Iowa | Quad Cities District
PWS ID: IA8222001

A Message from the President of Iowa American Water
To Our Valued Customer:

Iowa American Water is proud to be your local water service provider, and I am pleased to share with you good news about the quality of your drinking water. Each year, we provide you with our Annual Water Quality Report that provides information about where your water comes from, the results of water testing, and information about what was found during that testing.

During the COVID-19 public health emergency, Iowa American Water activated business continuity plans to strengthen our ability to provide reliable, high-quality service to our customers, continue to deliver water service, and protect our employees and customers. According to the U.S. Environmental Protection Agency (U.S. EPA) based on current research, the risk to water supplies is low. The U.S. EPA has also relayed that Americans can continue to use and drink water from their tap as usual.

Iowa American Water remains committed to the delivery of safe, reliable water. That includes continued operation of drinking water treatment barriers, which provide an added layer of protection that includes filtration and disinfection of our surface water supplies (e.g., those from lakes, reservoirs or rivers) and disinfection of our groundwater sources (e.g., underground wells).

Quite a lot goes into bringing that water to your home. The miles of pipeline hidden below the ground. The facilities that draw water from the source. The plant where it’s treated and tested. Our treatment plant operators, water quality experts, engineers, and maintenance crews working around the clock to make sure that water is always there when you need it. Delivering high-quality, reliable water service to your tap around the clock also requires significant investment in our water infrastructure to upgrade aging facilities. In fact, in the next five years, Iowa American Water will invest about $112 million in infrastructure improvements in our service areas to keep life flowing to customers.

We do this because we believe we’re delivering more than just water service. We deliver a key resource for public health, fire protection, economic development and overall quality of life. Our job is to ensure that quality water keeps flowing not only today, but well into the future. It’s part of our commitment to you and the communities we serve.

We hope you agree that it’s worth every penny and worth learning more about. Please take the time to review this report. It provides details about the source and quality of your drinking water using the data from water quality testing conducted for your local water system from January through December 2019.

At Iowa American Water, our customers are our top priority, and we are committed to providing you with the highest quality drinking water and service possible in 2020 and the future. We appreciate the opportunity to serve you.

Sincerely,

Randy A Moore
President, Iowa American Water
What is a Water Quality Report?
To comply with state and U.S. Environmental Protection Agency (U.S. EPA) regulations, Iowa American Water issues a report annually describing the quality of your drinking water. The purpose of this report is to raise your understanding of drinking water and the need to protect your drinking water sources. This report provides an overview of last year’s (2019) water quality. It includes details about where your water comes from and what it contains.

Your Drinking Water Supply?
In the Iowa Quad Cities, the raw drinking water supply is surface water drawn from the Mississippi River. Water for the Iowa Quad Cities is taken from the Mississippi River and treated in Iowa American Water’s state-of-the-art East River Station treatment facility. Our high-tech water treatment plant uses some of the best equipment and technology available to the water industry. The treatment process utilizes conventional coagulation and settling processes and parallel Superpulsator clarification, followed by granular activated carbon filtration. The granular activated carbon filtration process is cited by the U.S. EPA as one of the most effective treatment technologies for the removal of organic chemicals, such as farm pesticides and industrial wastes. It is also highly effective in eliminating many taste and odor problems. Learn more about local waterways in your area at https://watersgeo.epa.gov/mywaterway.

Protecting Your Water Source
The Source Water Assessment Program (SWAP) is a result of the 1996 amendments to the Federal Safe Drinking Water Act (SDWA). Those amendments require all states to establish a program to assess the vulnerability of public water systems to potential contamination. The Iowa Department of Natural Resources (IDNR) has prepared Source Water Assessment Reports and Summaries for all public water systems in Iowa.

