RAW WATER AND SEDIMENT STUDY REPORT KANAWHA RIVER CHARLESTON, WEST VIRGINIA

Prepared for:

1600 Pennsylvania Avenue Charleston, West Virginia 25302

Prepared by:

Potesta & Associates, Inc.

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400 Fax: (304) 343-9031

Email: potesta@potesta.com

Project No. 0101-15-0018

September 15, 2016

EXECUTIVE SUMMARY

BACKGROUND

Historically, the 72-mile segment (Zone 1) of the Kanawha River that runs from Diamond, West Virginia to its confluence with the Ohio River at Point Pleasant, West Virginia has been exempt from the West Virginia Public Water Supply (Category A) water quality standards. Category A standards establish discharge limits considered to protect waters that are used for human consumption following conventional treatment and have not been applied to this stretch of the river for many years due to concerns over the quality of the water, particularly due to industrial discharges.

In 2014, the West Virginia Legislature passed Senate Bill 373 requiring water utilities to evaluate alternate water sources of supply for each of their water treatment facilities. The Legislature also removed the Category A exemption for Zone 1 of the Kanawha River, as recommended by the West Virginia Department of Environmental Protection (WVDEP). The re-designation establishes protection of this river segment for drinking water, but that alone is not sufficient for determining suitability for a water supply source. West Virginia American Water (WVAW) determined that, in order to include the Kanawha River near Charleston in its evaluation of potential alternate sources for its Kanawha Valley Water Treatment Plant (KVWTP), it would need additional information regarding the water quality for that section of the Kanawha River.

This study, just one of a number of considerations, provides raw water quality and sediment data to assist WVAW in evaluating whether this section of the Kanawha River is of such a quality that it could be considered suitable to serve as a drinking water source of supply. WVAW worked closely with state regulators to ensure the work completed was comprehensive, such that the company could rely on the final data - see methodology section below. WVAW intends to provide the study to the West Virginia Department of Health and Human Resources (WVDHHR) as a supplement to its recently submitted Source Water Protection Plan (SWPP), share the study data with WVDEP and WVDHHR, and make information on the study available to the public via WVAW's website.

In 2015, WVDEP indicated that Zone 1 of the Kanawha River is suitable for drinking water use and has modified the Water Quality Standards (WQS) to remove the Category A exemption. The West Virginia Legislature approved the modification to the WQS on March 12, 2015 via House Bill 2283 and the Governor approved the bill on March 18, 2015. Changes to West Virginia's WQS still have to be approved by the United States Environmental Protection Agency (USEPA) before the WQS can be used in permitting actions; however, it is anticipated that the USEPA will approve the Category A change.

METHODOLOGY

Potesta & Associates, Inc. (POTESTA) and WVAW developed a study plan that was presented to the WVDHHR and WVDEP prior to its implementation to get their input and agreement on the approach. The plan generally consisted of sampling Kanawha River water and sediment for an extensive list of parameters at locations between Charleston and Montgomery. The study plan was revised to address comments from the agencies and the study commenced in June 2015. WVAW, POTESTA, WVDEP and WVDHHR met twice during the course of the work to discuss the study and its findings.

Water Quality Sampling

Water quality samples were collected during 24 sampling events over a 12-month period from four different locations. There were three locations in the Charleston area: near the Moose Lodge, close to Elizabeth Street and near Court Street. The fourth location was upstream of the former WVAW intake at Montgomery. At each of these sample locations, a transect was established, with sampling points located at positions 20 feet and 60 feet from the bank. Two sampling points were established at different depths of approximately 1 foot and 10 feet from the stream bottom for each of these two points, resulting in four sampling points for each location. Samples were collected from the four points along each transect and mixed as a composite sample in a decontaminated stainless steel bucket prior to being placed into lab containers. Samples specifically for volatile parameters were collected as individual grab samples at each of the four points on each transect to minimize the potential for evaporative loss.

Additional samples were collected over the course of the study for quality control purposes. These included field blank samples prepared from ultra-pure reagent water and duplicate samples collected in the field at the same time the original samples were collected. Both the field blanks and the field duplicates were submitted to the laboratories for blind analysis, meaning that the labs were not told that the samples were blanks or duplicates. Field blanks are used to determine if samples have been contaminated during collection or handling and analysis, while field duplicates are used to check the laboratory's accuracy.

Samples were collected across a range of flow conditions and analyzed by certified or approved laboratories for more than 150 parameters. The parameters included the Federal Safe Drinking Water Act (SDWA) primary and secondary drinking water standards, West Virginia's Category A Water Quality Standards (WQS), several general chemistry parameters, and parameters on the Unregulated Contaminant Monitoring Rule 3 (UCMR3) list. The UCMR list is a group of unregulated contaminants selected by the USEPA to be measured in public water systems once every five years to provide a basis for future regulatory action to protect public health. These parameters are intended to be measured in finished drinking water, which is water that has been treated and is ready for distribution and human consumption rather than raw water, which is untreated water like the water collected from the river. Because the water analyzed throughout this study was raw water, it is likely to contain materials, like dirt or plant matter, that could affect the laboratory analysis. Thus, the results reported are not suitable for UCMR3 compliance

purposes, but may provide some indication of whether or not these contaminants could be present in the Kanawha River.

During the course of the study, 392 grab samples were analyzed for 32 volatile parameters, and 104 composite samples were analyzed for 121 other parameters, resulting in more than 25,000 data points. This level of sampling and analysis far exceeds the typical requirements for the evaluation of a drinking water supply. The laboratory results were then compared to the primary and secondary drinking water standards and the Category A WQS.

Sediment Sampling

Sediment from the Kanawha River was also studied due to the past industrial, chemical and mining use of the Kanawha River and its tributaries downstream of Mile Point 72. The sediment study was conducted to identify contaminants in river bottom sediments that could potentially be released back into the Kanawha River and affect water quality over time. The sediment study provided data from two sediment sampling events – one during low flow and one following a high flow event. Seven sampling sites located on the Kanawha River between Charleston and Cabin Creek were selected, including three water quality sampling locations in the Charleston area and four additional upstream locations near the major tributaries discharging into the Kanawha River. The four additional locations included the Campbell's Creek Tributary, the Rush Creek/Burning Springs Branch Tributary, the DuPont Plant/Simmons & Lens Creek Tributaries and the Cabin Creek Tributary. Detailed geophysical and bathymetric data were collected at each location to evaluate sediment accumulation, thickness, and general gradation for selecting the sediment sampling points.

POTESTA collected sediment samples from a boat deployed on the river. Samples of accumulated sediment were collected at two locations from each of the targeted sample locations (one on each side of the river) once during a normal or low flow period and a second following a high flow event. Two discreet samples were obtained from the top foot of sediment; based on a previous study of the Kanawha River in the Nitro area, it was determined that "Finest-grained deposit along both banks of the River exhibit lower resuspension rates due to lower shear stresses being generated by lower velocities of flow in those areas." (Conestoga-Rovers & Associates, 2015). This resulted in a total of 8 samples from each sampling location, for 56 total samples. Analytical laboratory and classification soils testing was completed by certified laboratories. Analytical tests included total organic carbon, metals, polychlorinated biphenyls, volatile organic compounds, semi-volatile organic compounds, and dioxin.

Currently, West Virginia does not have a screening method or regulatory standard for the evaluation of sediment with respect to a potential drinking water source. POTESTA utilized the findings and screening method in a United States Geological Survey study (Ingersoll et al., 2000) to compare the sediment analytical results to "probable effect concentrations" above which adverse aquatic toxicity effects are expected to occur.

RESULTS

The water sampling data showed no appreciable differences in the water quality between the four sampling locations. Of the more than 25,000 data points, there were 2,494 values (9.74 %) found above the laboratory minimum detection level, which is the lowest concentration at which the lab can detect a particular parameter, or the minimum reporting level, which is the lowest concentration set by the USEPA for reporting UCMR3 parameters.

The following parameters were measured at levels above the Federal SDWA primary or secondary drinking water standards:

- Bacteria (301 of 376 samples or 80 %)
- Aluminum (19 of 96 samples or 20 %)
- Iron (37 of 96 samples or 39 %)
- Manganese (18 of 96 samples or 19 %)
- Bis(2-ethylhexyl)phthalate (6 of 96 samples or 6 %)

As these results are for raw water, additional treatability studies would be necessary to determine if the water can be treated to meet the primary and secondary water quality standards for these parameters.

Of the UCMR3 parameters, only 1,4-dioxane was measured above USEPA's draft reference concentration (12 of 96 samples or 13%). As noted in the USEPA's UCMR3 Data Summary (USEPA, 2016c), "The draft reference concentration does not represent an 'action level' (EPA requires no particular action based simply on the fact that UCMR monitoring results exceed draft reference concentrations), nor should the draft reference concentration be interpreted as any indication of an Agency intent to establish a future drinking water regulation for the contaminant at this or any other level. Decisions as to whether or not to regulate the contaminant in drinking water will continue to be made following the Agency's Regulatory Determination process."

While the parameter was measured above the draft reference concentration at the three Charleston-area sampling locations, there are reasons to question the reliability of these results. First, this parameter is commonly used as a solvent and found in laboratory reagents. Further, the parameter was detected in four of the five field blank samples, which indicates that the samples may have been contaminated in the field or in the laboratory. Additionally, the analytical method for this parameter was developed for use on treated finished water and the raw water samples from the river may contain materials that could affect the analysis in unknown ways. Should WVAW pursue an alternate intake on the Kanawha River, this parameter should be included in treatability studies where it could be more appropriately analyzed in finished water following treatment.

The sediment analytical data show that the concentrations in the sediments sampled are all below the identified probable effect concentrations, except for copper and nickel at the location below the DuPont Belle Plant at Rush Creek. Additional treatability studies would be necessary to determine if the sediment can be treated to meet the water quality standards for these parameters.

Importantly copper and nickel were not detected in any of the water samples above the applicable drinking water standards.

The combined results of this study indicate that only ten (10) of over 150 parameters were detected in raw water or sediment above the associated water quality standards, UCMR3 draft reference concentrations, or probable effect concentrations. These detections represent less than 2 % of the total number of samples collected. The data obtained from this study will be provided to WVDEP and WVDHHR.

TABLE OF CONTENTS

1.0	INT	RODUCT	ΓΙΟΝ	1	
2.0	WATER QUALITY				
	2.1		ods		
		2.1.1	Sample Locations		
		2.1.2	Sampling Frequency and Duration	2	
		2.1.3	Sample Collection		
		2.1.4	Sample Handling and Custody	3	
		2.1.5	Analytical Methods		
		2.1.6	Quality Assurance	4	
		2.1.7	Data Management	5	
	2.2	100000	Data Management	0	
	2.2	2.2.1	s and Discussion		
		2.2.1	Flow		
			Field Parameters	7	
		2.2.3	General Chemistry Parameters		
		2.2.4	Inorganic Ions		
		2.2.5	Cyanide		
		2.2.6	Microorganisms		
		2.2.7	Metals		
		2.2.8	Semi-Volatile Organic Compounds		
		2.2.9	Phenolic Compounds	21	
		2.2.10	Polycyclic Aromatic Hydrocarbons	22	
		2.2.11	Volatile Organic Compounds	22	
		2.2.12	4-Methylcyclohexanemethanol	24	
		2.2.13	Pesticides	24	
		2.2.14	Polychlorinated Biphenyls	24	
		2.2.15	Dioxin	25	
		2.2.16	Radiochemistry	25	
			Asbestos		
		2.2.18	Unregulated Contaminant Monitoring Rule (UCMR3) Parameters	26	
			2.2.18.1 Organics	27	
			2.2.18.2 1,4-Dioxane	28	
			2.2.18.3 Metals	29	
			2.2.18.4 Chlorate		
			2.2.18.5 Perfluorinated Compounds	31	
			2.2.18.6 Hormones	32	
3.0	RIVE	ER BED -	- SEDIMENT SAMPLING AND ANALYSIS	32	
	3.1		ent Sampling Locations		
	3.2	Geoph	ysical and Bathymetry Background Description	35	
		3.2.1	Geophysical and Bathymetry Characteristics	36	
		5/100	3.2.1.1 Overview of SED01 Location	27	
				31	

			3.2.1.2 Overview of SED02 Location	
			3.2.1.3 Overview of SED03 Location	37
			3.2.1.4 Overview of SED04 Location	
			3.2.1.5 Overview of SED05 Location	
			3.2.1.6 Overview of SED06 Location	
			3.2.1.7 Overview of SED07 Location	38
	3.3	Sedim	ent Samples Overview	
		3.3.1	Sample Collection and Preparation	39
		3.3.2	Sediment Sample Results	40
			3.3.2.1 Physical Classification Results	41
			3.3.2.2 Chemical Analytical Results	
4.0	CON	CLUSIC	ONS	43
5.0	CLOS	SING		44
6.0	REFE	RENCE	S	45
APP	ENDIC	ES		
Figur	es			APPENDIX A
			eter Lists	
			ummary	
W.J.	Castle P	E & Ass	sociates Report.	APPENDIX D
Sedin	nent San	nple Da	a Summary	APPENDIX E
Photo	graphs			APPENDIX F

LIST OF ACRONYMS

CAWQS Category A Water Quality Standard

CH Courthouse

CDC Centers for Disease Control and Prevention

COC Chain-of-custody

DGPS Digital Global Positioning System

DuPont Belle Works

EDL Estimated Detection Limit

ES Elizabeth Street

GPS Global Positioning System
HPC Heterotrophic Plate Count

KVWTP Kanawha Valley Water Treatment Plant

LDB Left Descending Bank

M Moose Lodge

MCHM 4-methylcyclohexanemethanol

MDC Minimum Detectable Concentration

MDL Method Detection Level

MNT Montgomery Intake

MRL Minimum Reporting Level

NELAP National Environmental Laboratory Accreditation Program

OCPSF Organic Chemical, Plastics, and Synthetic Fibers

ORP Oxidation Reduction Potential

PCBs Polychlorinated Biphenyls

PDWS Primary Drinking Water Standard

PEC Probable Effect Concentrations

POTESTA Potesta & Associates, Inc.

QA/QC Quality Assurance and Quality Control

RC Draft UCMR3 Reference Concentration

RDB Right Descending Bank

RPD Relative Percent Difference

SDWS Secondary Drinking Water Standard

SOP Standard Operating Procedures

SVOCs Semi-Volatile Organic Compounds

TTHM Total Trihalomethanes

UCMR3 Unregulated Contaminant Monitoring Rule 3

USEPA United States Environmental Protection Agency

USGS United States Geological Service

VOA Volatile Organic Analyte

VOCs Volatile Organic Compounds

WQS Water Quality Standard

WVAW West Virginia American Water

WVDEP West Virginia Department of Environmental Protection

WVDHHR West Virginia Department of Health and Human Resources

RAW WATER AND SEDIMENT STUDY REPORT KANAWHA RIVER, CHARLESTON, WEST VIRGINIA

1.0 INTRODUCTION

The purpose of the study was to develop information to assist West Virginia American Water (WVAW) in evaluating water quality of the Kanawha River.

Historically, the 72-mile segment (Zone 1) of the Kanawha River that runs from Diamond, West Virginia to its confluence with the Ohio River at Point Pleasant, West Virginia has been exempt from the West Virginia Public Water Supply (Category A) water quality standards. Category A standards establish discharge limits considered to protect waters that are used for human consumption following conventional treatment and have not been applied to this stretch of the river for many years due to concerns over the quality of the water, particularly due to industrial discharges.

In 2014, the West Virginia Legislature passed Senate Bill 373 requiring water utilities to evaluate alternate water sources of supply for each of their water treatment facilities. The Legislature also removed the Category A exemption for Zone 1 of the Kanawha River, as recommended by the West Virginia Department of Environmental Protection¹ (WVDEP). The re-designation establishes protection of this river segment for drinking water, but that alone is not sufficient for determining suitability for a water supply source. WVAW determined that in order to include the Kanawha River near Charleston in its evaluation of potential alternate sources for its Kanawha Valley Water Treatment Plant (KVWTP), it would need additional information regarding the water quality for that section of the Kanawha River.

POTESTA and WVAW developed a detailed water quality and sediment study plan that was presented to West Virginia Department of Health and Human Resources (WVDHHR) and WVDEP prior to implementation to get their input and agreement on approach. Based on comments from the agencies, the study plan was revised to include one additional water sampling location on the Kanawha River upstream of the existing WVAW Montgomery intake, and add the Unregulated Contaminant Monitoring Rule 3 (UCMR3) and Cryptosporidium analytes to the list of water quality parameters to be analyzed. The study commenced in June 2015. WVAW and POTESTA met with WVDHHR and WVDEP staff twice during the sampling/data collection to review the status of the project and to discuss the preliminary findings. No methodology changes were suggested by the agencies at these meetings.

In 2015, WVDEP indicated that Zone 1 of the Kanawha River is suitable for drinking water use and has modified the Water Quality Standards (WQS) to remove the Category A exemption. The West Virginia Legislature approved the modification to the WQS on March 12, 2015 via House Bill 2283 and the Governor approved the bill on March 18, 2015. Changes to West Virginia's WQS still have to be approved by the United States Environmental Protection Agency (USEPA) before the WQS can be used in permitting actions; however, it is anticipated that the USEPA will approve the Category A change.

This report describes the procedures, sampling processes, data collection, reporting, protocols, and results of the study. The results section includes comparison of the raw (untreated) river water samples to treated drinking water standards as an indication of what may be above or below the standards prior to treatment. The report also includes the results of the sediment analysis compared with guidelines utilized by the USGS report titled, "Prediction of Sediment Toxicity using Consensus-Based Freshwater Sediment Quality Guidelines" (Ingersoll et al., 2000).

2.0 WATER QUALITY

2.1 Methods

2.1.1 Sample Locations

Four sampling locations were selected for this study, including three Charleston locations referred to within this report as the Courthouse (CH) sample location, the Elizabeth Street (ES) sample location and the Moose Lodge (M) sample location. The fourth sampling location was upstream of the former WVAW Montgomery Intake (MNT) (see Figure 1 in Appendix A). At each of these sample locations, a transect was established perpendicular to the river, with sampling points located at positions 20 feet and 60 feet from the bank and depths of approximately 1 foot and 10 feet from the stream bottom.

A summary of the sample points is presented in Table 2.1 below and are shown on Figure 1 in Appendix A.

Table 2.1 Sampling Points

Site ID	Site Description		
CH-1-B	Courthouse location, 20 feet from right descending bank (RDB), 1 foot above river bottom.		
CH-1-T	Courthouse location, 20 feet from RDB, 10 feet above river bottom.		
CH-2-B	Courthouse location, 60 feet from RDB, 1 foot above river bottom.		
CH-2-T	Courthouse location, 60 feet from RDB, 10 feet above river bottom.		
ES-1-B	Elizabeth Street location, 20 feet from RDB, 1 foot above river bottom.		
ES-1-T	Elizabeth Street location, 20 feet from RDB, 10 feet above river bottom.		
ES-2-B	Elizabeth Street location, 60 feet from RDB, 1 foot above river bottom.		
ES-2-T	Elizabeth Street location, 60 feet from RDB, 10 feet above river bottom.		
M-1-B	Moose location, 20 feet from RDB, 1 foot above river bottom.		
M-1-T	Moose location, 20 feet from RDB, 10 feet above river bottom.		
M-2-B	Moose location, 60 feet from RDB, 1 foot above river bottom.		

Site ID	Site Description		
M-2-T	Moose location, 60 feet from RDB, 10 feet above river bottom.		
MNT-1-B	Montgomery location, 20 feet from left descending bank (LDB), 1 foot above river bottom.		
MNT-1-T	Montgomery location, 20 feet from LDB, 10 feet above river bottom.		
MNT-2-B	Montgomery location, 60 feet from LDB, 1 foot above river bottom.		
MNT-2-T	Montgomery location, 60 feet from LDB, 10 feet above river bottom.		

The coordinates of each sample point were measured using a hand-held global positioning system (GPS) unit and recorded during the first sampling event. A GPS unit was used during subsequent sampling events so that samples were consistently obtained from the same general locations.

