plant was awarded the prestigious Presidents Award under the Partnership for Safe Water program. This award has more stringent performance requirements and recognizes treatment plants that achieve the Partnership’s rigorous individual filter effluent turbidity standards. In 2019, the Philipsburg Plant maintained the high voluntary standards of the President’s Award.

15-Year Partnership Award
In 2001, the Philipsburg system was awarded the Director’s Award under the Partnership for Safe Water program. The EPA, the DEP, administers this program and other water related organizations. The award honors utilities for achieving operational excellence by voluntarily optimizing their treatment facility operations and adopting more stringent performance goals that those required by federal and state drinking water standards. We are proud to report that the Philipsburg Filter plant has met the voluntary goals of the program for 18 continuous years.

How to Contact Us
Additional copies of this report can be printed directly from this site at www.amwater.com/ccr/philipsburg.pdf. Additional information can be gathered by calling our Customer Service Department at 1-800-565-7292 or by viewing the following information on the Internet:

- Pennsylvania American Water Web Page
- Pa. Department of Environmental Protection Web Page
- United States Environmental Protection Agency Web Page
- Safe Drinking Water Hotline: (800) 426-4791
- Center for Disease Control and Prevention Web Page
- American Water Works Association Web Page

Substances Expected to be in Drinking Water
In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Pennsylvania American Water’s treatment processes are designed to reduce any such substances to levels below any health concern and the processes are controlled to provide protection against microbial and viral pathogens which could be naturally present in surface and groundwater. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA and/or the United States Center for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

The source of drinking water (both tap water and bottled water) includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.
Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

Cryptosporidium

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes *Cryptosporidium*, the most commonly-used filtration methods cannot guarantee 100 percent removal. If the organism was detected, current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of *Cryptosporidium* may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. Based on the results of the first round of *Cryptosporidium* monitoring, no additional treatment was required by the US EPA regulations. The Philipsburg Treatment plant completed a second round of source monitoring from October 2016 to September 2018. In this round of sampling, the highest 12-month mean of *Cryptosporidium* oocysts at the Water Treatment Plant was 0.015 oocyst/L. Based on the results of the second round of *Cryptosporidium* monitoring, no additional treatment was required by the US EPA regulations.

How to Read This Table

Starting with a **Substance**, read across. **Year Sampled** is usually in 2019 or year prior. **MCL** shows the highest level of substance (contaminant) allowed. **MCLG** is the goal level for that substance (goal may be set lower than what is allowed). **Highest Amount Detected** represents the measured amount (less is better). **Range** tells the highest and lowest amounts measured. A **Yes** under **Compliance Achieved** means the amount of the substance met government requirements. **Typical Source** tells where the substance usually originates.

Some unregulated substances are measured, but maximum contaminant levels have not been established by the government. These contaminants are shown for your information.

Definitions of Terms Used in This Report

AL (Action Level): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDGL (Maximum Residual Disinfectant Level Goal): The level of drinking water disinfectant below which there is no known or expected risk to health. MRDGLs do not reflect the benefits of the use of disinfectants to control microbial contamination.

NA: Not applicable

ND: Not detected

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of the water.
pCi/L (picocuries per liter): Measurement of the natural rate of disintegration of radioactive contaminants in water (also beta particles).

ppm (parts per million): One part substance per million parts water, or milligrams per liter.

ppb (parts per billion): One part substance per billion parts water, or micrograms per liter.

SS: Single sample

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

%: means percent.

90th Percentile: The highest concentration of lead or copper in tap water that is exceeded by 10 percent of the sites sampled during a monitoring period. This value is compared to the lead and copper action level (AL) to determine whether an AL has been exceeded.

Water Quality Statement
We are pleased to report that during calendar year 2019, the water delivered to your home or business complied with all state and federal drinking water requirements. For your information, we have compiled a list in the table below showing the results of the testing of your drinking water during 2019. The DEP allows us to monitor for some contaminants less than once per year because the concentration of the contaminants does not change frequently. Some of our data, though representative, is more than one year old.

Water Quality Results
Turbidity – A Measure of the Clarity of the Water at the Treatment Facility

<table>
<thead>
<tr>
<th>Plant</th>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Single Measurement</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philipsburg</td>
<td>Turbidity (NTU) 1</td>
<td>2019</td>
<td>TT</td>
<td>NA</td>
<td>0.18</td>
<td>Yes</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

1 All turbidity readings were below the treatment technique requirement of 0.3 NTU in 95% of all samples taken for compliance on a monthly basis