In 2003, the Iowa DNR completed an assessment of the Mississippi River watershed in this area. The study looked at the drainage area and ranked its vulnerability to contamination. Rivers, streams, and reservoirs are highly susceptible to contamination because of surface runoff. Our water source is considered most vulnerable to contaminants from agricultural and urban runoff. These contaminants include nutrients such as nitrate and phosphorus and other man-made and natural contaminants. A summary report is available upon request from Iowa American Water by contacting Joshua Lighton, Supervisor Water Quality & Environmental Compliance, at (563) 726-0939, or by email at Joshua.Lighton@amwater.com.

What Are We Doing?
Our priority is to keep life flowing to our customers by providing reliable, high quality drinking water. As we work to provide water service to our customers, we also work to prevent pollution, promote sustainability, and enhance the natural environment. We have a consistent history of complying with, and in many cases surpassing, the standards set by environmental laws and regulations. Our commitment to the environment extends beyond the quality of our water into the heart of who we are - your local water company. We are stewards of the communities we serve, and we are proud of the role we play in protecting our environment. This includes efforts such as:

- Promoting environmental stewardship projects in our communities, through both financial support and employee volunteerism. In 2019, five local organizations received grant funds totaling almost $11,000 for local watershed projects. For more information on the program, visit https://amwater.com/iaaw/news-community/environmental-grant-program
- Looking for opportunities to incorporate stewardship activities in our capital projects
- Leading by example in our environmental responsibilities (e.g. recycling paper, double-sided printing, turning out the lights)
- Using water wisely, including practicing and encouraging wise water use and source water protection programs

What Can You Do?
Protecting drinking water at its source is an important part of the process to treat and deliver high quality water. It takes a community effort to protect our shared water resources. This includes utilities, businesses, residents, government agencies and organizations. Everyone who lives, works, and plays in the area has a role and stake in clean water supplies. Quality drinking water starts upstream. Everyone can help maintain and improve drinking water supplies through the following actions:

- Dispose of pharmaceuticals, household chemicals, oils and paints at proper waste collection sites. Materials can impact water ways if poured down the drain, flushed down the toilet, or dumped on the ground. Contact your county waste authority to find out how to dispose of these materials properly.
- Check for leaks from automobiles and heating fuel tanks. Clean up any spills using an absorbent material like cat litter. Sweep up the material and put it in a sealed bag in the trash.
- Clean up after your pets and limit the use of fertilizers and pesticides.
- Look for local opportunities to take part in watershed activities.
- Report any spills, illegal dumping or suspicious activity to the Iowa Department of Natural Resources.
Investing in Our Communities
Delivering quality water service requires continued infrastructure investment. From projects to replace water mains, pipelines, and hydrants, and the installation of advanced metering technology that helps reduce water leaks, to enhanced treatment capabilities that improve efficiency and reliability, the investments made into the system allow Iowa American Water to be well positioned to continue to meet customer and public safety needs in its service communities every day. By supporting needed improvements, customers and Iowa American Water are working together to keep the water flowing now and well into the future.

Dedicated Workforce
Iowa American Water is proud of its professional and dedicated workforce. Our commitment to customer service and operational integrity remains (and always will be) paramount.

Partnership for Safe Drinking Water Program
Iowa American Water joined the Partnership for Safe Water (PFSW) program in 1995, and remains one of only a few utilities in Iowa to participate. The voluntary program, which is administered by the U.S. Environmental Protection Agency and other water-related organizations, challenges water utilities to optimize their treatment facility operations and adopt more stringent performance goals than those required by federal and state drinking water standards. The Partnership includes utilities and treatment plants across the nation committed to the enhancement of drinking water quality and operational excellence in water treatment. Iowa American Water prides itself in being an industry leader that proactively joins initiatives and water research efforts to promote high quality water, reliability and exceptional service to customers.

Iowa American Water’s Quad Cities District is the first water utility in Iowa to receive the PFSW program’s “Director’s Award” for achievement of operational excellence. In 2016, we were recognized for 20 years of voluntary participation in this program.