2.1.2 Sampling Frequency and Duration

Twenty-four sampling events were conducted over a 12-month period, with a minimum of one week between events. Samples were collected during low flow, normal and high flow conditions of the Kanawha River. The level of the river was monitored as part of this study, with river flow and gage height values being obtained for each sampling event using the United States Geological Service (USGS) gauging station for the Kanawha River located at Kanawha Falls (USGS 03193000) (2016). Precipitation in the 72 hours and 24 hours preceding each sampling event was obtained from Accuweather.com (2016) and recorded.

2.1.3 Sample Collection

One composite sample and four individual grab samples were collected from the four sampling points on each transect using a dedicated decontaminated stainless steel bomb sampler (Photo 1). Individual grab samples for volatile analysis were collected from each of the four points and placed directly into pre-preserved vials provided by the contract laboratories. These samples were identified based on the sample point, as well as the sample location; for example, the lower sample nearest the riverbank at the Courthouse sample location was identified as CH-1-B. Additional samples were collected from the four points on the transect and composited in dedicated decontaminated stainless steel buckets prior to being transferred to pre-preserved containers provided by the laboratories for analyses of the parameters that could be analyzed from a composite sample. Samples for microbial analysis (e.g., fecal coliform) were collected from the location farthest from the riverbank at a depth of approximately 4 feet below the water surface using a SteriWare® LiquiThief sterile disposable sampler (Photo 2) at each sample location. Samples for Cryptosporidium and Giardia lamblia were collected from the sample point farthest from the bank using a pump and disposable plastic tubing and lowered to a depth of approximately 8 feet. Disposable plastic tubing was replaced between sample events and rinsed between sample locations. The samples were pumped directly into a single-use sample container. Conductivity, pH, dissolved oxygen, turbidity, temperature, and oxidation-reduction potential (ORP) of the composite sample were measured in the field using a hand-held meter. Total chlorine was measured in the field using a HACH Pocket Colorimeter II.

2.1.4 Sample Handling and Custody

Pre-preserved sample containers provided by the laboratories were labeled in the office with pre-printed water-resistant labels containing information including laboratory name, project identification, sample number, sampler's initials, sample type (grab or composite), container type, preservative used, and analysis requested. Sample date and time were added to each sampling container in the field with permanent marker at the time of sample collection. Following collection, samples were stored on ice and/or refrigerated to 4° C from the time they were collected until delivery to the laboratory.

Coolers containing samples that were directly shipped to laboratories for analysis were sealed with strapping tape and custody seals. The custody seals were placed such that the signature section of the seal would be broken when the cooler was opened. Chain-of-custody (COC) forms (described in further detail in Section 2.1.7) accompanied the coolers.

2.1.5 Analytical Methods

Prior to beginning sampling, the project was discussed with the WVDEP and the WVDHHR to help determine an appropriate parameter list for analysis of the water samples. Based upon these discussions, the Surface Water Parameter List in **Appendix B** of this report was developed. The list includes the following types of parameters:

- West Virginia Category A Water Quality Standards (2014);
- Primary and Secondary Drinking Water Standards (USEPA, 2016b), with the exception of those typically analyzed only on finished water in dedicated equipment;
- General chemistry (e.g., alkalinity);
- Indicator parameters (e.g., total organic carbon);
- Unregulated Contaminant Monitoring Rule 3 (UCMR3) (USEPA, 2016a) parameters except for the viruses; and
- Dioxin (2,3,7,8-TCDD).

There are additional primary drinking water parameters and microorganisms not included on this list that are typically analyzed only on finished water using drinking water analytical methods in dedicated analytical equipment. These were not analyzed because we were unable to find certified laboratories willing to run raw water through analytical equipment dedicated to analysis of finished drinking water due to the potential for cross-contamination (see List of Primary Drinking Water Parameters not analyzed in **Appendix B**). The viruses on the UCMR3 list were not included for the same reason.

Additional potential parameter lists were reviewed including a list of parameters reported to be present in the discharge from the DuPont process water outlet (Outlet 062) in a pending National Pollutant Discharge Elimination System permit reissuance application (WVDEP-ESS, 2015), and the list of parameters found in the Organic Chemicals, Plastics, and Synthetic Fibers (OCPSF) Effluent Limitations Guidelines (2016). The DuPont and OCPSF lists were compared

to the Surface Water Parameter List and the parameters that did not already appear on the analyses list were included, with the exception of ammonia nitrogen, 5-day biochemical oxygen demand, and chemical oxygen demand. These parameters were not included because they are not regulated in drinking water and are more applicable to surface water quality associated with wastewater discharges.

2.1.6 Quality Assurance

With the exception of the UCMR3 parameters, the samples were analyzed by WVDEP-certified laboratories using USEPA promulgated methods approved by Title 40, Part 136 of the Code of Federal Regulations (2016). These methods specify quality assurance and quality control (QA/QC) procedures to be followed by the laboratory performing the analysis, as well as guidelines regarding detection capabilities and limits of sample quantification. Data failing to meet method objectives were noted by the laboratories.

Due to the potential presence of solids and other contaminants, drinking water laboratories are typically not willing to analyze raw water samples in equipment dedicated to drinking water analysis. Thus, the methods approved by the federal drinking water regulations (2016) were not used and 40 CFR 136 methods were used, where possible, for primary and secondary drinking water contaminant analysis.

The UCMR3 parameters were analyzed by USEPA-approved laboratories utilizing UCMR3-approved methods. Sampling, collection and analysis for these parameters were done solely to screen for these parameters in the river water and should not be considered UCMR3 compliant. Compliant UCMR3 sampling and analysis can only be conducted on finished water.

Various blank samples were collected and analyzed during the study to verify the quality of the data. Volatile organic analyte (VOA) trip blanks were provided by the laboratories for coolers containing samples for volatile analyses. The VOA trip blank vials were kept unopened in the coolers throughout sampling and delivery/shipment back to the laboratory. A bottle and preservative for the preparation of a low-level mercury blank for coolers containing low-level mercury samples were provided by the laboratory and prepared in the field. Cooler temperature blanks were provided with each cooler and/or the temperature of sample bottles were measured by the laboratory upon receipt of samples. During each sampling event, additional water was collected to allow the laboratory to perform matrix spike and matrix spike duplicate analyses for USEPA Methods 604, 608, 610, and 625.

Field blank samples were prepared using ASTM Reagent Type II deionized, bacterial-filtered water and lab-provided pre-preserved bottles. These samples were exposed to field conditions and generally treated as a normal sample and submitted to the laboratories for blind analysis. The QC criteria used for evaluation of field blanks was a result less than the reporting limit (minimum reporting level [MRL] for UCMR3 parameters and method detection level [MDL] for other parameters) or less than 30 percent of the lowest sample collected on that day, up to two times the reporting limit. Field blank values were considered non-representative when the results were qualified as estimated, rejected, or suspected of blank contamination. In accordance with

the WVDEP's Watershed Assessment Branch 2014 Standard Operating Procedures (SOP) (WVDEP, 2014), field blanks were collected at a rate of 5 percent of the total samples, resulting in five complete blanks and one partial blank (TSS and metals only) being collected during the study.

Field duplicate samples were prepared by dividing aliquots of water from the grab samples and the composited samples into separate bottles at the same time as the original sample was collected. These samples were also submitted to the laboratories for blind analysis. The relative percent difference (RPD) between the two results was calculated for the data pairs. The QC criteria used for evaluation of field duplicates was a RPD of less than 30. RPD values were considered non-representative when: (1) both results were less than five times the reporting limit; (2) one or both results were qualified as estimated, rejected, or suspected of blank contamination; or (3) both results were not detected at the parameter's reporting limit. When a data pair had an RPD of greater than 30 percent, an outlier analysis (α =0.05) was run on the data for the river sample location to determine if the specific river sample was outside of the normal range. In accordance with the WVDEP's SOP (WVDEP, 2014), field blanks were collected at a rate of 2.5 percent of the total samples, resulting in three field duplicates being collected during the study.

During the course of the study, deviations from the sampling and analytical protocols were noted, and changes were made as needed. Upon receipt of data, analytical results of blanks and duplicates were reviewed to discover possible discrepancies, contamination or faults in the sampling methods and techniques. The results section of this report provides additional information on the review of quality assurance samples.

2.1.7 Data Management

Dedicated field notebooks were kept to document USGS station river flow, gage height, field meter calibration information, field readings, weather conditions, field observations, and deviations from the sampling protocol. COC forms were generated and maintained with the samples. The COC forms contained information including project identification information, laboratory name, sampler's initials, method of sample shipment/transfer, sample numbers, date and time of sample collection, sample matrix, sample type (grab or composite), preservatives used, analysis requested, turn-around time requested, date and time samples were relinquished, and signature of persons relinquishing and receiving samples. Corrections or revisions to field sample documents such as COC forms and field notebooks were made by lining through the original entry, initialing, and dating changes.

As data were collected and received from the contract laboratories, they were entered into dedicated Microsoft Excel® spreadsheets. Some data were manually entered, while others were received electronically and converted from text to numeric formats. Once entered into the spreadsheet, the data were subjected to a QA/QC review where the data entered were checked against the laboratory data or the field notebook. The spreadsheets were maintained in a single location on a backed-up server and locked for further editing upon completion of data entry and

review for each sampling event. Field notebooks were retained by the field sampling personnel through the study and completed COC forms were maintained in a dedicated paper file.

2.2 Results and Discussion

A summary of the data for each of the parameters monitored can be found in **Appendix C** of this report. **Appendix C** also contains summaries of the quality control samples analyzed during the study.

2.2.1 Flow

Average flow during the 24 sampling events ranged from 1,575 cubic feet per second (cfs) to 35,150 cfs. **Figure 3.1** shows the flows on the sampling dates throughout the study. For the purposes of this study, low flow was considered a flow of 5,000 cfs or less, while high flow was considered a flow of 10,000 cfs or more. Based on scheduling, weather, and river conditions, four low flow events were sampled and nine high flow events were sampled.

2.2.2 Field Parameters

Conductivity

- MNT-C: Field readings ranged from 86.8 μS/cm to 239.1 μS/cm.
- M-C: Field readings ranged from 92.1 μS/cm to 270.3 μS/cm.
- ES-C: Field readings ranged from 91.9 μS/cm to 275.8 μS/cm.
- CH-C: Field readings ranged from 92.0 μS/cm to 281.9 μS/cm.

Specific Conductance

- MNT-C: Field readings ranged from 111 μS/cm to 237.3 μS/cm.
- M-C: Field readings ranged from 121 μS/cm to 274.9 μS/cm.
- ES-C: Field readings ranged from 118 μS/cm to 278.5 μS/cm.
- CH-C: Field readings ranged from 123 μS/cm to 280.8 μS/cm.

Dissolved Oxygen

- MNT-C: Field readings ranged from 6.3 mg/L to 14.5 mg/L.
- M-C: Field readings ranged from 5.7 mg/L to 13.83 mg/L.
- ES-C: Field readings ranged from 6.16 mg/L to 13.8 mg/L.
- CH-C: Field readings ranged from 6.32 mg/L to 13.8 mg/L.

Oxidation Reduction Potential

- MNT-C: Field readings ranged from -404.6 mV to -69.0 mV.
- M-C: Field readings ranged from -457.0 mV to -72.5 mV.

- ES-C: Field readings ranged from -398.0 mV to -67.7 mV.
- CH-C: Field readings ranged from -421.0 mV to -32.6 mV.

pH

- MNT-C: Field readings ranged from 7.00 S.U. to 8.38 S.U.
- M-C: Field readings ranged from 6.76 S.U. to 8.41 S.U.
- ES-C: Field readings ranged from 6.90 S.U. to 8.67 S.U.
- CH-C: Field readings ranged from 6.98 S.U. to 8.53 S.U.

Temperature

Readings ranged from 4.4°C to 30.0°C throughout the study with expected seasonal variations.

Total Residual Chlorine

Measurements were non-detectable at the field meter detection level of 0.02 mg/L and below applicable water quality criteria throughout the study.

2.2.3 General Chemistry Parameters

A variety of general water chemistry parameters were monitored during the course of the study. Most of these parameters do not have applicable surface water or drinking water standards, but were measured to help characterize the stream.

Alkalinity

- MNT-C: Results were above the MDL for 24 samples and ranged from 30.2 mg/L to 67.6 mg/L.
- M-C: Results were above the MDL for 24 samples and ranged from 30.0 mg/L to 66.8 mg/L.
- ES-C: Results were above the MDL for 24 samples and ranged from 30.5 mg/L to 65.2 mg/L.
- CH-C: Results were above the MDL for 24 samples and ranged from 30.3 mg/L to 64.3 mg/L.

Hardness

- MNT-C: Results were above the MDL for 24 samples and ranged from 53.7 mg/L to 96.0 mg/L.
- M-C: Results were above the MDL for 24 samples and ranged from 52.8 mg/L to 102 mg/L.
- ES-C: Results were above the MDL for 24 samples and ranged from 51.9 mg/L to 102 mg/L.

CH-C: Results were above the MDL for 24 samples and ranged from 53.1 mg/L to 102 mg/L.

Surfactants (Foaming Agents)

- MNT-C: Results were above the MDL for five samples but below the SDWS of 0.5 mg/L. Three of the detected results were flagged as estimated because they were below the POL.
- M-C: Results were above the MDL for five samples but below the SDWS of 0.5 mg/L. Four of the detected results were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for four samples but below the SDWS of 0.5 mg/L. Two of the detected results were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for five samples but below the SDWS of 0.5 mg/L. Three of the detected results were flagged as estimated because they were below the PQL.

Total Organic Carbon

- MNT-C: Results were above the MDL for 24 samples and ranged from 1.41 mg/L to 3.03 mg/L.
- M-C: Results were above the MDL for 24 samples and ranged from 1.12 mg/L to 3.16 mg/L.
- ES-C: Results were above the MDL for 24 samples and ranged from 1.14 mg/L to 3.14 mg/L.
- CH-C: Results were above the MDL for 24 samples and ranged from 1.22 mg/L to 2.98 mg/L.

Total Suspended Solids

- MNT-C: Results were above the MDL for 24 samples and ranged from 2.0 mg/L to 25.5 mg/L. Eight of the detected results were flagged as estimated because they were below the PQL.
- M-C: Results were above the MDL for 22 samples and ranged from 3.0 mg/L to 18.0 mg/L. Six of the detected results were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for 24 samples and ranged from 2.5 mg/L to 22.5 mg/L. Eight of the detected results were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for 24 samples and ranged from 2.5 mg/L to 24.0 mg/L. Nine of the detected results were flagged as estimated because they were below the PQL.

The RPD for the August 3, 2015 and November 9, 2015 field duplicates exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river samples were not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical. Total suspended solids were detected at a concentration of 8.5 mg/L in the July 20, 2015 field blank, which indicates that the samples collected on this date may have been contaminated in the field or the laboratory. Decisions made based on these data should consider this uncertainty.

Total Dissolved Solids

- MNT-C: Results were above the MDL for 24 samples but below the SDWS of 500 mg/L.
- M-C: Results were above the MDL for 24 samples but below the SDWS of 500 mg/L.
- ES-C: Results were above the MDL for 24 samples but below the SDWS of 500 mg/L.
- CH-C: Results were above the MDL for 24 samples but below the SDWS of 500 mg/L. One detected result was flagged as estimated because it was below the PQL.

2.2.4 Inorganic Ions

Bromide

Bromide was non-detectable at the MDL throughout the study.

Chloride

- MNT-C: Results were above the MDL for 24 samples but below the Category A Water Quality Standard (CAWQS) and SDWS of 250 mg/L.
- M-C: Results were above the MDL for 24 samples but below the Category A Water Quality Standard (CAWQS) and SDWS of 250 mg/L.
- ES-C: Results were above the MDL for 24 samples but below the Category A Water Quality Standard (CAWQS) and SDWS of 250 mg/L.
- CH-C: Results were above the MDL for 24 samples but below the Category A Water Quality Standard (CAWQS) and SDWS of 250 mg/L.

Fluoride

- MNT-C: Results were above the MDL for nine samples but below the CAWQS of 1.4 mg/L, the PDWS of 4.0 mg/L, and the SDWS of 2 mg/L. The nine detected results were flagged as estimated because they were below the PQL.
- M-C: Results were above the MDL for eight samples but below the CAWQS of 1.4 mg/L, the PDWS of 4.0 mg/L, and the SDWS of 2 mg/L. The eight detected results were flagged as estimated because they were below the PQL.

- ES-C: Results were above the MDL for nine samples but below the CAWQS of 1.4 mg/L, the PDWS of 4.0 mg/L, and the SDWS of 2 mg/L. The nine detected results were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for ten samples but below the CAWQS of 1.4 mg/L, the PDWS of 4.0 mg/L, and the SDWS of 2 mg/L. The ten detected results were flagged as estimated because they were below the PQL.

Nitrate Nitrogen

- MNT-C: Results were above the MDL for 24 samples but below the CAWQS or PDWS of 10 mg/L.
- M-C: Results were above the MDL for 24 samples but below the CAWQS or PDWS of 10 mg/L.
- ES-C: Results were above the MDL for 24 samples but below the CAWQS or PDWS of 10 mg/L.
- CH-C: Results were above the MDL for 24 samples but below the CAWQS or PDWS of 10 mg/L.

The RPD for nitrate nitrogen the June 1, 2016 field duplicate exceeded 30 percent, and the result for the paired river sample was a statistical outlier (α =0.050) in the data set for the sample location. This indicates that the MNT-C data for June 1, 2016 is not representative. However, given that the reported result was 0.90 mg/L and the applicable CAWQS and PDWS are both 10 mg/L, this may not be crucial for decision-making purposes.

Nitrite Nitrogen

- MNT-C: A result was above the MDL for one sample but was below the CAWQS of 1 mg/L. The detected result was flagged as estimated because it was below the PQL.
- M-C: A result was above the MDL for one sample but was below the CAWQS of 1 mg/L. The detected result was flagged as estimated because it was below the PQL.
- ES-C: No results were above the MDL.
- CH-C: A result was above the MDL for one sample but was below the CAWQS of 1 mg/L. The detected result was flagged as estimated because it was below the PQL.

Sulfate

- MNT-C: Results were above the MDL for 24 samples but below the SDWS of 250 mg/L.
- M-C: Results were above the MDL for 24 samples but below the SDWS of 250 mg/L.
- ES-C: Results were above the MDL for 24 samples but below the SDWS of 250 mg/L.

 CH-C: Results were above the MDL for 24 samples but below the SDWS of 250 mg/L.

2.2.5 Cyanide

Free Cyanide

Free cyanide was not detected at the MDL throughout the study. The MDL of 0.005 mg/L was equal to the CAWQS of 0.005 mg/L and below the PDWS of 0.2 mg/L.

Total Cyanide

Total cyanide was not detected at the MDL of 0.005 mg/L throughout the study.

2.2.6 Microorganisms

Cryptosporidium

Cryptosporidium was not detected throughout the study.

Giardia Lamblia

Giardia lamblia was detected at two sample locations during the study.

- ES-S: A concentration of 0.18 cysts/L was measured in the March 29, 2016 sample. The volume of sample examined in this test was approximately 11 liters so this indicates that two cysts were observed.
- CH-C: A concentration of 0.10 cysts/L was measured in the December 15, 2015 samples and a concentration of 0.09 cysts/L was measured in the May 11, 2016 sample. The volume of sample examined in these tests was approximately 10 liters so this indicates that one cyst was observed in each of these two samples.

According to the USEPA publication, Giardia: Drinking Water Health Advisory (USEPA, 1999), the dose at which human sources of Giardia cysts cause infection in humans is ingestion of 10 cysts, which is higher than the observed concentrations. Giardia cysts can also be removed by filtration or rendered inactive by certain types of disinfection.

E. coli

The results were above the MDL throughout the study. The PDWS is zero, so a detectable result exceeds the standard, resulting in 24 exceedances at each sample location. The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than

improper storage and handling, thus the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the July 20, 2015 samples, bacteriological samples were taken to a different laboratory.