Regulated Substances (Measured on the Water Leaving the Treatment Facility)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Maximum Level Detected</th>
<th>Range Low - High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride (ppm)</td>
<td>2019</td>
<td>2</td>
<td>2</td>
<td>1.03</td>
<td>0.25 – 1.03</td>
<td>Yes</td>
<td>Added to your water to promote healthy teeth</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>2019</td>
<td>10</td>
<td>10</td>
<td>0.145</td>
<td>0.14 – 0.15</td>
<td>Yes</td>
<td>Runoff from fertilizer use; Leaching from septic tanks; Sewage; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Total Organic Carbon Removal
Adequate removal of TOC may be necessary to control the unwanted formation of chlorinated by-products. Naturally occurring organic matter present in the source water can react with the disinfectants used at the treatment facilities to form these by-products. The Philipsburg System met the required Treatment Technique for TOC reductions during 2019.
Entry Point Disinfection Residual (Measured on the Water Leaving the Treatment Facilities)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Minimum Disinfectant Residual Level Required</th>
<th>Lowest Amount Detected</th>
<th>Range Low - High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philipsburg Plant Chlorine (ppm)</td>
<td>2019</td>
<td>0.2</td>
<td>1.82</td>
<td>1.82 – 2.81</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Penn 5 Plant Chlorine (ppm)</td>
<td>2019</td>
<td>0.4</td>
<td>0.87</td>
<td>0.87 – 2.33</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Disinfectant Residual (Measured in the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MRDL</th>
<th>MRDLG</th>
<th>Highest Result</th>
<th>Range Low - High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Chlorine (ppm)</td>
<td>2019</td>
<td>4</td>
<td>4</td>
<td>2.35</td>
<td>2.10 – 2.35</td>
<td>Yes</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Tap Water Samples: Lead and Copper Results (Measured in the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Action Level</th>
<th>MCL</th>
<th>Number of Samples Taken</th>
<th>90th Percentile</th>
<th>Number of Samples Above Action Level</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>2019</td>
<td>15</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>2019</td>
<td>1.3</td>
<td>1.3</td>
<td>30</td>
<td>0.135</td>
<td>0</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
</tr>
</tbody>
</table>

Other Compounds (Measured in the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Result</th>
<th>Range Low – High</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (ppb)</td>
<td>2019</td>
<td>80</td>
<td>NA</td>
<td>30.9</td>
<td>9.9 – 49.3</td>
<td>Yes</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5) (ppb)</td>
<td>2019</td>
<td>60</td>
<td>NA</td>
<td>26.9</td>
<td>8 – 32.5</td>
<td>Yes</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Chromium (ppb)</td>
<td>2014</td>
<td>100</td>
<td>100</td>
<td>0.2</td>
<td>ND - 0.2</td>
<td>Yes</td>
<td>Discharge from steel and pulp mills; erosion of natural deposits</td>
</tr>
</tbody>
</table>

2 Highest running annual average for all sample points.

3 Range represents sampling at individual sample points.
Notice of Unregulated Contaminant Monitoring

Our water system completed monitoring for several unregulated contaminants in 2019. Unregulated contaminants are those that do not yet have a drinking water standard set by the EPA. The purpose of the monitoring for these contaminants is to help the EPA decide whether the contaminants should be regulated. As our customers, you have a right to know that this data is available. If you are interested in examining the results, please contact the WQ Supervisor, Dale Warner, at 814.280.0013. The table below details the unregulated contaminants that were detected in the water system. For more information concerning Unregulated Contaminant Monitoring, visit this website:

https://www.epa.gov/dwucmr/fourth-unregulated-contaminant-monitoring-rule

Unregulated Compounds - Measured on the Water Leaving the Treatment Facilities and in the Distribution System

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Average</th>
<th>MCL/MCLG</th>
<th>Range Low – High</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichloroacetic Acid (ppb)</td>
<td>2019</td>
<td>8.42</td>
<td>Not regulated</td>
<td>4.3 - 18</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Dibromoacetic Acid (ppb)</td>
<td>2018</td>
<td>0.1</td>
<td>Not regulated</td>
<td>ND – 0.4</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Bromochloroacetic Acid (ppb)</td>
<td>2019</td>
<td>1.617</td>
<td>Not regulated</td>
<td>1.3 – 2.2</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Trichloroacetic Acid (ppb)</td>
<td>2019</td>
<td>6.625</td>
<td>Not regulated</td>
<td>3.4 - 13</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Chlorodibromoacetic Acid (ppb)</td>
<td>2018</td>
<td>0.16</td>
<td>Not regulated</td>
<td>ND – 0.34</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Bromodichloroacetic Acid (ppb)</td>
<td>2019</td>
<td>1.057</td>
<td>Not regulated</td>
<td>0.74 – 1.7</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Monochloroacetic Acid (ppb)</td>
<td>2018</td>
<td>0.8</td>
<td>Not regulated</td>
<td>ND – 3.2</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Manganese (ppb)</td>
<td>2019</td>
<td>32.48</td>
<td>300⁴</td>
<td>2.9 - 79</td>
<td>Naturally occurring element; commercially available in combination with other elements and minerals; used in steel production, fertilizer, batteries and fireworks; drinking water and wastewater treatment chemical; essential nutrient</td>
</tr>
</tbody>
</table>

⁴EPA has set an instantaneous advisory limit for 6-month old infants and younger and a lifetime health advisory limit for Manganese of 300 ppb.