About Iowa American Water
Iowa American Water, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water utility in the state, providing high quality and reliable water services to approximately 216,000 people. With a history dating back to 1886, American Water is the largest and most geographically diverse U.S. publicly traded water and wastewater utility company. The company employs more than 6,800 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to more than 15 million people in 46 states. American Water provides safe, clean, affordable and reliable water services to our customers to make sure we keep their lives flowing. For more information, visit www.amwater.com and follow us on Twitter, Facebook and LinkedIn.

How to Contact Us
Our customer service center is available Monday through Friday from 7 a.m. to 7 p.m. to answer your questions or schedule a service appointment. Just call (866) 641-2108, and we will be pleased to assist you. Our online self-service tool, My Account, is available anytime for account information, payments and turning water service on and off at www.iowaamwater.com.

In case of EMERGENCY, you can contact us 24 hours a day/7 days a week at (866) 641-2108. Water emergencies don’t keep business hours, so we’re available 24/7 to assist you at those critical times. You can also visit our website at www.amwater.com. For more information about this report or for any questions related to your drinking water, please Joshua Lighton, Supervisor Water Quality & Environmental Compliance, at (563) 726-0939 or by email at Joshua.Lighton@amwater.com.

What’s in My Water?
The source of drinking water (both tap water and bottled water) includes rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

We take steps to reduce the potential for lead to leach from your pipes into the water. This is accomplished by adding a corrosion inhibitor to the water leaving our treatment facilities. There are steps that you can take to reduce your household’s exposure to lead in drinking water. For more information, please review our Lead and Drinking Water Fact Sheet at https://amwater.com/iaaw/water-quality/lead-and-drinking-water.

Contaminants that may be present in source water include:

- **Microbial Contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
• **Inorganic Contaminants**, such as salts and metals, which can be naturally-occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.

• **Pesticides and Herbicides**, which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.

• **Organic Chemical Contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff, and septic systems.

• **Radioactive Contaminants**, which can be naturally occurring or may be the result of oil and gas production and mining activities.

To ensure that tap water is of high quality, U.S. EPA prescribes regulations limiting the amount of certain substances in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Iowa American Water’s treatment processes are designed to reduce any such substances to levels well below any health concern.

Important Health Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or by calling our 24-hour customer service line at (866) 641-2108 for more information.

Emerging Contaminants in Drinking Water

There are multiple challenges the water industry faces when it comes to water quality. This is why American Water remains steadfast in its commitment to be a leader in the U.S. water industry and a provider of solutions to these challenges. The PFOA/PFAS issue is one of the most rapidly changing landscapes in drinking water contamination. American Water has invested time and effort on its own independent research, as well as engaged with other experts in the field to understand PFOA/PFAS occurrence, fate and transport in the environment. We are also actively assessing treatment technologies that can effectively remove PFOA/PFAS from drinking water, because we believe that investment in research is critical to addressing this issue.

All Iowa American Water locations where we provide water are well below the U.S. EPA’s health advisory level of 70 parts per trillion for combined PFOA and PFOS. In fact, our samples taken in late November 2019 resulted in a combined level for PFOA and PFOS of 4.4 parts per trillion, which is significantly below the U.S. EPA’s health advisory level.

How to Read This Table

Iowa American Water conducts extensive monitoring to ensure that your water meets all water quality standards. The results of our monitoring are reported in the data tables below. While most monitoring was conducted in 2019, certain substances are monitored less than once per year because the levels do not change frequently. For help with interpreting these tables, see the Table Definitions and footnotes.

Definitions of Terms Used in This Report

• **Action Level**: The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

• **Amount Detected**: Unless otherwise noted in the footnotes, an average of all sample results for the year, or results from a single sample if only one was collected. With multiple entry points to the distribution system, the data from the entry point with the highest value is reported. Amount detected for distribution samples represents an average of all samples collected.

• **Compliance Achieved**: Indicates that the levels found were all within the allowable levels as determined by the EPA.