The RPD for *E. coli* for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Fecal Coliform

- MNT-C: Results for 24 samples were above the MDL and the PDWS of zero col/100 mL, but below the CAWQS of 400 col/100 mL.
- M-C: Results for 24 samples were above the MDL and the PDWS of zero col/100 mL, and two results were above the CAWQS of 400 col/100 mL.
- ES-C: Results for 24 samples were above the MDL and the PDWS of zero col/100 mL, and one result was above the CAWQS of 400 col/100 mL.
- CH-C: Results for 24 samples were above the MDL and the PDWS of zero col/100 mL, and three results were above the CAWQS of 400 col/100 mL.

The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than improper storage and handling, thus the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the July 20, 2015 samples, bacteriological samples were taken to a different laboratory.

The RPD for fecal coliform for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Bacteria by Heterotrophic Plate Count

MNT-C: Results were above the MDL for 22 samples and three results were above the PDWS of 500 MPN/100 mL.

- M-C: Results were above the MDL for 22 samples and three results were above the PDWS of 500 MPN/100 mL.
- ES-C: Results were above the MDL for 22 samples and three results were above the PDWS of 500 MPN/100 mL.
- CH-C: Results were above the MDL for 22 samples and four results were above the PDWS of 500 MPN/100 mL.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the July 20, 2015 samples, bacteriological samples were taken to a different laboratory.

The RPD for bacteria by heterotrophic plate count for the November 19, 2015 and June 1, 2016 field duplicates exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Total Coliform

- MNT-C: Results for 24 samples were above the MDL and the PDWS of zero.
- M-C: Results for 24 samples were above the MDL and the PDWS of zero.
- ES-C: Results for 24 samples were above the MDL and the PDWS of zero.
- CH-C: Results for 24 samples were above the MDL and the PDWS of zero.

The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than improper storage and handling thus, the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the July 20, 2015 samples, bacteriological samples were taken to a different laboratory.

The RPD for total coliform for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Figures 3.2 and 3.3 illustrate the levels of E. coli and fecal coliform measured at the four stations during the study. It is believed that the observed peaks at the Courthouse location may be due to sanitary bypass during storm events. Figures 3.4 and 3.5 are simple regressions of

bacterial concentration versus the amount of precipitation during the previous 24 hours that lend support to this theory and show a relationship between precipitation and E. coli and fecal coliform concentrations, particularly at the Charleston-area sampling locations.

The levels of bacteria as measured by heterotrophic plate count (HPC) and total coliform are shown in Figures 3.6 and 3.7 and do not show the same pattern of occurrence as E. coli and fecal coliform and their precipitation regressions (Figures 3.8 and 3.9) do not show a relationship with precipitation. This is likely because analyses of bacteria by HPC and total coliform measure a greater number of bacteria that are present under normal conditions.

Conventional water treatment plants are designed to kill bacteria, thus the observed levels of bacteria should not present a concern from a treatment standpoint. A treatability study should be conducted to confirm adequate removal/destruction of bacteria.

2.2.7 Metals

Aluminum

- MNT-C: Results were above the MDL for 24 samples, 23 results were above the 0.05 mg/L lower end of the SDWs and seven results were above the 0.2 mg/L upper end of the SDWS. Seven of the detected results were flagged as estimated because they were below the PQL.
- M-C: Results were above the MDL for 24 samples, 24 results were above the 0.05 mg/L lower end of the SDWs and five results were above the 0.2 mg/L upper end of the SDWS. Four of the detected results were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for 24 samples, 23 results were above the 0.05 mg/L lower end of the SDWs and two results were above the 0.2 mg/L upper end of the SDWS. Six of the detected results were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for 24 samples, 22 results were above the 0.05 mg/L lower end of the SDWs and five results were above the 0.2 mg/L upper end of the SDWS. Seven of the detected results were flagged as estimated because they were below the PQL.

Aluminum has a SDWS of 0.05 to 0.2 mg/L. The lower value of 0.05 mg/L is the concentration at which aluminum can contribute to colored water. The USEPA has established the upper concentration of 0.2 mg/L as a level that should be attainable by a properly operated water treatment system.

Figure 3.10 shows the aluminum concentrations measured during the study. A treatability study would need to be conducted to determine whether aluminum would be present in finished water at levels greater than the SDWS following treatment. As the standard is a secondary water quality standard, the WVDHHR would need to be consulted to determine if the residual levels would be of regulatory concern.

Antimony

- MNT-C: No results were detected at the MDL.
- M-C: One result was above the MDL, but below the CAWQS of 0.014 mg/L and the PDWS of 0.006 mg/L. The detected result was flagged as estimated because it was below the PQL.
- ES-C: No results were detected at the MDL.
- CH-C: Two results were above the MDL, but below the CAWQS of 0.014 mg/L and the PDWS of 0.006 mg/L. The detected results were flagged as estimated because they were below the PQL.

Arsenic

- MNT-C: A result was above the MDL for one sample but was below the CAWQS and PDWS of 0.010 mg/L. The detected result was flagged as estimated because it was below the PQL.
- M-C: No results were detected at the MDL.
- ES-C: No results were detected at the MDL.
- CH-C: No results were detected at the MDL.

Barium

- MNT-C: Results were above the MDL for 24 samples but below the CAWQS of 1.0 mg/L or the PDWS of 2 mg/L.
- M-C: Results were above the MDL for 24 samples but below the CAWQS of 1.0 mg/L or the PDWS of 2 mg/L.
- ES-C: Results were above the MDL for 24 samples but below the CAWQS of 1.0 mg/L or the PDWS of 2 mg/L.
- CH-C: Results were above the MDL for 24 samples but below the CAWQS of 1.0 mg/L or the PDWS of 2 mg/L.

Beryllium

Beryllium was non-detectable at the MDL of 0.0002~mg/L and below the CAWQS and PDWS of 0.004~mg/L throughout the study.

Cadmium

- MNT-C: No results were detected at the MDL.
- M-C: No results were detected at the MDL.
- ES-C: No results were detected at the MDL.
- CH-C: A result was detected at the MDL for one sample but was below the CAWQS of 0.002 mg/L and the PDWS of 0.005 mg/L. The detected result was flagged as estimated because it was below the PQL.

Hexavalent Chromium

- MNT-C: Results were above the MDL for 24 samples but below the CAWQS of 50 µg/L.
- M-C: Results were above the MDL for 22 samples but below the CAWQS of 50 μg/L.
- ES-C: Results were above the MDL for 21 samples but below the CAWQS of 50 μg/L.
- $^{\bullet \bullet}$ CH-C: Results were above the MDL for 22 samples but below the CAWQS of 50 $\mu g/L$.

The RPD for hexavalent chromium for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

The hexavalent chromium results as they relate to UCMR3 are discussed later in Section 2.2.18.3.

Total Chromium

- MNT-C: Results were above the MDL for 24 samples but below the CAWQS of 50 μg/L.
- M-C: Results were above the MDL for 24 samples but below the CAWQS of 50 μg/L.
- ES-C: Results were above the MDL for 24 samples but below the CAWQS of 50 μg/L.
- CH-C: Results were above the MDL for 24 samples but below the CAWQS of 50 µg/L.

Total chromium was detected in three of the field blanks, indicating that the samples were contaminated in the field or the laboratory, but the associated river samples were still below the water quality standard. Given that the reported results were below the CAWQS of 50 μ g/L, this may not be crucial for decision-making purposes.

The RPD for total chromium for the November 19, 2015 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Total chromium results as they relate to UCMR3 are discussed later in Section 2.2.18.3.

Copper

- MNT-C: Results were above the MDL for 20 samples but below the CAWQS and SDWS of 1.0 mg/L and the PDWS of 1.3 mg/L. The detected samples were flagged as estimated because they were below the PQL.
- M-C: Results were above the MDL for 17 samples but below the CAWQS and SDWS of 1.0 mg/L and the PDWS of 1.3 mg/L. The detected samples were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for 18 samples but below the CAWQS and SDWS of 1.0 mg/L and the PDWS of 1.3 mg/L. The detected samples were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for 19 samples but below the CAWQS and SDWS of 1.0 mg/L and the PDWS of 1.3 mg/L. The detected samples were flagged as estimated because they were below the PQL.

Iron

- MNT-C: Results were above the MDL for 24 samples but below the CAWQS of 1.5 mg/L. Results from 12 samples were above the SDWS of 0.3 mg/L.
- M-C: Results were above the MDL for 24 samples but below the CAWQS of 1.5 mg/L. Results from nine samples were above the SDWS of 0.3 mg/L and one of the detected results was flagged as estimated because it was below the PQL.
- ES-C: Results were above the MDL for 24 samples but below the CAWQS of 1.5 mg/L. Results from nine samples were above the SDWS of 0.3 mg/L.
- CH-C: Results were above the MDL for 24 samples but below the CAWQS of 1.5 mg/L. Results from seven samples were above the SDWS of 0.3 mg/L.

The RPD for iron for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Figure 3.11 shows the iron concentrations measured during the study. There are no appreciable differences between the stations with regard to iron concentrations. A treatability study would need to be conducted to determine whether iron would be present in the finished water at levels greater than the SDWS following treatment. As the standard is a secondary water quality standard, the WVDHHR would need to be consulted to determine if the residual levels would be of regulatory concern.

Lead

MNT-C: Results were above the MDL for 23 samples but below CAWQS of 0.050 mg/L and the PDWS of 0.015 mg/L. Of the detected results, 21 were flagged as estimated because they were below the PQL.

- M-C: Results were above the MDL for 24 samples but below CAWQS of 0.050 mg/L and the PDWS of 0.015 mg/L. Of the detected results, 21 were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for 22 samples but below CAWQS of 0.050 mg/L and the PDWS of 0.015 mg/L. Of the detected results, 21 were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for 23 samples but below CAWQS of 0.050 mg/L and the PDWS of 0.015 mg/L. Of the detected results, 22 were flagged as estimated because they were below the PQL.

Mercury

- MNT-C: No results were above the MDL of 1.80 ng/L.
- M-C: One result was above the MDL and was flagged as estimated because it was below the PQL. This result was less than the CAWQS of 140 ng/L and the PDWS of 2,000 ng/L.
- ES-C: One result was above the MDL and was flagged as estimated because it was below the PQL. This result was less than the CAWQS of 140 ng/L and the PDWS of 2,000 ng/L.
- CH-C: One result was above the MDL and was flagged as estimated because it was below the PQL. This result was less than the CAWQS of 140 ng/L and the PDWS of 2,000 ng/L.

The mercury blanks collected during the study were non-detectable at the MDL.

Manganese

- MNT-C: Results were above the MDL for 24 samples but below CAWQS of 1.0 mg/L. Of the detected results, 21 were flagged as estimated because they were below the PQL and six were above the SDWS of 0.05 mg/L.
- M-C: Results were above the MDL for 24 samples but below CAWQS of 1.0 mg/L. The detected results were flagged as estimated because they were below the PQL and four were above the SDWS of 0.05 mg/L.
- ES-C: Results were above the MDL for 24 samples but below CAWQS of 1.0 mg/L. The detected results were flagged as estimated because they were below the PQL and five were above the SDWS of 0.05 mg/L.
- CH-C: Results were above the MDL for 24 samples but below CAWQS of 1.0 mg/L. The detected results were flagged as estimated because they were below the PQL and three were above the SDWS of 0.05 mg/L.

Figure 3.12 shows the manganese concentrations measured during the study. There are no appreciable differences between the stations with regard to manganese concentrations. A treatability study would need to be conducted to determine whether manganese would be present in the finished water at levels greater than the SDWS following treatment. As the standard is a

secondary water quality standard, the WVDHHR would need to be consulted to determine if the residual levels would be of regulatory concern.

Nickel

- MNT-C: Results were above the MDL for six samples but below the CAWQS of 0.51 mg/L. The detected results were flagged as estimated because they were below the PQL.
- M-C: Results were above the MDL for four samples but below the CAWQS of 0.51 mg/L. The detected results were flagged as estimated because they were below the PQL.
- ES-C: Results were above the MDL for six samples but below the CAWQS of 0.51 mg/L. The detected results were flagged as estimated because they were below the PQL.
- CH-C: Results were above the MDL for five samples but below the CAWQS of 0.51 mg/L. The detected results were flagged as estimated because they were below the PQL.

Selenium

Selenium was non-detectable at the MDL of 0.0010 mg/L and below the CAWQS and PDWS of 0.05 mg/L throughout the study.

Silver

Silver was non-detectable at the MDL of 0.0010~mg/L and below the CAWQS of 0.004~mg/L and the SDWS of 0.10~mg/L throughout the study.

Thallium

Thallium was non-detectable at the MDL of 0.0010 mg/L and below the CAWQS of 0.0017 mg/L and the PDWS of 0.002 mg/L throughout the study.

Zinc

- MNT-C: 20 results were above the MDL and 17 of those were flagged as estimated because they were below the PQL. No results were above the SDWS of 5 mg/L.
- M-C: 22 results were above the MDL and 21 of those were flagged as estimated because they were below the PQL. No results were above the SDWS of 5 mg/L.
- ES-C: 20 results were above the MDL and 12 of those were flagged as estimated because they were below the PQL. No results were above the SDWS of 5 mg/L.
- CH-C: 21 results were above the MDL and 18 of those were flagged as estimated because they were below the PQL. No results were above the SDWS of 5 mg/L.

2.2.8 Semi-Volatile Organic Compounds

The following semi-volatile organic compounds were non-detectable at the MDL and below applicable water quality throughout the study:

- 2-Chloronaphthalene (CAWQS 1 mg/L)
- 4,6-Dinitro-2-methylphenol (CAWQS 0.0134 mg/L)

The results for 2,4-dinitrotoluene and hexachlorobenzene were non-detectable at the MDL throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the 2,4-dinitrotoluene and hexachlorobenzene analyses. However, the available analytical method cannot achieve a reporting level lower than the CAWQS of 0.00011 mg/L for 2,4-dinitrotoluene or the CAWQS of 0.00000072 mg/L and PDWS of 0.001 mg/L for hexachlorobenzene.

Bis(2-ethylhexyl)phthalate

- MNT-C: Three results were above the MDL and two of these results were above the PDWS of 0.006 mg/L. One of the results above the PDWS was reported as estimated because they were below the PQL.
- M-C: Three results were above the MDL and two results above the PDWS of 0.006 mg/L. These three results were reported as estimated because they were below the PQL.
- ES-C: Three results were above the MDL and two of these results were above the PDWS of 0.006 mg/L. These three results were reported as estimated because they were below the PQL.
- CH-C: One result was above the MDL and above the PDWS of 0.006 mg/L. This result was also reported as estimated because it was below the PQL.

Although bis(2-ethylhexyl)phthalate was not detected in the field blank samples, it is a common laboratory contaminant. Furthermore, results were near the laboratory PQL and considered estimated values. A treatability study would need to be conducted to determine whether bis(2-ethylhexyl)phthalate would be present in the treated finished water at levels above the PDWS.

2.2.9 Phenolic Compounds

The following phenolic compounds were non-detectable at the MDL and below applicable water quality criteria throughout the study:

- 2,4,6-Trichlorophenol (CAWQS 0.0021 mg/L)
- 2,4-Dichlorophenol (CAWQS 0.093 mg/L)
- 2,4-Dimethylphenol (CAWQS 0.54 mg/L)
- 2,4-Dinitrophenol (CAWQS 0.07 mg/L)
- 2-Chlorophenol (CAWQS 0.12 mg/L)

The results for pentachlorophenol were non-detectable at the MDL and below the PDWS of 0.0021 mg/L throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS of 0.00028 mg/L.

Phenol was detected at station M-C during one sampling event with a result of 0.0013 mg/L. This result is below the CAWQS of 0.021 mg/L. The rest of the samples were non-detectable at the MDL.

2.2.10 Polycyclic Aromatic Hydrocarbons

The following polycyclic aromatic hydrocarbons were non-detectable at the MDL and below applicable CAWQS throughout the study:

- Acenaphthene (CAWQS 0.67 mg/L)
- Anthracene (CAWQS 8.3 mg/L)
- Fluoranthene (CAWOS 0.3 mg/L)
- Fluorene (CAWQS 1.1 mg/L)
- Pyrene (CAWQS 0.83 mg/L)

The results for benzo(a)pyrene were non-detectable at the MDL of 0.0001 mg/L throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS of 0.0000038 mg/L. The MDL for benzo(a)pyrene is below the PDWS of 0.0002 mg/L throughout the study, with exception of the December 1, 2015 sampling event. The MDLs were elevated on December 1, 2015 at the Courthouse location for many of the parameters, possibly due to matrix interference or interference from particles suspended in the raw water. The MDL of 0.0013 mg/L reported on December 1, 2015 exceeded the PDWS of 0.0002 mg/L for benzo(a)pyrene. The sensitivity of the MDL is dependent upon the daily instrument calibration, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the MDL as observed on December 1, 2015 is anticipated and acceptable.

The results for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene were non-detectable at the MDL throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS of 0.0000038 mg/L for these parameters.

2.2.11 Volatile Organic Compounds

VOCs were sampled as grab samples with four grab sample points at each transect location. The following VOCs were non-detectable at the MDL and below the applicable water quality criteria throughout the study:

- 1,1,1-Trichloroethane (CAWQS 12,000 μg/L, PDWS 200 μg/L)
- 1,1,2-Trichloroethane (PDWS 5.00 μg/L)
- 1,1-Dichloroethene (CAWQS 0.03 μg/L, PDWS 7 μg/L)
- 1,2-Dichlorobenzene (CAWQS 2,700 μg/L, PDWS 600 μg/L)
- 1,2-Dichloropropane (PDWS 5 μg/L)
- 1,3-Dichlorobenzene (CAWQS 400 μg/L)
- 1,4-Dichlorobenzene (CAWQS 400 μg/L, PDWS 5 μg/L)
- Benzene (CAWQS 0.66 μg/L, PDWS 5 μg/L)
- Bromodichloromethane (CAWQS 0.55 μg/L, PDWS 80 μg/L as part of total trihalomethanes (TTHM))
- Bromoform (CAWQS 4.3 μg/L, PDWS 80 μg/Las part of TTHM)
- Chlorobenzene (CAWQS 680 μg/L, PDWS 100 μg/L)
- Chloroform (CAWQS 5.7 μg/L, PDWS 80 μg/Las part of TTHM)
- Dibromochloromethane (PDWS 80 μg/L as part of TTHM)
- Ethylbenzene (CAWQS 3,100 μg/L, PDWS 700 μg/L)
- Methyl bromide (CAWQS 47 μg/L)
- Methylene chloride (CAWQS 4.6 μg/L, PDWS 5 μg/L)
- Tetrachloroethene (CAWQS 0.8 μg/L, PDWS 5 μg/L)
- Trichloroethene (CAWQS 2.7 μg/L, PDWS 5 μg/L)
- Vinyl Chloride (CAWQS 2 μg/L, PDWS 2 μg/L)
- m,p-Xylene (PDWS 10 μg/L)
- o-Xylene (PDWS 10 μg/L)

The results for 1,2-dichloroethane (CAWQS - 0.035 $\mu g/L$, PDWS - 5 $\mu g/L$) and carbon tetrachloride (CAWQS - 0.25 $\mu g/L$, PDWS - 5 $\mu g/L$) were non-detectable at the MDLs of 0.500 $\mu g/L$ and below the PDWS throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS for these parameters.

The results for 1,1,2,2-tetrachloroethane (CAWQS - 0.17 μ g/L) and acrylonitrile (CAWQS - 0.059 μ g/L) were non-detectable at the MDLs of 0.500 μ g/L and 7.500 μ g/L, respectively throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS.

Toluene was detected above the MDL of $0.500~\mu g/L$ at nine of the 16 sampling points during the June 2016 sampling event. Seven of the detected values were flagged as estimated because they were below the PQL. Toluene is a common lab contaminant and was only detected during the June 2016 sampling event, which could potentially indicate sample contamination. The maximum toluene concentration measured was 1.18 $\mu g/L$, which is below the CAWQS of 6,800 $\mu g/L$ and the PDWS of 1,000 $\mu g/L$.

Bromomethane (methyl bromide) was measured at a concentration of $0.12~\mu g/L$ at sample point M-2-T during the September 15, 2015 sampling event. This value is less than the CAWQS of 47 $\mu g/L$. The other 383 results for this parameter were below the MDL.

Bromomethane was also detected in the May 11, 2016 field blank at a level of $0.73 \mu g/L$, which indicates that the samples collected on this date may have been contaminated in the field or the laboratory. However, bromomethane was not detected in the corresponding river samples. Bromomethane is discussed further in Section 2.2.18.1.

2.2.12 4-Methylcyclohexanemethanol

CAWQS or PDWS have not been established for 4-MCHM. The Centers for Disease Control and Prevention (CDC) issued a letter to the WVDHHR on January 15, 2014 recommending a screening level of 1 mg/L of MCHM in drinking water. The results for 4-MCHM were non-detectable at the MDL of 0.002 mg/L ($2 \mu g/L$) throughout the study.

2.2.13 Pesticides

The following pesticides were non-detectable at the MDL and below the PDWS, if applicable, throughout the study:

- Heptachlor epoxide (PDWS 0.0002 mg/L)
- Aldrin (CAWQS 0.000000071 mg/L)
- Alpha-BHC (CAWQS 0.0000039 mg/L)
- Beta-BHC (CAWQS 0.000014 mg/L)
- Chlordane (CAWQS 0.00000046 mg/L, PDWS 0.02 mg/L)
- DDT (dichlorodiphenyltrichloroethane) (CAWQS 0.000000024 mg/L)
- Dieldrin (CAWQS 0.000000071 mg/L)
- Endrin (CAWQS 0.0000023 mg/L, PDWS 0.002 mg/L)
- Heptachlor (CAWQS 0.00000021 mg/L, PDWS 0.0004 mg/L)
- Lindane (gamma-BHC) (CAWQS 0.000019 mg/L, PDWS 0.0002 mg/L)
- Methoxychlor (CAWQS 0.00000003 mg/L, PDWS 0.04 mg/L)
- Toxaphene (CAWQS 0.00000073 mg/L, PDWS 0.003 mg/L)

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analyses. However, the available analytical method cannot achieve a reporting level lower than the CAWQS for aldrin, alpha-BHC, beta-BHC, chlordane, DDT, dieldrin, endrin, heptachlor, lindane, methoxychlorortoxaphene.

2.2.14 Polychlorinated Biphenyls

The tested polychlorinated biphenyls (PCBs) were non-detectable at the MDL and below the PDWS of 0.0005 mg/L throughout the study. These PCBs include:

- Aroclor 1016
- Aroclor 1221
- Aroclor 1232
- Aroclor 1242
- Aroclor 1248
- Aroclor 1254
- Aroclor 1260

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analyses. However, the available analytical method cannot achieve a reporting level lower than the CAWQS for the tested PCBs.

2.2.15 Dioxin

The results for 2,3,7,8-tetrachlorodibenzodioxin (2,3,7,8 TCDD) (Dioxin) were non-detectable at the estimated detection limit (EDL) and below the PDWS throughout the study. Analytical methods providing the lowest EDL available from WVDEP-certified lab for raw water were used for the analyses. However, the available analytical method cannot achieve a reporting level lower than the CAWQS for dioxin.

2.2.16 Radiochemistry

The following radiochemical parameters were non-detectable at the minimum detectable concentration (MDC) and below the applicable water quality criteria throughout the study:

- Strontium-90 (dissolved) (CAWQS 10 pCi/L)
- Dissolved alpha emitters (CAWQS 3 pCi/L)

The following radiochemical parameters were measured above MDC during at least one sampling event, but the results were less than the applicable water quality criteria:

- Gross alpha: Maximum detectable result of 1.49 pCi/L with CAWQS and PDWS of 15 pCi/L.
- Gross beta: Maximum detectable result of 3.17 pCi/L with CAWQS of 1,000 pCi/L.
- Radium-226: Maximum detectable result of 1.15 pCi/L with CAWQS and PDWS of 5 pCi/L.
- Radium-228: Maximum detectable result of 3.06 pCi/L with CAWQS and PDWS of 5 pCi/L.
- Tritium: Maximum detectable result of 1,750 pCi/L with a PDWS of 20,000 pCi/L.
- Uranium: Maximum detectable result of 10.9 pCi/L with a PDWS of 20 pCi/L.

Radium-226 and radium-228 were non-detectable at the MDC at ES-C and CH-C on September 15, 2015, but the MDCs for these parameters on this date were higher than the

CAWQS and PDWS. Analytical methods providing the lowest MDC available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method could not achieve a reporting level lower than the CAWQS or the PDWS for the September 15, 2015 samples.

Dissolved alpha emitters were non-detectable at the MDC at M-C and ES-C on October 13, 2015, but the MDC reported for this date is also higher than the applicable CAWQS. As discussed above, the analytical method could not achieve a reporting level lower than the CAWQS for dissolved alpha emitters at M-C and ES-C on October 13, 2015.

The sensitivity of the MDC is dependent upon the daily instrument calibration, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the MDC throughout the sampling period is anticipated and acceptable. Due to interferences, equipment calibration, etc., the MDC may be elevated to report non-detectable values at concentrations greater than other detected results. This is not indicative of a presence of radiochemistry, but rather indicative of a sample with increased interferences.

2.2.17 Asbestos

The results for asbestos fibers were non-detectable at the MDL throughout the study. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analyses. However, the available analytical method could not consistently achieve a reporting level lower than the PDWS possibly due to matrix interference or interference from particles suspended in the raw water. The MDL reported by the laboratory was above the PDWS for asbestos during two sampling events (November 2015 and May 2016). The sensitivity of the MDL is dependent upon the daily instrument calibration, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the MDL throughout the sampling period is anticipated and acceptable.

2.2.18 Unregulated Contaminant Monitoring Rule (UCMR3) Parameters

The UCMR3 parameters are a list of analytes developed by the USEPA in accordance with the SWDA amendments to collect data for contaminants suspected to be present in drinking water, but that do not have health-based standards set under the SDWA. Every five years the USEPA publishes a list of not more than 30 unregulated contaminants to be measured in public water systems. The UCMR3 list was published in 2012 for monitoring to be conducted between 2013 and 2015. This monitoring provides a basis for future regulatory action to protect public health. These parameters are intended to be measured in treated finished water, rather than raw water, therefore, the sampling procedures and analysis used for the study are not suitable for UCMR3 compliance purposes; however, they do provide an indication of whether or not these contaminants may be expected to be present within the Kanawha River.

The USEPA's UCMR3 Data Summary (USEPA, 2016c) states:

"Under the current cycle of the Unregulated Contaminant Monitoring Rule (UCMR#), chemicals are being studied at levels that are often significantly below those in prior UCMR cycles. Importantly, UCMR3 minimum reporting levels (MRLs) were established based on the capability of the analytical method, not based on a level established as "significant" or "harmful." In fact, the UCMR3 MRLs are often below current "health reference levels" (to the extent that MRLs have been established). Results of UCMR3 measurements should be interpreted accordingly. The detection of a UCMR3 contaminant above the MRL does not represent cause for concern, in and of itself. Rather, the implications of the detection should be judged considering health effects information (which is often still under development or being refined for unregulated contaminants).

The intent of the following table [Draft Reference Concentration Table] is to identify draft UCMR reference concentrations, where possible, to provide context around the detection of a particular UCMR contaminant above the MRL. The draft reference concentration does not represent an "action level" (EPA requires no particular action based simply on the fact that UCMR monitoring results exceed draft reference concentrations), nor should the draft reference concentration be interpreted as any indication of an Agency intent to establish a future drinking water regulation for the contaminant at this or any other level. Decisions as to whether or not to regulate the contaminant in drinking water will continue to be made following the Agency's Regulatory Determination process."

Where UCMR3 parameters were detected above the MRL, they were compared to the USEPA's draft reference concentration (RC) to help put the observed results into context.

2.2.18.1 Organics

The samples collected for analysis of organic compounds were collected as grab samples at each of the four points at each of the four sample locations. The following organic parameters were non-detectable at the MDL and were below the UCMR3 MRL and RC throughout the study:

- 1,1-Dichloroethane (MRL 0.03 μg/L, RC 6.14 to 614 μg/L)
- 1,2,3-Trichloropropane (MRL 0.03 μg/L, RC 0.0004 to 0.04 μg/L)
- 1,3-Butadiene (MRL 0.1 μg/L, RC 0.0103 to 1.03 μg/L)
- Bromochloromethane (Halon 1011) (MRL 0.06 μg/L, RC 90 μg/L)
- Chlorodifluoromethane (HCFC-22) (MRL 0.08 μg/L, RC Not applicable)

The USEPA UCMR3-approved analytical method was used for the analysis of 1,23-trichloropropane and 1,3-butadiene. However, the analytical method cannot achieve a reporting level as low as the lower end of the RC range. To be reported as an exceedence, values were above both the MRL and the RC.

Bromomethane (methyl bromide) was measured at a concentration of 0.12 $\mu g/L$ at sample point M-2-T during the September 15, 2015 sampling event. This value is less than the MRL of 0.2 $\mu g/L$ and the RC of 140 $\mu g/L$. The other 383 results for this parameter were below the MDL of 0.10 $\mu g/L$.

Bromomethane was detected in the May 11, 2016 field blank at a level of 0.73 μ g/L, which indicates that the samples collected on this date may have been contaminated in the field or the laboratory. As this concentration is less than the MRL, it is unlikely to affect decision-making made based on these data.

Chloromethane (methyl chloride) was measured at a concentration of 0.14 $\mu g/L$ at sample point M-2-T during the September 15, 2015 sampling event and at a concentration of 0.10 $\mu g/L$ at sample point ES-2-T during the February 2, 2016 sampling event. These results are below the MRL of 0.2 $\mu g/L$ and the RC of 2.69 to 269 $\mu g/L$. The other 382 results for this parameter were below the MDL of 0.10 $\mu g/L$.

2.2.18.2 1,4-Dioxane

- MNT-C: Results were above the MDL for five samples, one result was above the MRL of 0.07 μg/L, and below the lower end of the RC range of 0.35 μg/L.
- M-C: Results were above the MDL for 18 samples, 13 results were above the MRL of 0.07 μg/L, four results were above the lower end of the RC range of 0.35 μg/L, but below the 35 μg/L upper end of the RC range.
- ES-C: Results were above the MDL for 20 samples, 14 results were above the MRL of 0.07 μg/L, four results were above the lower end of the RC range of 0.35 μg/L, but below the 35 μg/L upper end of the RC range.
- CH-C: Results were above the MDL for 19 samples, 15 results were above the MRL of 0.07 μg/L four results were above the lower end of the RC range of 0.35 μg/L, but below the 35 μg/L upper end of the RC range.

This parameter was also detected in four of the five field blanks:

- July 20, 2015 at 0.048 μg/L
- September 1, 2015 at 0.064 μg/L
- February 29, 2016 at 0.23 μg/L
- May 11, 2016 at 0.063 μg/L

Detection of the material in the field blanks indicates that the samples on these dates were contaminated during sampling, handling or analysis.

1,4-dioxane is an unregulated synthetic organic compound used as a solvent and as a laboratory reagent, and is found in cosmetics, detergents, soaps and shampoo. The RC for this parameter is 0.35 to 35 $\mu g/L$. The maximum concentrations at M-C, ES-C, and CH-C were above the lower threshold of 0.35 $\mu g/L$, but the average concentrations were below this level.

The high percentage of contamination of field blanks introduces uncertainty with regard to the validity of the data, particularly since the material is a common laboratory reagent. Additionally, the laboratory that conducted the analysis does not maintain National Environmental Laboratory Accreditation Program (NELAP) accreditation for USEPA Method 522, rather they were approved by the USEPA to report 1,4-dioxane for the UCMR3 program. Further, the analytical method was designed for use on treated finished drinking water samples and a variety of compounds that could be present in the raw water can interfere with its reliability.

In order to determine if 1,4-dioxane would be present in an alternative water source, a treatability study would need to be conducted and the resulting finished water would need to be analyzed by a NELAP-certified laboratory. Since 1,4-dioxane is an unregulated contaminant, the WVDHHR would need to be consulted if it was found in the finished water.

2.2.18.3 Metals

Hexavalent Chromium

- MNT-C: Results were above the MDL for 22 samples and 14 results were above UCMR3 MRL of 0.03 μg/L.
- M-C: Results were above the MDL for 22 samples and 16 results were above UCMR3 MRL of 0.03 μg/L.
- ES-C: Results were above the MDL for 21 samples and 18 results were above UCMR3 MRL of 0.03 μg/L.
- $^{\bullet \bullet}$ CH-C: Results were above the MDL for 22 samples and 14 results were above UCMR3 MRL of 0.03 $\mu g/L$.

The RPD for hexavalent chromium for the June 1, 2016 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

There is currently no RC for this parameter. According to the UCMR3 Data Summary, hexavalent chromium is on the Integrated Risk Information System's 2012 agenda for either a new assessment or an updated assessment.

Total Chromium

- MNT-C: Results for 24 samples were above the MDL of 0.03 μg/L, which was equal to the MRL of 0.03 μg/L. Results were below the RC of 100 μg/L.
- M-C: Results for 24 samples were above the MDL of 0.03 μg/L, which was equal to the MRL of 0.03 μg/L. Results were below the RC of 100 μg/L.
- ES-C: Results for 24 samples were above the MDL of $0.03~\mu g/L$, which was equal to the MRL of $0.03~\mu g/L$. Results were below the RC of $100~\mu g/L$.
- CH-C: Results for 24 samples were above the MDL of 0.03 μ g/L, which was equal to the MRL of 0.03 μ g/L. Results were below the RC of 100 μ g/L.

A different laboratory analyzed the samples for the last two events because the UCMR3 study period established by the USEPA ended and the original laboratory no longer offered the applicable analytical method. Use of a different laboratory resulted in different MDLs for the last two sampling events.

Total chromium was detected in three of the field blanks, indicating that the samples were contaminated in the field or the laboratory. The concentration in the field blanks, when compared to the river sample results, is not high enough to affect the determination of whether or not the data exceed the MRL. Therefore, this may not be crucial for decision-making purposes.

The RPD for total chromium for the November 19, 2015 field duplicate exceeded 30 percent, which calls into question the accuracy of the data for this date. However, the associated river sample was not outside of the normal range of the data for the sample location, which indicates that the differences may not be critical to decision-making based on the data.

Cobalt

- MNT-C: Results were above the MDL for two samples but below the MRL of $1 \mu g/L$ and the RC of $70 \mu g/L$
- M-C: Results were above the MDL for seven samples but below the MRL of $1 \mu g/L$ and the RC of $70 \mu g/L$.
- ES-C: Results were above the MDL for eight samples but below the MRL of 1 μg/L and the RC of 70 μg/L.
- CH-C: Results were above the MDL for six samples but below the MRL of $1 \mu g/L$ and the RC of $70 \mu g/L$.

A different laboratory analyzed these samples for the last two events because the UCMR3 study period established by the USEPA ended and the original laboratory no longer offered the applicable analytical method. Use of a different laboratory resulted in different MDLs for the last two sampling events.

Molybdenum

- MNT-C: One result was above the MDL but below the MRL of 1 μg/L and the RC of 40 μg/L. The rest of the samples were below the MRL and the RC.
- M-C: One result was above the MDL but below the MRL of 1 μg/L and the RC of 40 μg/L. The rest of the samples were below the MRL and the RC.
- ES-C: Results were below the MDL, the MRL of 1 μg/L and the RC of 40 μg/L throughout the study.
- $^{\blacksquare}$ CH-C: Results were below the MDL, the MRL of 1 $\mu g/L$ and the RC of 40 $\mu g/L$ throughout the study.

A different laboratory analyzed these samples for the last two events because the UCMR3 study period established by the USEPA ended and the original laboratory no longer offered the

applicable analytical method. Use of a different laboratory resulted in different MDLs for the last two sampling events.

Strontium

- MNT-C: Results for 24 samples were above the MRL of 0.3 μg/L but below the RC of 1,500 μg/L.
- M-C: Results for 24 samples were above the MRL of 0.3 μg/L but below the RC of 1,500 μg/L.
- ES-C: Results for 24 samples were above the MRL of 0.3 μg/L but below the RC of 1,500 μg/L.
- $^{\bullet}$ CH-C: Results for 24 samples were above the MRL of 0.3 $\mu g/L$ but below the RC of 1,500 $\mu g/L$.

Vanadium

- MNT-C: Results for 24 samples were above the MRL of $0.3~\mu g/L$ but below the RC of 21 $\mu g/L$.
- M-C: Results for 24 samples were above the MRL of 0.3 μg/L but below the RC of 21 μg/L.
- ES-C: Results for 24 samples were above the MRL of 0.3 μg/L but below the RC of 21 μg/L.
- $^{\blacksquare}$ CH-C: Results for 24 samples were above the MRL of 0.3 $\mu g/L$ but below the RC of 21 $\mu g/L$.

2.2.18.4 Chlorate

- MNT-C: Results were above the MDL for 22 samples but below the MRL of 20 μg/L and the RC of 210 μg/L.
- M-C: Results were above the MDL for 17 samples and one result was above the MRL of 20 μ g/L but below the RC of 210 μ g/L.
- ES-C: Results were above the MDL for 16 samples but below the MRL of 20 $\mu g/$ and the RC of 210 $\mu g/L$.
- CH-C: Results were above the MDL for 18 samples but below the MRL of 20 μg/L and the RC of 210 μg/L.

2.2.18.5 Perfluorinated Compounds

The following perfluorinated compounds were measured below their respective MDLs and MRLs throughout the study. These parameters do not have RCs:

- Perfluorobutanesulfonic acid (PFBS) (MRL 0.09 μg/L, RC Not applicable)
- Perfluoroheptanoic acid (PFHpA) (MRL 0.01 μg/L, RC Not applicable)
- Perfluorohexylsulfonic acid (PFHxS) (MRL 0.03 μg/L, RC Not applicable)
- Perfluorononanoic acid (PFNA) (MRL 0.02 μg/L, RC Not applicable)

Pefluorooctylsulfonic acid (PFOS) (MRL – 0.04 μg/L, RC – Not applicable)

Perfluorooctanoic acid (PFOA) was detected on one occasion above the MDL of 0.0018 $\mu g/L$, but below the MRL of 0.02 $\mu g/L$ and the RC of 0.07 $\mu g/L$. The remaining results were below the MDL.

PFOS was detected in the May 11, 2016 field blank at a concentration of 0.0077 $\mu g/L$, indicating that the sample was contaminated in the field or the laboratory. However, it was not detected in the corresponding river samples at the MDL of 0.0045 $\mu g/L$, indicating that this may not be crucial for decision-making purposes.

2.2.18.6 Hormones

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CH-C and 20 sampling events at the other three sampling locations.

The following hormones were measured below their MDLs, MRLs and RCs throughout the study:

- 16-α-Hydroxyestradiol (Estriol) (MRL 0.0008 μg/L, RC 0.35 μg/L)
- 17-α-Ethynylestradiol (MRL 0.0009 μ g/L, RC 0.035 μ g/L)
- 17-β-Estradiol (MRL − 0.0004 μg/L, RC − 0.0009 to 0.09 μg/L)
- Equilin (MRL -0.0004 μg/L, RC -0.35 μg/L)
- Estrone (MRL $0.002 \mu g/L$, RC $0.35 \mu g/L$)

4-Androstene-3,17-dione was measured above the MRL of 0.0003 $\mu g/L$ on December 1, 2015 at sampling sample locations ES-C and CH-C. The observed concentrations were 0.00054 and 0.00053 $\mu g/L$, respectively. This parameter does not have an established RC.

Testosterone was measured above the MRL of 0.0001 $\mu g/L$ on December 1, 2015 at sampling sample locations ES-C and CH-C. The observed concentrations were 0.00014 and 0.00016 $\mu g/L$, respectively. This parameter does not have an established RC.

17- α -Ethynylestradiol was detected at a concentration of 0.0012 μ g/L in the February 29, 2016 field blank, indicating that the sample was contaminated in the field or the laboratory. However, it was not detected in the corresponding river samples at the MDL of 0.00090 μ g/L, indicating that this may not be crucial for decision-making purposes.