• **MCL (Maximum Contaminant Level)**: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

• **MCLG (Maximum Contaminant Level Goal)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
• **MRDL (Maximum Residual Disinfectant Level):** The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

• **MRDLG (Maximum Residual Disinfectant Level Goal):** The level of drinking water disinfectant below which there is no known or expected risk to health.

• **N/A:** Not applicable

• **ND:** Not detected

• **pCi/L (picocuries per liter):** Measurement of the natural rate of disintegration of radioactive contaminants in water.

• **ppm (parts per million):** One part substance per million parts water, or milligrams per liter.

• **ppb (parts per billion):** One part substance per billion parts water, or micrograms per liter.

• **Range of Detections:** Indicates individual sample results (SS), or a range from lowest to highest, that were collected during the sample period.

• **SS:** Single Sample

• **Typical Source:** Indicates where the substance usually originates.

• **Revised Total Coliform Rule:** The RTCR establishes a maximum contaminant level (MCL) for E. coli and uses E. coli and total coliforms to initiate a “find and fix” approach to address fecal contamination that could enter into the distribution system. It requires public water systems (PWSs) to perform assessments to identify sanitary defects and subsequently take action to correct them.

• **S/EP:** Source Entry Point is where finished water exits the treatment facility, entering the distribution system.

• **CFE (Combined Filter Effluent):** The combination of 20 individual filter’s effluent.

• **IFE (Individual Filter Effluent):** Filtered water from a single filter.

Water Quality Results

Iowa American Water conducts thousands of water quality analyses annually to ensure that your water meets all water quality standards. The following tables show what substances were detected in our drinking water in 2019. Many more contaminants are tested for each year but fall below laboratory detection limits. Although all of the substances listed below are under the maximum contaminant level (MCL) set by U.S. EPA, we feel it is important that you know exactly what was detected and how much of the substance was present in the water. For help interpreting this table, see the “How to Read This Table” section.

Turbidity – A measure of the water’s clarity (Measurement taken from the CFE and IFE)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCLG</th>
<th>MCL</th>
<th>Average or Amount Detected</th>
<th>Range of Detections</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFE Turbidity (NTU)</td>
<td>2019</td>
<td>N/A</td>
<td>TT <= 0.30 NTU in 95% of the samples each month</td>
<td>100.0% less than 0.3 NTU</td>
<td>100.0%</td>
<td>Yes</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>IFETurbidity (NTU)</td>
<td>2019</td>
<td>N/A</td>
<td>TT = 1 NTU max</td>
<td>0.09</td>
<td>0.05 – 0.39</td>
<td>Yes</td>
<td>Soil runoff</td>
</tr>
</tbody>
</table>

Regulated Substances (Measurement taken from the S/EP) ¹

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCLG</th>
<th>MCL</th>
<th>Average or Amount Detected</th>
<th>Range of Detections</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine (ppb)</td>
<td>2019</td>
<td>3</td>
<td>3</td>
<td>0.8</td>
<td>SS</td>
<td>Yes</td>
<td>Runoff from herbicide used on row crops</td>
</tr>
<tr>
<td>Fluoride (ppm) ²</td>
<td>2019</td>
<td>4</td>
<td>4</td>
<td>0.7</td>
<td>0.6 – 1.0</td>
<td>Yes</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td>Nitrate as Nitrogen (ppm) ³</td>
<td>2019</td>
<td>10</td>
<td>10</td>
<td>2.9</td>
<td>1.09 – 4.43</td>
<td>Yes</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Total Organic Carbon (ppm) ⁴</td>
<td>2019</td>
<td>TT = 25% Removed</td>
<td>N/A</td>
<td>36.8% Removed</td>
<td>25.3% - 43.1% Removed</td>
<td>Yes</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

¹ This table includes the following substances:

- Atrazine (ppb)
- Fluoride (ppm)
- Nitrate as Nitrogen (ppm)
- Total Organic Carbon (ppm)

² Fluoride (ppm): The concentration of fluoride in the water is measured in parts per million (ppm) or parts per billion (ppb). Excessive fluoride can cause health concerns, such as dental fluorosis and bone fractures in children. The standard maximum contaminant level (MCL) for fluoride is 4 ppm.