3.0 RIVER BED – SEDIMENT SAMPLING AND ANALYSIS

Sediment from the Kanawha River was studied due to the past industrial, chemical, and mining use of the Kanawha River and its tributaries downstream of Mile Point 72. The sediment study

was conducted to identify contaminants in river bottom sediments that could potentially be released back into the Kanawha River and affect water quality over time.

The Kanawha River is a tributary of the Ohio River, approximately 97 miles in length. It is the largest inland waterway in West Virginia and commonly used for barge transportation. The Kanawha River is routinely dredged by the United States Army Corps of Engineers (USACE) to maintain a minimum draft depth for private and commercial watercraft. The USACE also maintains and operates a series of lock and dam structures on the Kanawha River for navigation purposes. The sediment study limits were specifically located within an approximate 16-mile reach of the Kanawha River between river mile 58.2 (near Charleston, West Virginia) and river mile 74.1 (near Cabin Creek, West Virginia).

Initial evaluation of each of the sediment sample collection site areas included the collection of geophysical and bathymetry data using a single beam hydrograph, side scan sonar, and a sonar sub-bottom profiler. Following the collection of this suite of remote sensing data, representative soil core grab samples were obtained from riverbed sediment at each designated sample site. The results of the geophysical and bathymetry study were then reviewed to refine and select actual sample locations for analytical testing of sediment. Final sediment sampling events included the collection of two individual samples, one along the left descending bank (LDB) and a second from the right descending bank (RDB) from each site during high and low flow conditions in the river.

3.1 Sediment Sampling Locations

A total of seven individual sediment sampling locations were selected for this study. These included three around and upstream of Charleston and an additional four sites upstream that were located in close proximity to upstream tributaries of the Kanawha River. These tributaries were selected based on the history of development and industrial activity along the streams and their potential for contaminant inflow. The individual sediment sample locations extended approximately 500 feet along both banks and included the full width of the river as indicated on **Figure 1 in Appendix A**.

The Winfield locks and dam structure is situated downstream of Charleston at MP 31.1 and Marmet locks and dam structure is located upstream of Charleston at MP 67.7. SED01 through SED05 sampling locations are situated within the Winfield pool, which is reported to have a normal pool elevation of 566 feet. SED06 and SED07 sample locations are upstream and within the Marmet pool with a maintained normal pool elevation of 590 feet.

<u>SED01 Location (Winfield Pool @ MP 58.22) – Court Street</u> Lat.: 38.34935923680⁰ Long.: 81.64069287570⁰

This sampling location was near the lower end of Charleston's Haddad River Front Park levee structure, adjacent to the southern terminus of Court Street along the RDB. The study section was situated approximately 1,750 feet downstream from the South Side Bridge. This sampling location was consistent with the surface water sampling location denoted as CH.

SED02 Location (Winfield Pool @, MP 59.69) - Elizabeth Street

Lat.: 38.33603344120⁰ Long.: 81.62000897660⁰

This sampling location was situated adjacent to the southern terminus of Elizabeth Street along the RDB. South Ruffner Branch enters the river via a culvert along the LDB below the center of this study area along with three individual storm water culvert outfalls associated with the University of Charleston also along the LDB at and just above the center of the study area. This sampling location was consistent with the surface water sampling location denoted as ES.

SED03 Location (Winfield Pool @, MP 61.51) - Moose Lodge

Lat.: 38.33075222860⁰

Long.: 81.58773673430⁰

This sampling location was situated immediately south of East Point Drive and the Charleston Moose Lodge which are located along the RDB. This study area was also consistent with the surface water sampling location denoted as M.

SED04 Location (Winfield Pool @ MP 63.17) - Campbells Creek Tributary

Lat.: 36.31664004960⁰

Long.: 81.56326096910⁰

This sampling location was consistent with the stream discharge from a major tributary, Campbells Creek, which enters the Kanawha River along the RDB after crossing under several bridge structures associated with US Route 60, the WV Turnpike, Piedmont Road, and Norfolk Southern Railroad.

This tributary was included in the sediment sampling study due to the presence of historic (both active and reclaimed) mining operations within the Campbells Creek watershed, as well as the presence of a former salvage yard (Raleigh Junk).

SED05 Location (Winfield Pool @ MP 67.54) - Rush Creek/Burning Springs Branch Tributary

Lat.: 38.26189888980⁰

Long.: 81.57262727440^o

This sampling location was situated downstream of the Marmet locks and dam structure and is consistent with the entrance of a redirected tributary (Burning Springs Branch) located along the RDB, as well as the entrance of Rush Creek along the LDB. The main entrance channel of Burning Springs Branch was redirected and configured with riprap for stabilization during the Marmet locks and dam upgrades, which were completed in the early 2000s.

These tributaries were included in the sediment sampling study given the past disturbance and potential for urban runoff from DuPont City and Rand within Burning Springs Branch and the presence of historic and active mining operations within the Rush Creek watershed.

SED06 Location (Marmet Pool @ MP 68.23) - DuPont

Plant/Simmons and Lens Creek Tributaries

Lat.: 38.24696928110⁰

Long.: 81.56290456160⁰

This sampling location was located upstream of the Marmet locks and dam structure and downstream of the DuPont chemical facility. The DuPont facility is situated along the RDB with several industrial outfalls that enter the river along this bank, and several urban storm water outfalls enter the river from the Town of Marmet along the LDB. The DuPont plant maintains an industrial landfill facility within the Simmons Creek watershed, which is located north of the

main production plant facility. Simmons Creek has been channelized through the DuPont plant property and enters the river along the RDB upstream of the SED06 location.

This sampling location was also situated downstream from the entrance of the Lens Creek tributary along the LDB. This tributary watershed contained numerous historic and active mining sites, and active coal load-outs and dock facilities within the Kanawha River upstream of the SED06 location along the LDB.

SED07 Location (Marmet Pool @ MP 74.10) - Cabin Creek Tributary

Lat.: 38.20003036900⁰ Long.: 81.48407007280⁰

This sampling location was immediately downstream of the river's confluence with Cabin Creek, which enters along the LDB. The Cabin Creek watershed contained several legacy environmental sites including the Pure Oil Company Cabin Creek Refinery, an American Electric Power generating facility, and numerous active and reclaimed mining operations. Several active coal stockpiles, load-outs, and dock facilities also exist along the RDB and LDB of the Kanawha River upstream of this sampling location.

3.2 Geophysical and Bathymetry Background Description

W.J. Castle was retained by POTESTA to perform a subsurface exploration of the seven sediment sampling locations along the Kanawha River using geophysical methods to characterize the riverbed and map the distribution of sediment accumulation, thickness, and general gradation. Four levels of study were performed from a boat within each of the study areas to assemble the geophysical and bathymetry data, which included the following:

- Single Beam Hydrographic Survey This survey was performed by deploying the Single Beam Echosounder to make continuous, accurate (+/- 1 cm) measurements of the depth of water from the river's water surface to the underlying sediment surface of the riverbed. The data was corrected for elevation based on the recorded lock pool elevations which were obtained daily during the data collection field work from the USACE lockmaster at the Winfield and Marmet lock and dam facilities.
- Side Scan Sonar Study The Side Scan Sonar was deployed to determine a three dimensional surface of the riverbed. Sonar responses from the apparatus are capable of locating objects such as pipeline crossings or debris on the riverbed.
- Sonar Sub-Bottom Profiler Mapping The Sonar Sub-Bottom Profiler Unit utilizes acoustic sound waves to determine changes in the density of the underlying riverbed sediments and soils. This information was post-processed to determine the thickness and general sediment type and gradation. The findings were used to identify bedforms along the mapped sediment surface (i.e., sand waves/ripples) which are characteristically found in areas of sediment accumulation and deposition.

Core and Grab Samples of the Channel Bottom – Representative sediment core grab samples were collected by W.J. Castle and documented by type and particle size/distribution. The results of the W.J. Castle sediment sample observations were paired with the signal response from the Sub-Bottom Profiler unit to correlate the type of sediment with a specific response (Seismic Facies Analysis). Core samples were collected using a 2-inch diameter core sampler affixed to the boat. The core sampler was advanced using a vibratory hammer and the length of recovered core varied from approximately 1 foot to 7 feet deep, depending on the soil type and depth to hard-pan or bedrock. Several of the sample areas contained gravel or riprap boulders and the sediment core unit was unsuccessful in retrieving a sample. In these areas, grab samples were collected by hand using a W.J. Castle scuba diver.

Representative photographs of the geophysical equipment utilized on this project including the sidescan sonar, echosounder, and sub-bottom profile units are provided in **Appendix D**.

A copy of the final summary report prepared by W.J. Castle following the geophysical work entitled "The Sediment Study for Seven Sites on the Kanawha River, Charleston, West Virginia" is presented in **Appendix D**. The W.J. Castle study includes findings that are presented in a series of graphics, which include a contour plan map of the riverbed, a sediment map plan of the riverbed, and various isopach maps depicting changes in sediment thickness and type with corresponding boring records for each of the sediment sampling study areas. These results provide a snapshot view of the riverbed and the type of sediment contained therein.

The riverbed contour maps identify the 500-foot survey limits for reference including 1-foot contour lines, channel bottom elevation references, and the locations of the collected sediment cores. The sediment maps for each designated area were developed by correlating side scan sonar and the sediment core data. The borings were collected by W.J. Castle and delivered to POTESTA for logging. The side scan sonar imaging indicates coarseness and types of sediment by the differing reflectivity responses received. Similar reflectivity or imaging in an area where a sediment core was collected indicates that the sediment collected in the core sampler is distributed in those areas with similar imaging responses. Based on this methodology, outlines were placed on the sediment maps with labels indicating the most likely and relevant types of sediment for each delineated area. The recovered surface sediment samples were generally silty sands, coal fragments and gravel, which are typical of alluvial deposition found in this river basin. It should be noted that fine coal fragments and silts commonly appear as the finest sediments in the side scan survey imaging.

3.2.1 Geophysical and Bathymetry Characteristics

Bathymetry maps were produced at each of the sampling locations along the Kanawha River from the hydrographic survey. Each site had a study area that spanned the full width of the river and approximately 500 feet of the riverbanks. Further details related to the procedure and devices used to produce the mapping are discussed in the W.J. Castle report.

3.2.1.1 Overview of SED01 Location

The SED01 location was characterized by four distinct gradation changes in the river sediment across the width of the study area. Two core samples and a single gradation sample were collected at SED01. River sediments were noted to be composed of a silty sand, coarse-grained sand with scattered rocks and debris, coal fines with fine to medium-grained silty sand, and sandstone gravel and cobble with silty sands. Sediment depths were determined using the EdgeTech X-star Chirp Sub-bottom Profiler and reported sediment depths that ranged from 1.5 to 4.5 feet in thickness.

3.2.1.2 Overview of SED02 Location

At the SED02 location, three sediment cores were collected along the LDB. Sediment types encountered during the study revealed coarse gravel, fine sand and silt, coarse gravel with sand, fine to medium-grained silty sand, and fine sand and coarse gravel. Sediment depths in this study area were estimated to range from 3 to 9 feet.

3.2.1.3 Overview of SED03 Location

At the SED03 location, two core samples were advanced on the RDB and one additional core sample was collected near the LDB. Sediment types encountered at this location were silty sand and clay, silty sand and coarse gravel with coal fines, course gravel with some silty sands, and silty sands with sparse larger rock with coal fines. Sediment depths were estimated to be approximately 1 to 10 feet thick in this study area.

Bathymetry maps were produced for the four upstream sampling locations, which were consistent with major tributaries to the Kanawha River in this stream segment. These tributaries are known to contain environmental legacy sites or historic mining development.

3.2.1.4 Overview of SED04 Location

Sediment depths at the SED04 sampling location were estimated to range from 1.5 to 8 feet in thickness. Three core samples were obtained at this location, two along the LDB and one along the RDB. Types of sediments encountered included silty sands, very rocky sediment with sand, coarse sediment with sand, fine sediment, fine sand and organics, coarse-grained sand, gravel and coal fines.

3.2.1.5 Overview of SED05 Location

A single core sample was obtained at sampling location SED05 along the RDB along with two additional core samples that were collected near the LDB. Observed sediment types from this location were noted to be composed predominantly of gravel and cobble with a trace of sand. Silty sands were found along the RDB. Sands and gravels were predominant along the LDB.

3.2.1.6 Overview of SED06 Location

Three core samples were collected at the SED06 sampling location: RDB, center of river, and LDB. Predominant sediments encountered were fine-grained silty sand, and clay with coal fines. Medium-grained sand and coal fines were encountered along the RDB and coarse-grained sediments and debris with silty sands along with fine grained silty sand and clay was encountered along the LDB.

3.2.1.7 Overview of SED07 Location

Three sediment core samples were taken at SED07 location, two situated along the RDB and a third along the LDB. The predominant sediment found in the center of the channel was a silty sand and some coal fines. Silty, clayey sand with some coal fines along with coarse gravel and silty sand was encountered along the RDB. The LDB consisted of silty sands with some organics and coal fines.

3.3 Sediment Samples Overview

POTESTA reviewed the geophysical and bathymetry findings presented in the W.J. Castle study to select the location of sampling points within the designated sampling reaches to provide representative sediment samples for chemical and physical sediment characteristic tests. The results of the W.J. Castle - Sonar Sub-Bottom profile study were reviewed to lend insight into the depth, distribution, and gradation of the existing river sediments. Considering these findings, POTESTA selected areas within each of the study sections consistent with the accumulation of alluvial sediment and deposition had occurred. These sampling points were deemed consistent with depositional areas that could be eroded during high flow and flooding events, which would result in the entrainment of fine sediment within the water column. The collection of these individual sediment samples was performed by POTESTA staff from a boat deployed on the river. It was assumed that accumulated contaminated sediments would be concentrated, if present, along the banks of the river rather than the center due to dredging performed by the USACE. Therefore, samples were collected at two points within the designated sampling locations, which include the LDB and the RDB.

The initial sampling event took place during a low-flow period in October 2015 while the second collection event was completed following an elevated or high-flow event occurring in May 2016. The high-flow event was defined as a storm event that resulted in flows greater than 10,000 cfs and the low-flow event was defined as an event resulting in flow less than 5,000 cfs. The river levels were monitored from information collected from the USGS's gauging for the Kanawha River at the Kanawha Falls (USGS 03193000) (2016). The high-flow sampling event was carried out following a return of the river stage to normal flow conditions. The locations of the sample points were documented using a Trimble 6000 series Digital Global Positioning System (DGPS) to closely approximate the locations during the two sampling events. Each sampling point was designated with the prefix SS1r1 indicating Sediment Site 1 (SS1), right descending bank (r), and first (1) sample taken in low flow.

The sediment samples were analyzed for parameters that were approved as part of the study plan provided to the WVDEP and WVDHHR prior to the beginning of sampling. The parameters and their respective analytical methods are shown on **Table 3.3**.

TABLE 3.3
Summary of Laboratory Tests for Sediment Samples

Classification Tests		Analytical Tests	
Test	Method	Test	Method
Particle Size	ASTM D422	TOC	USEPA 9060A
		Metals	USEPA 6010B
		PCBs	USEPA 8082A
		VOCs	USEPA 8260B
		SVOCs	USEPA 8270D
		Dioxin	USEPA 8290

3.3.1 Sample Collection and Preparation

The initial sampling event took place during a low flow period on October 22, 2015 and concluded on October 23, 2015. This sampling took place when the minimum flow averaged 3,480 cfs according to the USGS gauging for the Kanawha River at the Kanawha Falls (USGS 03193000) (2016). Sampling activities were initiated by navigating to the seven sediment sampling locations using a DGPS.

Due to the variation of sediment types, two types of sample collection equipment were utilized to collect the sediment samples during this event. Initially, an AMS Multi-Stage Sludge and Sediment Sampler (Photo 3, Appendix F) was deployed for discrete sediment sampling. The AMS Multi-Sludge and Sediment Sampler has a maximum sample depth of 36 inches; however, during the sampling event the typical depth varied from 1 inch to 18 inches due to site conditions. When the sampling crew encountered rocky conditions, making use of the AMS Multi-Stage Sludge and Sediment Sampler ineffective, a Petite Ponar (Photo 4, Appendix F) sample collection device was employed to obtain samples. The Petite Ponar generally sampled sediment depths from 1-12 inches. Therefore, both sampling methods targeted the upper 10-12 inches of sediment. Based on a previous study of the Kanawha River in the Nitro area, it was determined that "Finest-grained deposit along both banks of the River exhibit lower resuspension rates due to lower shear stresses being generated by lower velocities of flow in those areas." (Conestoga-Rovers & Associates, 2015).

Each sample was transferred from the sampler to a decontaminated metal bucket or can (Photo 5, Appendix F). The decontaminated containers were new and were not reused. The decontamination of steel cans occurred the day prior to sampling and consisted of spraying a Liquinox[®] detergent and water solution on the steel cans, then rinsing the cans twice with distilled water. Once in the decontaminated cans, the individual sediment samples were immediately collected and placed into three wide-mouth, 8-ounce glass soil jars. The samples

were labeled by sample location and a custody seal was placed on each of the jars. Upon containerization of project samples, the 8-ounce glass soil jars were placed in rigid coolers, maintained under ice, and subject to appropriate COC protocols until delivered to the analytical laboratory (REI Consultants, Inc.), in Beaver, West Virginia. The remaining sediment in each steel can was sealed and delivered to CTL Engineering, Inc. of South Charleston, West Virginia for soil classification and particle gradation testing. Pace Analytical Services, Inc., of Minneapolis, Minnesota was sub-contracted by REI Consultants, Inc. (REIC) to complete Method 8290 testing for dioxin.

The second sampling event took place on May 11 and 12, 2016 following a high flow event. The high flow was a result of spring rains that caused flows to reach 50,000 cfs in the days leading up to the sampling event according to the gauging for the Kanawha River at Kanawha Falls (USGS 03193000) (2016). The sample locations were the same general locations as the sites previously sampled during the aforementioned low flow event. The AMS Multi-Sludge and Sediment Sampler was not used during the second sampling event as the Petite Ponar was proven to be more efficient.

Sediment samples were collected using the Petite Ponar (Photos 6 and 7, Appendix F) which was decontaminated prior to sampling at each location using a spray Liquinox[®] detergent and water solution. The sediment samples collected using the Petite Ponarwere transferred to a steel bucket or placed directly into the steel cans (Photos 8-11, Appendix F). The steel cans were decontaminated the day prior and the steel bucket was decontaminated (Photos 12-14, Appendix F) between sampling locations using spray detergent solution.

Upon collection of sufficient sample quantity to fill the sample containers, three Closed-System Purge-and-Trap samples were taken directly from the recovered material, prior to mixing/homogenizing, for VOC analysis using Terra Core™ sampler per USEPA Method 5035A (USEPA, 2002). The TerraCore™ samplers are single-use sampling tools that collect approximately 5 grams of soil. The 5 grams of collected soil were transferred to 40-milliliter (mL) vials. Each of the filled vials was capped and custody sealed before being placed in a cooler on ice (Photos 15–18, Appendix F). Three wide-mouth 8-ounce jar samples (Photos 19-21, Appendix F) were also collected. After sediment was placed in the jars and vials, they were custody sealed, bagged, and placed in a cooler on ice (Photos 22-25, Appendix F).

Sediment samples along with appropriate COC were sent to REIC. REIC sub-contracted with Pace Analytical Services, Inc., of Minneapolis, Minnesota to complete Method 8290 testing for dioxin. The steel cans were sent to GeoMechanics, Inc. of Elizabeth, Pennsylvania for soil classification testing.

3.3.2 Sediment Sample Results

The analytical results from the collected river sediment sample are summarized in **Appendix E.** Currently, West Virginia does not have a screening method or regulatory standard for the evaluation of sediment with respect to a potential drinking water source. Following a review of

relevant studies and available information, POTESTA utilized the findings and screening methods published in a USGS report (Ingersoll et al., 2000) to interpret the data obtained from the sediment analysis. Sediment analytical results were compared to the "probable effect concentrations" identified in this study, above which adverse aquatic toxicity effects are expected to occur. Physical classification tests were also completed on representative samples by performing gradation analysis.

3.3.2.1 Physical Classification Results

Samples collected during the sampling events were subjected to sieve analysis gradation testing. A total of 14 samples were analyzed during each sampling event; two for each sample area which were obtained from each side of the river at each of the seven sediment sampling locations.

Low Flow Event

Sediments sampled during the low flow event were consistent across each of the sampling locations. Many of the sample gradation results indicated that the sediment was poorly graded with the particle sizes of the gravel, sand, or silts being similar.

- SED01 Sediments were characterized by poorly-graded, coarse gravel with fine to medium-grained sand along the LDB and a non-plastic silty sand near the RDB.
- SED02 Sediments were characterized by a poorly-graded, fine sand with non-plastic silt near the LDB and a poorly-graded, coarse gravel with fine to medium-grained sand along the RDB.
- SED03 Sediments were characterized by a poorly-graded, fine sand with non-plastic silt near the LDB and silty, fine sand near the RDB.
- SED04 Sediments were characterized by poorly-graded, fine to medium-grained sand with fine to coarse gravel near the LDB and rocky material with sand near the RDB.
- SED05 Sediments were characterized by silty sand with coarse gravel near the LDB and poorly-graded, fine sand near the RDB.
- SED06 Sediments were characterized by silty, fine sands near the LDB and silty, coarse gravel with fine to coarse-grained sand near the RDB.
- SED07 Sediments were characterized by silty, fine-grained sand near the LDB and fine-grained sandy silt near the RDB.

High Flow Event

- SED01 Sediments were characterized by a poorly-graded, fine-grained silty sand along both banks.
- SED02 Sediments were characterized by poorly-graded, fine-grained silty sand with some fine gravel along the LDB and poorly-graded, fine gravel with some silts and sand near the RDB.

- SED03 Sediments were characterized as primarily composed of a poorly-graded, fine sand with some silts and clay on both the LDB and RDB.
- SED04 Sediments were characterized by a poorly-graded, fine-grained sand in both samples.
- SED05 Sediments were characterized by silty, fine-grained sand with trace gravel along the LDB and poorly-graded, fine-grained sand near the RDB.
- SED06 Sediments were characterized by a fine-grained sandy silt near the LDB and poorly-graded, fine gravel near the RDB.
- SED07 Sediments at both points were characterized by a fine-grained sandy silt.

The accumulation, gradation, and type of sediments documented through testing and geophysical study within the seven sediment study areas were consistent with typical alluvial deposition within a major river course. Entrained sediment entering the river from the tributaries during and following major storm events accumulates in sediment deposition areas immediately downstream from the tributary confluence. These accumulation areas were noted to be linear features which were oriented parallel to the river flow direction. Several areas of the study documented manmade features such as docks, mooring cells, riprap stream bank protection, etc. which all serve to alter and direct the natural flow in localized areas along the riverbank in many areas. These features enhance deposition of sediment in some areas and the concentration of erosive flow velocities in other areas resulting in scour and sediment erosion. Since the Kanawha River is maintained as a navigable waterway for commercial and recreational watercraft, the Corps of Engineers regularly dredges the Kanawha River to prevent the accumulation of sediment to maintain a minimum operational draft depth along the main channel. This activity serves to remove accumulated sediment and routinely disturbs and re-entrains the sediment within the water course. In summary, the physical characteristics of the Kanawha River sediments are such that they may be entrained into the water column due to high flow events, manmade structures. and routine maintenance dredging of the main channel. The gradation and particle size of these potential entrained sediments are consistent with typical standard conventional clarification and filtration treatment processes, which are routinely utilized in potable water treatment processes for TSS removal.

3.3.2.2 Chemical Analytical Results

Analytical laboratory testing of the sediment samples included analysis of total metals, PCBs, semi-volatile organic compounds, volatile compounds and 2,3,7,8-Tetrachlorodibenzodioxin. A summary of the results from these analyses can be found attached in **Appendix E**. Due to the lack of screening methods and standards related to sediment as an indicator for water quality, the methods and screening levels provided in the USGS report (Ingersoll et al., 2000) were utilized by POTESTA to interpret and evaluate the data. This study presents a set of sediment quality guidelines, which are utilized to predict toxicity for a freshwater database for the Great Lakes basin. Supportive information collected during the preparation of USGS report (Ingersoll et al., 2000) included a review of 92 published reports that contained the results of 1,657 sediment samples. The report concludes with "probable effect concentrations" (PEC) of individual chemicals above which adverse effects in sediments are expected to occur. While POTESTA tested for more substances than the referenced report, the report does represent a concentration

against which the various chemicals in the report can be compared, providing a means of evaluating the data obtained from the analysis of the sediment samples.

The results of the sediment sample metals analysis did not appear to follow a distinct pattern with the varied river flow from the low flow to high flow event. The majority of the parameter concentrations were similar between the low and high flow events. The results from the metal analyses were typically a fraction of what was considered the toxic effect threshold referenced in the USGS report (Ingersoll et al. 2000). The only noted exception to these results was for copper and nickel, which exceeded the recommended PEC concentrations from the USGS report (Ingersoll et al. 2000). This sample was obtained during the May 2016 high flow sampling event from the sampling location along the RDB (Sample Location SS06) which is situated downstream from DuPont. The consensus based PEC from the USGS report (Ingersoll et al. 2000) for copper was 149 mg/kg with a result of 193 mg/kg. Nickel had a consensus based PEC of 48.6 mg/kg with a result of 74.20 mg/kg.

The semi-volatile compounds and volatile compounds were sampled differently from the low flow event to high flow event. USEPA Method 5035A (USEPA, 2002) was used during the high flow event and was not during the low flow event. The majority of the results had similar concentrations from the high to low flow event and were less than 10 percent of the minimum toxic effect threshold determined in the USGS report (Ingersoll et al. 2000).

4.0 CONCLUSIONS

The surface water sampling activities involved the collection and analysis of 25,605 samples. Of these, 2,494 or 9.74 percent of the parameters were detectable at the analytical MDLs, or UCMR3 MRLs. Of these results, 339 or 1.50 percent were above applicable drinking water standards or UCMR3 draft reference concentrations.

The surface water quality sampling data show that bacteria and bis(2-ethyhexyl)phthalate (BEHP) were the only parameters detected above primary drinking water standards at one or more of the sample locations. *Giardia lamblia* was detected at two of the sampling locations. Aluminum, manganese, and iron were detected above secondary drinking water standards at the four sampling locations.

Conventional water treatment plants are designed to kill bacteria, thus the observed levels of bacteria should not present a concern from a treatment standpoint. With regard to the remaining parameters, a treatability study would need to be conducted to determine the concentration of these parameters remaining in the finished water relative to applicable drinking water standards following treatment. Since aluminum, manganese, and iron are subject to secondary drinking water standards, the WVDHHR would need to be consulted to determine if the residual levels would be of regulatory concern.

Of the UCMR3 chemicals, only 1,4-dioxane was measured above the MRL and the USEPA's draft reference concentration (where one exists). The parameter 1,4-dioxane is an unregulated

contaminant that is used as a solvent and a laboratory reagent, and is found in cosmetics, detergents, soaps and shampoo. A treatability study would need to be conducted and the resulting finished water would need to be analyzed by a NELAP-certified laboratory to evaluate 1,4-dioxane levels following treatment. Since 1,4-dioxane is an unregulated contaminant, the WVDHHR would need to be consulted if it was found in the treated finished water.

The sediment analytical data show that the concentrations in the sediments sampled are all below the identified probable effect concentrations, except for copper and nickel at the SS06 location below the DuPont Belle Plant at Rush Creek. It is important to note that copper and nickel were not detected in any of the water samples above the applicable drinking water standards. Additional treatability studies would be necessary to determine if entrained sediment can be treated to meet the water quality standards for these parameters.

5.0 CLOSING

This report has been prepared on behalf of West Virginia America Water to provide a summary of the findings obtained from the surface water and sediment sampling activities completed by POTESTA in the Kanawha River between Montgomery and Charleston, West Virginia. The report's scope is limited to the specific project and locations described herein and represents our understanding of the factors as presented in this report. If these factors change as additional data concerning this study is obtained, we should be informed so that we may examine the data and, if necessary, modify or revise the conclusions presented in this report.

Respectfully submitted,

POTESTA & ASSOCIATES, INC.

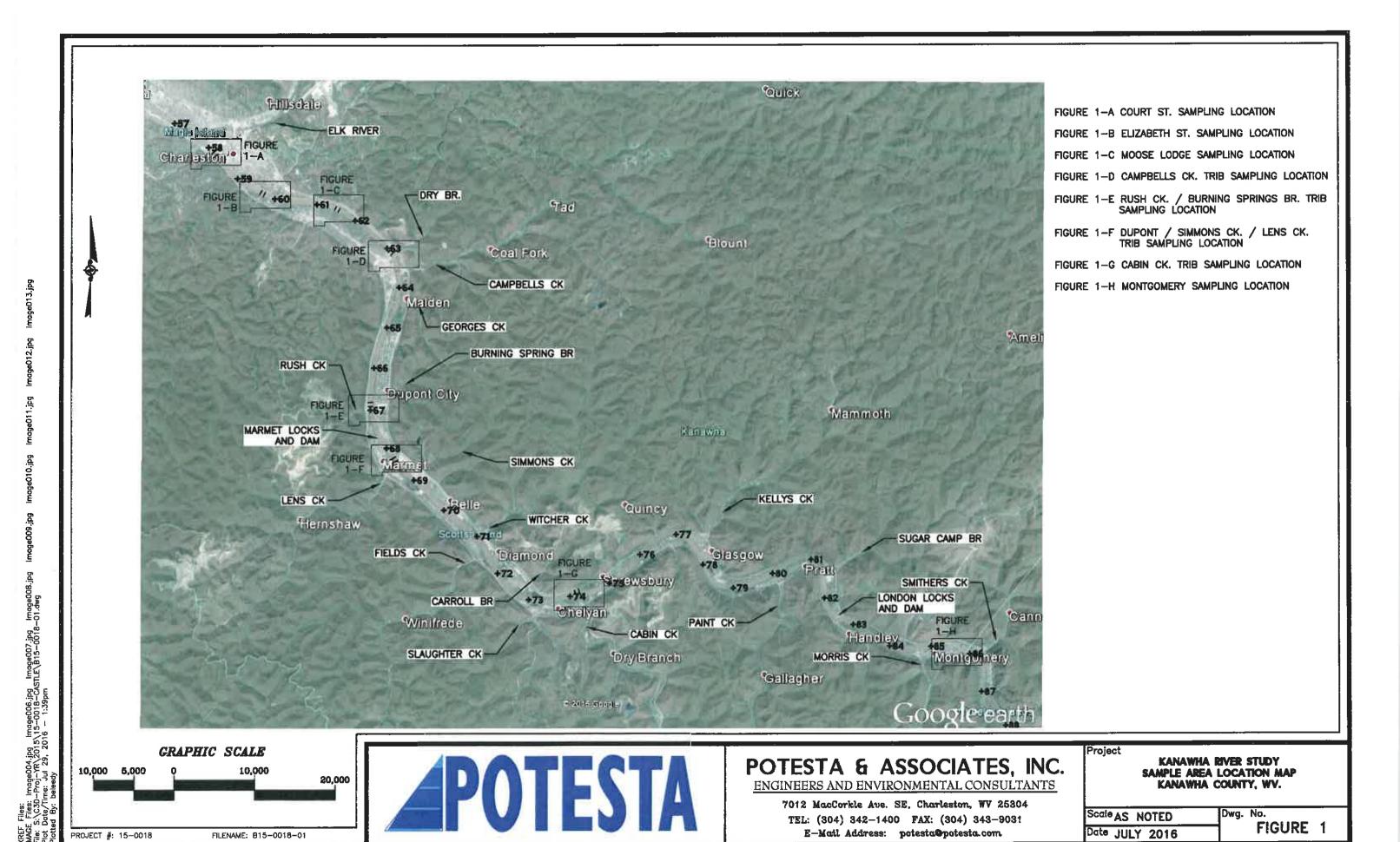
usa K. Burgers

Lisa K. Burgess

Senior Scientist

Chris A. Grose

Senior Engineering Associate


LKB:CAG/clr

6.0 REFERENCES

- AccuWeather.com. 2016. Available online at http://www.accuweather.com/. Accessed June 1, 2016.
- Conestoga-Rovers & Associates for Monsanto Company. 2015. Engineering Evaluation/Cost Analysis (EE/CA) Report. Kanawha River Nitro, West Virginia. Ref. No. 031884 (51), p. 87.
- Effluent Guidelines and Standards: Organic Chemicals, Plastics, and Synthetic Fibers, 40 C.F.R. § 414.91 (2016).
- Guidelines Establishing Test Procedures for the Analysis of Pollutants. 40 C.F.R. § 136 (2016).
- Ingersoll, C.G., MacDonald, D.D., Wang, N., Crane, J.L., Field, L.J., Haverland, P.S., Kemble, N.E., Lindskoog, R.A., Severn, C., and D.E. Smorong. 2000. Prediction of Sediment Toxicity Using Consensus-Based Freshwater Sediment Quality Guidelines: U.S. Geological Survey Final Report for the U.S. Environmental Protection Agency Great Lakes National Program Office. EPA 905/R-00/007.
- National Primary Drinking Water Regulations. 40 C.F.R. § 141 (2016).
- National Secondary Drinking Water Regulations. 40 C.F.R. § 143 (2016).
- Region 4 U.S. Environmental Protection Agency, Science and Ecosystem Support Division (SESD). 2014. Athens Georgia. Operating Procedures for Sediment Sampling, Number SESDPROC-200-R3.
- U. S. Environmental Protection Agency (USEPA). 1999. Giardia: Drinking Water Health Advisory [EPA-822-R-99-008]. Available online at https://www.epa.gov/sites/production/files/2015-10/documents/giardia-report.pdf. Accessed August 26, 2016.
- U. S. Environmental Protection Agency (USEPA). 2002. Method 5035A Closed-System Purgeand-Trap and Extraction for Volatile Organics in Soil and Waste Samples. Available online at https://www.epa.gov/sites/production/files/2015-07/documents/epa-5035a.pdf. Accessed July 28, 2016.
- U. S. Environmental Protection Agency (USEPA). 2016a. Fact Sheets about the Third Unregulated Contaminant Monitoring Rule (UCMR3). Available online at https://www.epa.gov/dwucmr/fact-sheets-about-third-unregulated-contaminant-monitoring-rule-ucmr-3. Accessed July 20, 2016.

- U. S. Environmental Protection Agency (USEPA). 2016c. The Third Unregulated Contaminant Monitoring Rule (UCMR3): Data Summary, April 2016. Available online at https://www.epa.gov/sites/production/files/2016-05/documents/ucmr3-data-summary-april-2016.pdf. Accessed July 20, 2016.
- U. S. G. S. Water Resources (USGS). 2016. Department of the Interior, U. S. Geological Survey. Available online at http://waterdata.usgs.gov/wv/nwis/uv/?site_no=03193000 &PARAmeter_cd=00065,00060,62614. Accessed on June 1, 2016.
- West Virginia Department of Environmental Protection Electronic Submission System (WVDEP-ESS). 2015. E. I. DuPont de Nemours & Co. WV0002399 Reissue NPDES Industrial #3. Available online at https://apps.dep.wv.gov/WebApp/_dep/Search/ePermitting/ePermittingApplicationSearch Page.cfm. Accessed on February 10, 2015.
- West Virginia Department of Environmental Protection (WVDEP). 2014. Watershed Assessment Branch 2014 Standard Operating Procedures. Charleston, West Virginia.
- West Virginia Requirements Governing Water Quality Standards. 47 C.S.R. § 2 (2014).

APPENDIX A

qe004.jpg |mage006.jpg |mage007.jpg |mage00B. yj-YR\2015\15-0018-CASTLE\B15-0018-01.dwg Jul 29, 2016 - 1:39pm

FIGURE 1-B

Date JULY 2016

E-Mail Address: potesta@potesta.com

nage004.jpg Image006.jpg Image007.jpg Image008.jpg Proj-YR\2015\15-0018-CASTLE\815-0018-01.dwg e: Jul 29, 2016 — 1:40em

PROJECT #: 15-0018

7012 MacCorkle Ave. SE, Charleston, WV 25304

TEL: (304) 342-1400 FAX: (304) 343-9031

E-Mail Address: potesta@potesta.com

Dwg. No.
FIGURE 1-C

Scale AS NOTED

Date JULY 2016

004.jpg lmage006.jpg lmage007.jpg lmage008.jpg -YR\2015\15-0018--CASTLE\B15--0018--01.dwg ii 29, 2016 - 1:40pm

PROJECT #: 15-0018

E-Mail Address: potesta@potesta.com

Date JULY 2016

44.jpg Image006.jpg Image007.jpg Image008.jpg R\2015\15-0018-CASTLE\B15-0018-01.dwg 29, 2016 — 1:40pm

PROJECT #: 15-0018

7012 MacCorkle Ave. SE, Charleston, WV 25304

TEL: (304) 342-1400 FAX: (304) 343-9031

E-Mail Address: potesta@potesta.com

Scale AS NOTED

Date JULY 2016

Dwg. No.