³ Nitrate as Nitrogen (ppm): Nitrate is a form of nitrogen that is often found in ground and drinking water. It can be harmful to certain populations, including infants, when consumed in large quantities. The standard maximum contaminant level (MCL) for nitrate is 10 ppm as nitrogen.

⁴ Total Organic Carbon (ppm): Total organic carbon (TOC) is a measure of the organic matter in water. High levels of TOC can indicate the presence of organic pollutants. The standard maximum contaminant level (MCL) for TOC is 5 ppm.
Other compounds (Measurement taken from the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MRDL or MCLG</th>
<th>MRDL or MCL</th>
<th>Average or Amount Detected</th>
<th>Range of Detections</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloramines (ppm) 5</td>
<td>2019</td>
<td>4</td>
<td>4</td>
<td>2.5</td>
<td>1.0 – 3.8</td>
<td>Yes</td>
<td>Water additive to control microbes</td>
</tr>
<tr>
<td>TTHMs [Total trihalomethanes] (ppb)</td>
<td>2019</td>
<td>N/A</td>
<td>80</td>
<td>34</td>
<td>26 – 39</td>
<td>Yes</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>HAA5s [Haloacetic acids] (ppb)</td>
<td>2019</td>
<td>N/A</td>
<td>60</td>
<td>32</td>
<td>22 – 45</td>
<td>Yes</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

Bacterial Results (Sampled from the Distribution System)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>MCLG</th>
<th>MCL</th>
<th>Highest Monthly Percent Detected</th>
<th>Range of Detections</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliforms (% Positive/month)</td>
<td>2019</td>
<td>0</td>
<td>5%</td>
<td>0.8%</td>
<td>1</td>
<td>Yes</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Tap Water Samples: Lead and Copper Results 6

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Action Level</th>
<th>MCLG</th>
<th>90th Percentile Result</th>
<th>Number of Samples Collected</th>
<th>Compliance Achieved</th>
<th>Number of Samples Above Action Level</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm)</td>
<td>2018</td>
<td>1.3</td>
<td>1.3</td>
<td>0.102</td>
<td>50</td>
<td>Yes</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td>Lead (ppb)</td>
<td>2018</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>50</td>
<td>Yes</td>
<td>0</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Other Substances of Interest (Unless noted, measurement taken from the S/EP)

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Amount Detected</th>
<th>Range of Detections</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (ppm as CaCO3)</td>
<td>2019</td>
<td>159</td>
<td>87 - 210</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Hardness (ppm as CaCO3)</td>
<td>2019</td>
<td>227</td>
<td>136 - 350</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Hardness (gpg)</td>
<td>2019</td>
<td>13.3</td>
<td>7.9 - 20.4</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>pH</td>
<td>2019</td>
<td>7.3</td>
<td>7.2 - 7.5</td>
<td>Potential of hydrogen is a numerical scale used to determine the acidity or basicity of an aqueous solution based on the amount of hydrogen ions present in a solution.</td>
</tr>
<tr>
<td>Sodium (ppm) 7</td>
<td>2019</td>
<td>15.5</td>
<td>SS</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (ppb) 8</td>
<td>2019</td>
<td>ND</td>
<td>SS</td>
<td>Chromium is an odorless and tasteless metallic element found naturally in rocks, plants, soil and volcanic dust, humans and animals</td>
</tr>
<tr>
<td>Chromium VI (ppb) 8</td>
<td>2019</td>
<td>ND</td>
<td>SS</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
</tr>
<tr>
<td>Strontium (ppb) 8</td>
<td>2019</td>
<td>100</td>
<td>SS</td>
<td>An alkaline earth metal found commonly in nature</td>
</tr>
<tr>
<td>Vanadium (ppb) 8</td>
<td>2019</td>
<td>ND</td>
<td>SS</td>
<td>Naturally-occurring elemental metal</td>
</tr>
</tbody>
</table>
Emerging Contaminants of Interest (Measurement taken from the S/EP) 9