FIGURE 1-E

PROJECT #: 15-0018

TEL: (304) 342-1400 FAX: (304) 343-9031

E-Mail Address: potesta@potesta.com

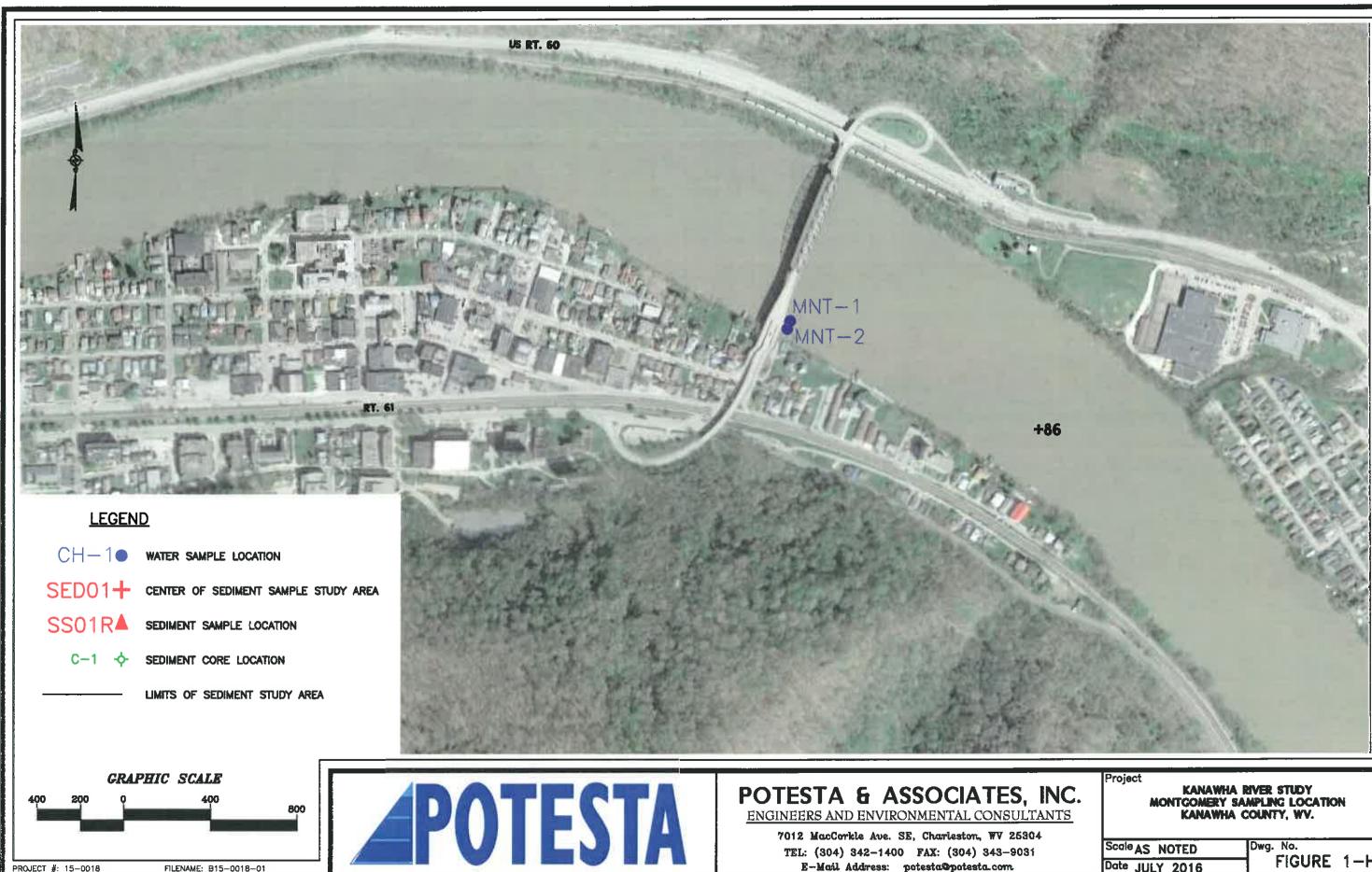
FIGURE 1-F

Date JULY 2016

jpg Image006.jpg Image007.jpg Image008.jpg 2015\15-0018-CASTLE\B15-0018-01.dwg 3, 2016 - 1:41pm

PROJECT #: 15-0018

04.jpg Image006.jpg Image007.jpg Image008.jpg R\2015\15~0018~CASTLE\B15~0018~01.dwg 29, 2016 — 1:41pm


PROJECT #: 15-0018

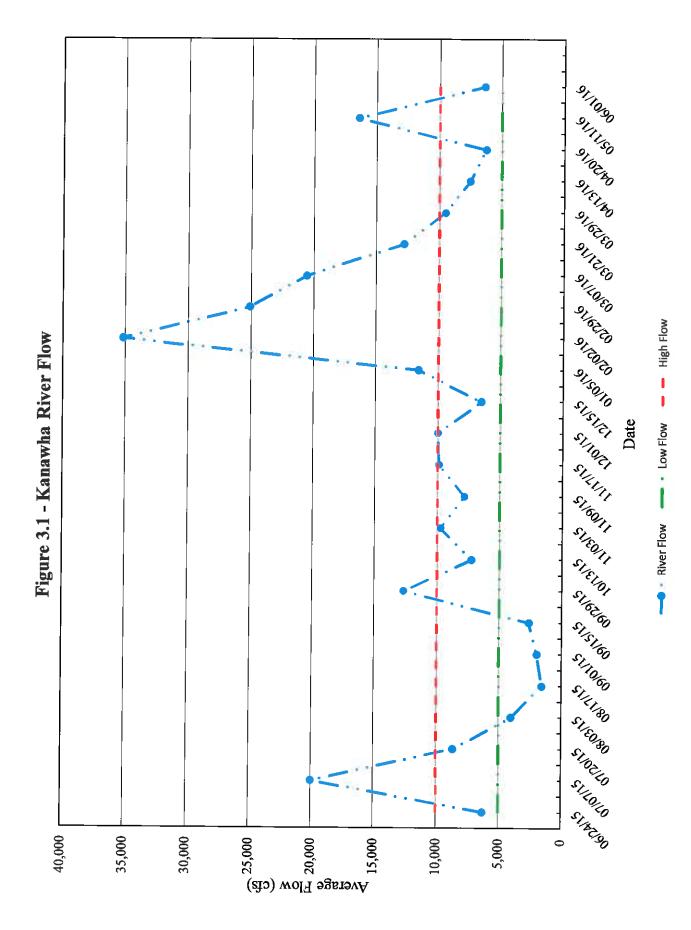
FILENAME: B15-0018-01

4POTESTA

7012 MacCorkle Ave. SE, Charleston, WV 25304 TEL: (304) 342-1400 FAX: (304) 343-9031 E-Mail Address: potesta@potesta.com

Scale AS NOTED Date JULY 2016 Dwg. No. FIGURE 1-G

004.jpg |mage006.jpg |mage007.jpg |mage008.jpg |R\2015\15-0018-CASTLE\B15-0018-01.dwg |29, 2016 - 1:49pm


PROJECT #: 15-0018

FILENAME: B15-0018-01

7012 MacCorkle Ave. SE, Charleston, WV 25304 TEL: (304) 342-1400 FAX: (304) 343-9031 E-Mail Address: patesta@patesta.com

Scale AS NOTED Date JULY 2016 Dwg. No.

FIGURE 1-H

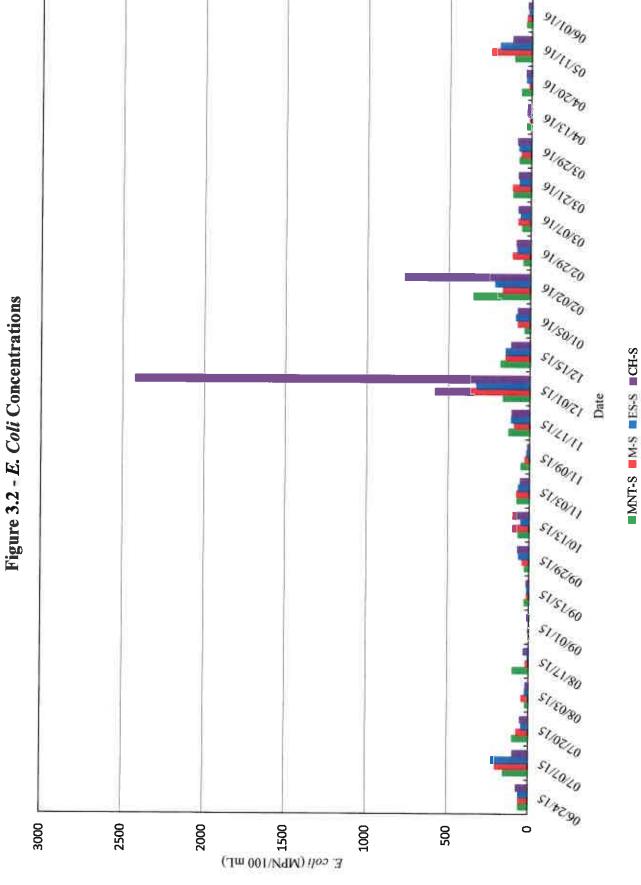


Figure 3.3 - Fecal Coliform Concentrations

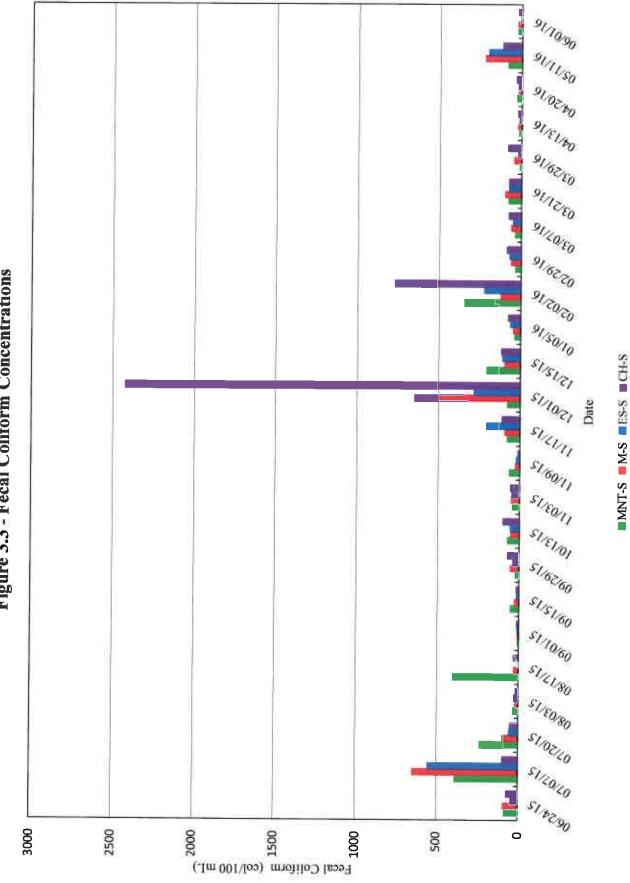


Figure 3.4 - E. Coli versus Precipitation

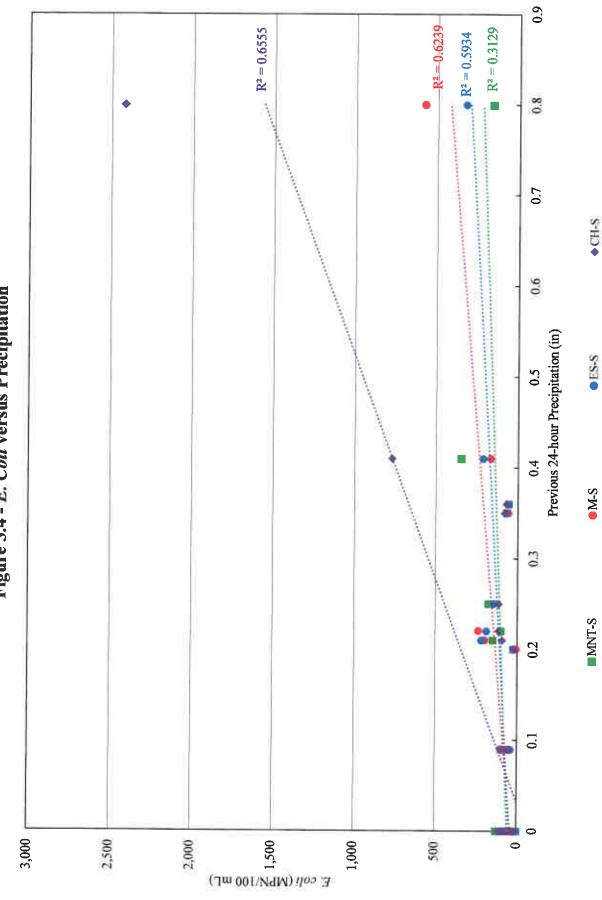
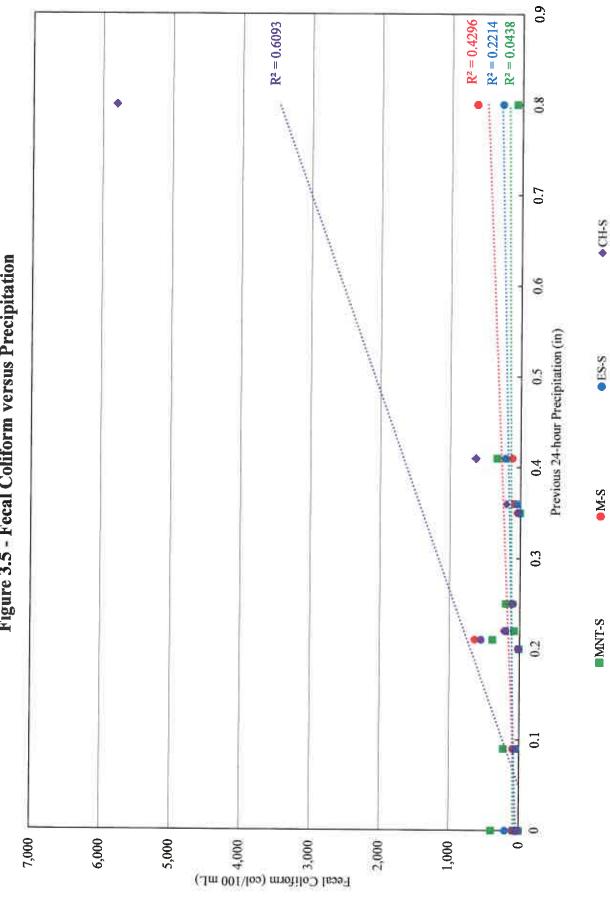



Figure 3.5 - Fecal Coliform versus Precipitation



Figure 3.7 - Total Coliform Concentrations

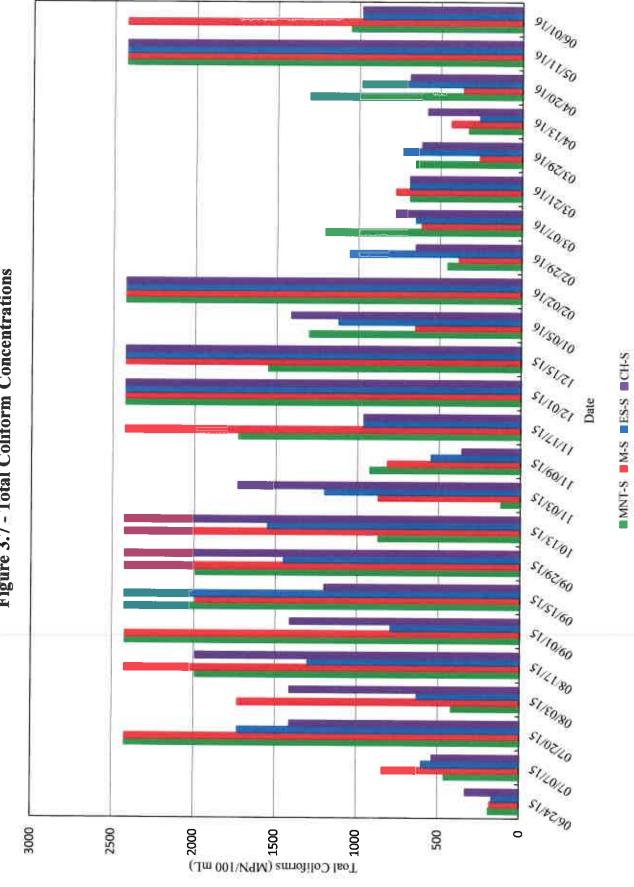


Figure 3.8 - Bacteria by HPC versus Precipitation

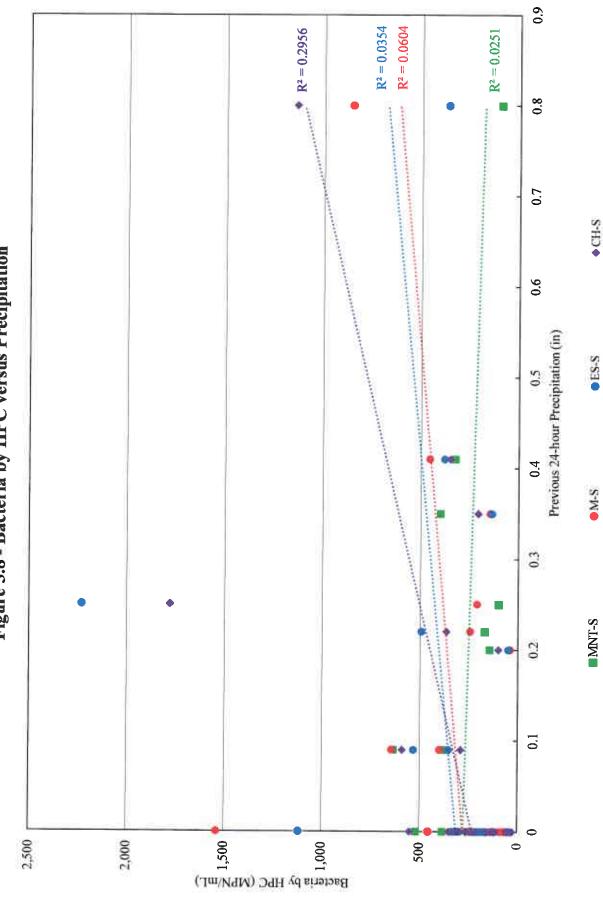


Figure 3.9 - Total Coliform versus Precipitation

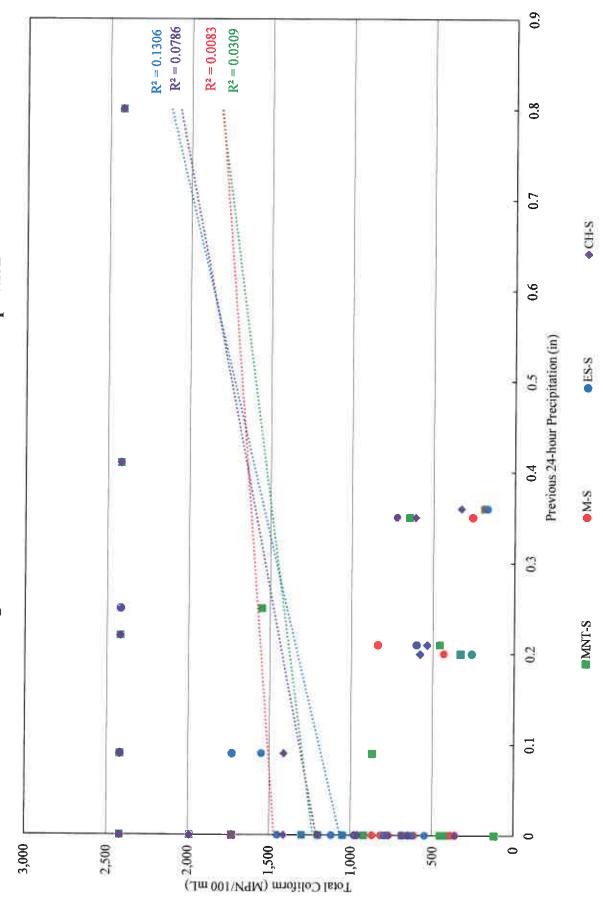


Figure 3.10 - Aluminum Concentrations

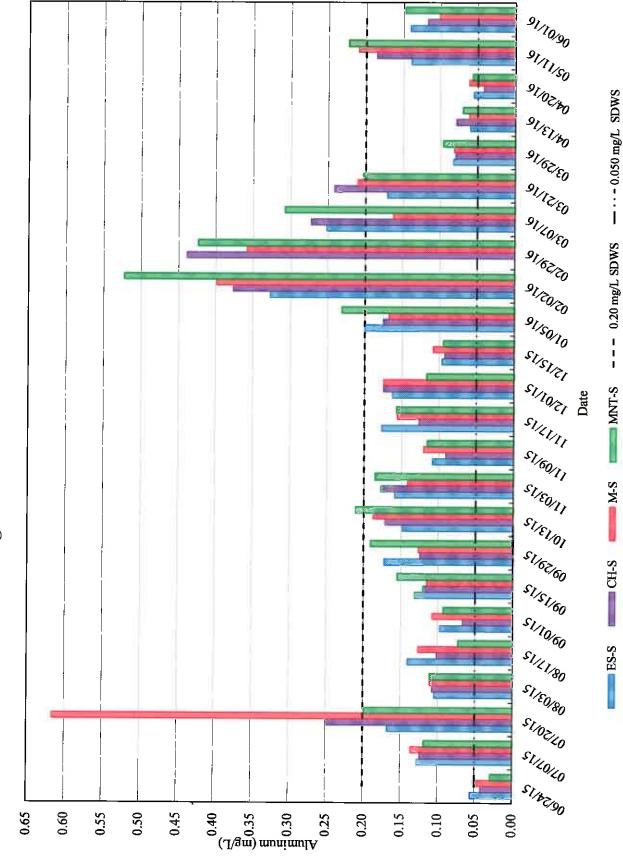


Figure 3.11- Iron Concentrations

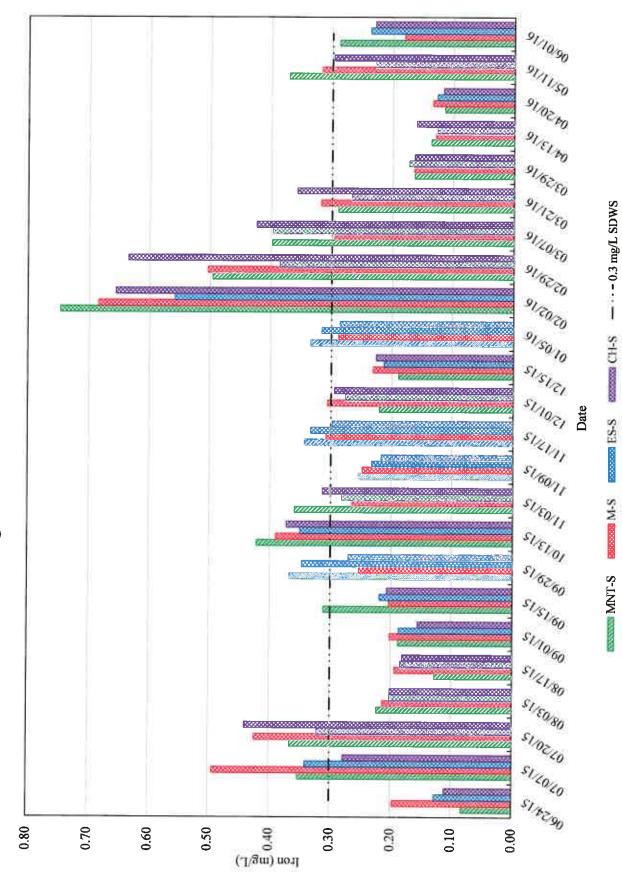
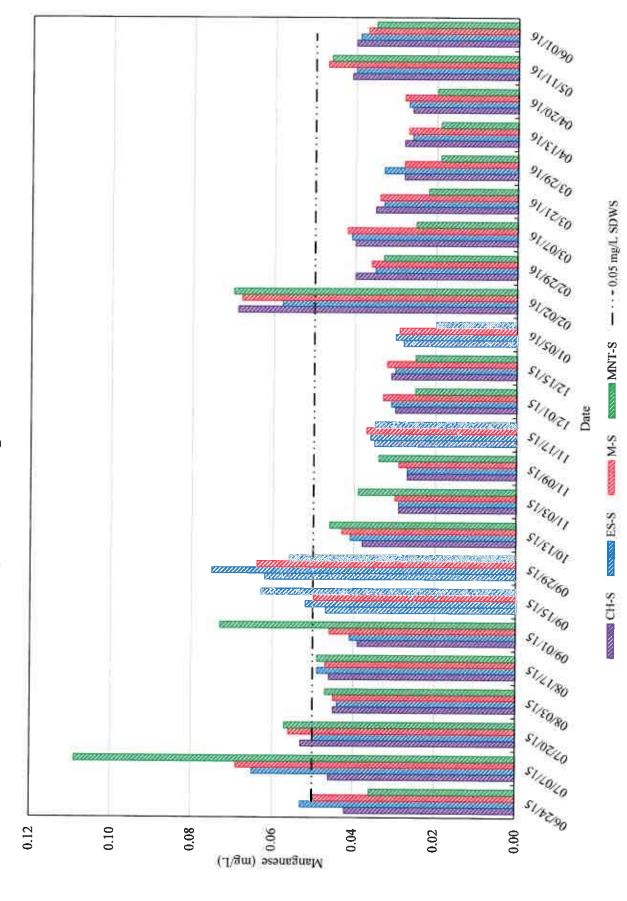