<table>
<thead>
<tr>
<th>Substance (units)</th>
<th>Year Sampled</th>
<th>Amount Detected</th>
<th>EPA’s Health Advisory Limit</th>
<th>Below Health Advisory</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanoic Acid [PFOA] (ng/L)</td>
<td>2019</td>
<td>1.9</td>
<td>SS</td>
<td>Yes</td>
<td>Perfluorooctanoic acid exposures resulted in increased liver weight in laboratory animals.</td>
</tr>
<tr>
<td>Perfluorooctanesulfonic Acid [PFOS] (ng/L)</td>
<td>2019</td>
<td>2.5</td>
<td>SS</td>
<td>Yes</td>
<td>Perfluorooctanesulfonic acid exposures resulted in immune suppression, specifically, a decrease in antibody response to an exogenous antigen challenge.</td>
</tr>
<tr>
<td>Combined, Total (ng/L)</td>
<td>2019</td>
<td>4.4</td>
<td>SS</td>
<td>Yes</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- All samples were analyzed at a certified lab utilizing approved EPA testing methods.

Additional Water Quality Research

Cryptosporidium is a microbial pathogen found in surface waters throughout the United States. Cryptosporidium must be ingested to cause disease, and it can be spread through means other than drinking water. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. People with severely weakened immune systems who ingest Cryptosporidium have a risk of developing life-threatening illness. We encourage such individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Although Cryptosporidium can be removed through commonly used filtration methods, USEPA issued a rule in January 2006 that requires systems with higher Cryptosporidium levels in their source water to provide additional treatment. The initial round of monitoring ending in 2007 indicated levels of Cryptosporidium in the Mississippi River were low enough, and our treatment process effective enough, that additional levels of treatment were not required. A second round of sampling was required to begin in 2015. To comply with this rule, Iowa American Water once again began conducting 24 consecutive months of monitoring for Cryptosporidium in our raw water sources through 2016. We have detected the organism in the Mississippi River during this testing, and based on the results of our Cryptosporidium monitoring in 2016, additional treatment will be performed to provide further safety.

1 The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.
2 Fluoride is added to the water to help promote strong teeth.
3 Nitrate in drinking water at levels above 10 ppm is a health risk for infants less than 6 months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.
4 Total organic carbon (TOC) has no health effects. However, TOC contributes to the formation of disinfection by-products. These byproducts include Trihalomethanes (THMs) and Haloacetic Acids (HAA5s). Drinking water containing these byproducts in excess of the MCL may lead to adverse health effects, liver, or kidney problems, or nervous system effects, and may lead to an increased risk of getting cancer.
5 Chloramine is a disinfecting agent added to control microbes that otherwise could cause waterborne diseases or other water quality concerns. Most water systems are required by law to add disinfecting agents, such as chloramine. The values reported reflect multiple locations in the service area.
6 If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Iowa-American Water Co-Davenport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.
7 There is no state or federal MCL for sodium. Monitoring is required to provide information to consumers and health officials that are concerned about sodium intake due to dietary precautions. If you are on a sodium-restricted diet, you should consult a physician about this level of sodium in the water.
8 Results were measured from samples taken in the Distribution System in compliance with the Unregulated Contaminant Monitoring Rule (UCMR). The purpose of the UCMR is to help EPA determine where certain contaminants occur and whether it needs to regulate those contaminants.
9 The U.S. EPA has set a health advisory level of 70 parts per trillion for the combined total of PFOA and PFOS.