Figure 3.12- Manganese Concentrations

APPENDIX B

Field Parameters NA Conductivity Field NA Specific Conductance Field NA Dissolved Oxygen (DO) Field NA Dissolved Oxygen (DO) Field NA DH Field NA pH Field NA Temperature Field 7782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Alkalinity SM2320 NA Hardness SM2340 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Organic Carbon (TOC) SM5310 NA Total Dissolved Solids (TSS) SM2540D NA Total Dissolved Solids (TSS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16887-00-6	CAS No.	Parameter	Analytical Method
NA Conductivity Field NA Specific Conductance Field NA Dissolved Oxygen (DO) Field NA Dissolved Oxygen (DO) Field NA Dysidation-Reduction Potential (ORP) Field NA Prield NA NA Temperature Field 7782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Hardness SM2340 NA Hardness SM2540 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Organic Carbon (TOC) SM5310 NA Total Organic Carbon (TOC) SM5540 NA Total Dissolved Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions Inorganic Ions <t< th=""><th></th><th>Field Parameters</th><th>Mictilou</th></t<>		Field Parameters	Mictilou
NA Specific Conductance Field NA Dissolved Oxygen (DO) Field NA Oxidation-Reduction Potential (ORP) Field NA pH Field NA pH Field 7782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Hardness SM2340 NA Hardness SM2340 NA Hardness SM2540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 NA EPA 300.0	NA		Field
NA Dissolved Oxygen (DO) Field NA Oxidation-Reduction Potential (ORP) Field NA pH Field 782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Alkalinity SM2340 NA Hardness SM2340 NA Hardness SM2340 NA Hardness SM2340 NA Total Organic Carbon (TOC) SM5310 NA Total Dissolved Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Dissolved Solids (TDS) SM2540 Inorganic Ions Total Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Cynoide EPA 300.0 EPA 300.0 Inorganic Ions		•	
NA Oxidation-Reduction Potential (ORP) Field NA pH Field NA Temperature Field 7782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Alkalinity SM2340 NA Hardness SM2340 NA SM2340 SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Dissolved Solids (TDS) SM2540 Inorganic Ions Trotal Chiride EPA 300.0 16887-00-6 Bromide EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-55-8 Nitrite Nitrogen EPA 300.0 18785-72-3 Su		•	
NA pH Field NA Temperature Field 7782-50-5 Total Residual Chlorine (as Cl ₂) Field General Chemistry NA Alkalinity SM2320 NA Hardness SM2340 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16887-00-6 Chloride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-55-8 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 1623 NA Gradial alamblia EPA 1623 NA<			
NA Temperature Field 7782-50-5 Total Residual Chlorine (as Cl2) Field General Chemistry NA Alkalinity SM2320 NA Hardness SM2340 NA Hardness SM2540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B			
Total Residual Chlorine (as Cl ₂) Field		1	
General Chemistry NA Alkalinity SM2320 NA Hardness SM2340 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Total Coli		•	
NA Alkalinity SM2320 NA Hardness SM2340 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Total Coliform SM9223B NA	//82-30-3	·	Field
NA Hardness SM2340 NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B <	NIA I	v	GM2220
NA Surfactants (Foaming agents) SM5540 NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms Microorganisms NA Giardia lamblia EPA 1623 NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals Aluminum EPA		· · · · · · · · · · · · · · · · · · ·	
NA Total Organic Carbon (TOC) SM5310 NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B			
NA Total Suspended Solids (TSS) SM2540D NA Total Dissolved Solids (TDS) SM2540 Inorganic Ions 7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 Cyanide EPA 300.0 Cyanide EPA 300.0 Cyanide EPA 335.4 Microorganisms NA EPA 1623 NA Giardia lamblia EPA 1623 NA EPA 1623 SM9223B NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B NA Total Coliform SM9223B Netals FPA 200.8<			
NA			
Inorganic Ions FPA 300.0			
7726-95-6 Bromide EPA 300.0 16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7449-90-5 Aluminum EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 74	NA	· · · · · · · · · · · · · · · · · · ·	SM2540
16887-00-6 Chloride EPA 300.0 16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 Cyanide EPA 300.0 Cyanide EPA 335.4 57-12-5 Free Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8		<u> </u>	1
16984-48-8 Fluoride EPA 300.0 14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA Fecal Coliform SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	7726-95-6	Bromide	EPA 300.0
14797-55-8 Nitrate Nitrogen EPA 300.0 14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	16887-00-6	Chloride	EPA 300.0
14797-65-0 Nitrite Nitrogen EPA 300.0 18785-72-3 Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	16984-48-8	Fluoride	EPA 300.0
Sulfate EPA 300.0 Cyanide 57-12-5 Free Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	14797-55-8	Nitrate Nitrogen	EPA 300.0
Cyanide 57-12-5 Free Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	14797-65-0	Nitrite Nitrogen	EPA 300.0
57-12-5 Free Cyanide EPA 335.4 57-12-5 Total Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	18785-72-3	Sulfate	EPA 300.0
Total Cyanide EPA 335.4 Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8		Cyanide	
Microorganisms NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	57-12-5	Free Cyanide	EPA 335.4
NA Cryptosporidium EPA 1623 NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	57-12-5	Total Cyanide	EPA 335.4
NA Giardia lamblia EPA 1623 NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8		Microorganisms	
NA E. coli SM9223B NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA	Cryptosporidium	EPA 1623
NA Fecal Coliform SM9223B NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA		EPA 1623
NA Heterotrophic Plate Count (Bacteria) SM9215 NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA	E. coli	SM9223B
NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA	Fecal Coliform	SM9223B
NA Total Coliform SM9223B Metals 7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA	Heterotrophic Plate Count (Bacteria)	SM9215
7429-90-5 Aluminum EPA 200.7 7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	NA		SM9223B
7440-36-0 Antimony EPA 200.8 7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8		Metals	
7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	7429-90-5	Aluminum	EPA 200.7
7440-38-2 Arsenic EPA 200.8 7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	7440-36-0	Antimony	EPA 200.8
7440-39-3 Barium EPA 200.8 7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8	7440-38-2	•	EPA 200.8
7440-41-7 Beryllium EPA 200.8 7440-43-9 Cadmium EPA 200.8			
7440-43-9 Cadmium EPA 200.8			
		·	
	18540-29-9	Chromium (Hexavalent, dissolved)	EPA 218.7

CAS No.	Parameter	Analytical
		Method
7440-47-3	Chromium (Total)	EPA 200.8
7440-50-8	Copper	EPA 200.8
7439-89-6	Iron	EPA 200.7
7439-92-1	Lead	EPA 200.8
7439-96-5	Manganese	EPA 200.7
7439-97-6	Mercury (Inorganic)	EPA 245.7
7440-02-0	Nickel	EPA 200.8
7782-49-2	Selenium	EPA 200.8
7440-22-4	Silver	EPA 200.8
7440-28-0	Thallium	EPA 200.8
7440-66-6	Zinc (Total)	EPA 200.8
	Semi-Volatile Organic Compunds	
121-14-2	2,4-Dinitrotoluene	EPA 625
91-58-7	2-Chloronaphthalene	EPA 625
524.52.1	2-Methyl-4,6-Dinitrophenol	EDA (25
534-52-1	(4,6-Dinitro-o-cresol)	EPA 625
117.01.7	Di(2-ehtylhexyl) phthalate	ED 4 (27
117-81-7	(Bis(2-ethylhexyl)phthalate)	EPA 625
118-74-1	Hexachlorobenzene	EPA 625
	Phenolic Compounds	
88-06-2	2,4,6-Trichorophenol	EPA 604
120-83-2	2,4-Dichlorophenol	EPA 604
105-67-9	2,4-Dimethylphenol	EPA 604
51-28-5	2,4-Dinitrophenol	EPA 604
95-57-8	2-Chlorophenol	EPA 604
87-86-5	Pentachlorophenol	EPA 604
108-95-2	Phenol	EPA 604
	Polycyclic Aromatic Hydrocarbons	
83-32-9	Acenaphthene	EPA 610
120-12-7	Anthracene	EPA 610
56-55-3	Benzo(a)anthracene	EPA 610
50-32-8	Benzo(a)pyrene	EPA 610
	Benzo(b)fluoranthene	
205-99-2	(3,4-Benzofluoranthene)	EPA 610
207-08-9	Benzo(k)fluoranthene	EPA 610
218-01-9	Chrysene	EPA 610
53-70-3	Dibenzo(a,h)anthracene	EPA 610
206-44-0	Fluoranthene	EPA 610
86-73-7	Fluorene	EPA 610
193-39-5	Indeno(1,2,3-cd)pyrene	EPA 610

CAS No.	Parameter	Analytical Method
129-00-0	Pyrene	EPA 610
	Volatile Organic Compounds	
71-55-6	1,1,1-Trichloroethane	EPA 624
79-34-5	1,1,2,2-Tetrachloroethane	EPA 624
79-00-5	1,1,2-Trichloroethane	EPA 624
75-35-4	1,1-Dichloroethylene	EPA 624
120-82-1	1,2,4-Trichlorobenzene	EPA 624
95-50-1	1,2-Dichlorobenzene (o-Dichlorobenzene)	EPA 624
107-06-2	1,2-Dichloroethane	EPA 624
78-87-5	1,2-Dichloropropane	EPA 624
541-73-1	1,3-Dichlorobenzene	EPA 624
106-46-7	1,4-Dichlorobenzene (p-Dichlorobenzene)	EPA 624
107-13-1	Acrylonitrile	EPA 603
71-43-2	Benzene	EPA 624
75-27-4	Bromodichloromethane (Dichlorobromomethane)	EPA 624
75-25-2	Bromoform	EPA 624
56-23-5	Carbon tetrachloride	EPA 624
108-90-7	Chlorobenzene	EPA 624
67-66-3	Chloroform	EPA 624
124-48-1	Dibromochloromethane	EPA 624
100-41-4	Ethylbenzene	EPA 624
75-09-2	Methylene Chloride (Dichloromethane)	EPA 624
127-18-4	Tetrachloroethylene	EPA 624
108-88-3	Toluene	EPA 624
79-01-6	Trichloroethylene	EPA 624
75-01-4	Vinyl Chloride (Chloroethene)	EPA 624
1330-20-7	Xylenes (m,ρ,o)	EPA 624
34885-03-5	4-Methylcyclohexanemethanol (MCHM)	SW8015
	Pesticides	
309-00-2	Aldrin	EPA 608
319-84-6	alpha-BHC (alpha-Hexachlorocyclohexane)	EPA 608
319-85-7	beta-BHC	EPA 608
57-74-9	Chlordane	EPA 608
50-29-3	DDT	EPA 608

CAS No.	Parameter	Analytical
60.57.1	Dieldrin	Method
60-57-1 72-20-8	Endrin	EPA 608
		EPA 608
76-44-8	Heptachlor	EPA 608
1024-57-3	Heptachlor epoxide	EPA 608
58-89-9	Lindane	EPA 608
72.42.5	(gamma-BHC)	EDA (00
72-43-5	Methoxychlor	EPA 608
8001-35-2	Toxaphene	EPA 608
1336-36-3	Polychlorinated biphenyls (PCBs)	EPA 608
1746-01-6	Dioxin (2,3,7,8-TCDD)	EPA 1613B
	Radiochemistry	
NA	Gross Total Alpha Particle Activity	EPA 900
NA	Gross Beta Activity	EPA 900
NA	Dissolved Alpha Emitters	EPA 900
NA	Radium 226	EPA 903
	Radium 228	EPA 903
NA	Strontium-90 (Dissolved)	EPA 905
NA	Tritium	EPA 906
7440-61-1	Uranium	ASTM D5174
1332-21-4	Asbestos (fiber > 10 micrometers)	EPA 600/R-94/134
	UCMR3 Organics	
75-87-3	1,1-Dichloroethane	EPA 524.3
96-18-4	1,2,3-Trichloropropane	EPA 524.3
106-99-0	1,3-Butadiene	EPA 524.3
74-97-5	Bromochloromethane (Halon 1011)	EPA 524.3
74-83-9	Bromomethane (Methyl bromide)	EPA 524.3
75-45-6	Chlorodifluoromethane (HCFC-22)	EPA 524.3
74-87-3	Chloromethane (Methyl Chloride)	EPA 524.3
123-91-1	1,4-Dioxane	EPA 522
	UCMR3 Metals	
18540-29-9	Chromium (Hexavalent, dissolved)	EPA 218.7
7440-47-3	Chromium (Total)	EPA 200.8
7440-48-4	Cobalt	EPA 200.8
7439-98-7	Molybdenum	EPA 200.8
7440-24-6	Strontium	EPA 200.8
7440-62-2	Vanadium	EPA 200.8
146866-68-3	Chlorate	EPA 300.1
	UCMR3 Perfluorinated Compounds	{
375-73-5	Perfluorobutanesulfonic acid (PFBS)	EPA 537 Rev 1.1
375-85-9	Perfluoroheptanoic acid (PFHpA)	EPA 537 Rev 1.1

CAS No.	Parameter	Analytical Method
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	EPA 537 Rev 1.1
375-95-1	Perfluorononanoic acid (PFNA)	EPA 537 Rev 1.1
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	EPA 537 Rev 1.1
335-67-1	Perfluorooctanoic acid (PFOA)	EPA 537 Rev 1.1
	UCMR 3 Hormones	•
50-27-1	16-α-Hydroxyestradiol (Estriol)	EPA 539
57-63-6	17-α-Ethynylestradiol	EPA 539
50-28-2	17-β-Estradiol	EPA 539
63-05-8	4-Androstene-3,16-dione	EPA 539
474-86-2	Equilin	EPA 539
53-16-7	Estrone	EPA 539
58-22-0	Testosterone	EPA 539

Parameters Not Analyzed

September 15, 2016

CAS No. Parameter 96-12-8 Dibromochloropropane (DBCP) 94-75-7 2,4-D2 93-72-1 2,4,5-TP (Silvex) 15972-60-8 Alachlor 1912-24-9 Atrazine 15541-45-4 Bromate 1563-66-2 Carbofuran 10599-90-3 Chloramine (as Cl2) 10049-04-4 Chlorine dioxide (as ClO2) 7758-19-2 Chlorite cis-1,2-Dichloroethylene 156-59-2 75-99-0 Dalapon 103-23-1 Di(2-ethylhexyl) adipate 88-85-7 Dinoseb 85-00-7 Diquat Endothall 145-73-3 106-93-4 Ethylene dibromide 1071-83-6 Glyphosate 77-47-4 Hexachlorocyclopentadiene Oxamyl (Vydate) 23135-22-0 1918-02-1 Picloram 122-34-9 Simazine 100-42-5 Styrene 156-60-5 trans-1,2-Dichloroethylene 79-06-1 Acrylamide 106-89-8 Epichlorohydrin NA Legionella 76-03-9 Trichloroacetic acid 79-11-8 Chloroacetic acid 631-64-1 Dibromoacetic acid 79-43-6 Dichloroacetic acid 79-08-3 Bromoacetic acid

APPENDIX C

Abbreviations and Acronyms

°C Degree(s) Celsius cfs Cubic feet per second

col/100 mL Number of colonies per 100 milliliters

EDL Estimated detection limit

MCL Maximum contaminant level

MDC Minimum detectable concentration

MDL Method detection level
MFL Million fibers per liter
mg/L Milligrams per liter
MPN Most probable number

MPN/mL Most probable number per milliliter
MPN/100 ml Most probable number per 100 milliliters

MRL Minimum reporting level

mV Millivolts

ng/L Nanograms per liter
(Oo) cysts/L Oocysts per liter
pg/L Picograms per liter

PQL Practical quantitation limit RPD Relative percent difference

S.U. Standard units
TT Treatment technique
WQS Water quality standard
µg/L Micrograms per liter

μS/cm Microsiemans per centimeter

Data Qualifiers

No data; sample was either not collected or was not analyzed В Analyte detected in method blank E Result exceeded instrument calibration G Result reported as greater than ">" value listed Η Sampling exceeded analytical method holding time I Interference present Ţ Estimated value between the PQL and the MDL S Surrogate recovery was outside of control limits T(-) Sample received below method-specified temperature T(+)Sample received above method-specified temperature U Analyte not detected at the MDL or MRL

Sample Identification Key

Sample ID	Location and Sample Type
MNT-1-B	Montgomery location, 20 feet from LDB, 1 foot above river bottom, grab sample.
MNT-1-T	Montgomery location, 20 feet from LDB, 10 feet above river bottom, grab sample.
MNT-2-B	Montgomery location, 60 feet from LDB, 1 foot above river bottom, grab sample.
MNT-2-T	Montgomery location, 60 feet from LDB, 10 feet above river bottom, grab sample.
MNT-C	Montgomery location, composite sample of four sample points
MNT-S	Montgomery location, sterile sample
M-1-B	Moose location, 20 feet from RDB, 1 foot above river bottom, grab sample.
M-1-T	Moose location, 20 feet from RDB, 10 feet above river bottom, grab sample.
M-2-B	Moose location, 60 feet from RDB, 1 foot above river bottom, grab sample.
M-2-T	Moose location, 60 feet from RDB, 10 feet above river bottom, grab sample.
М-С	Moose location, composite sample of four sample points
M-S	Moose location, sterile sample
ES-1-B	Elizabeth Street location, 20 feet from RDB, 1 foot above river bottom, grab sample.
ES-1-T	Elizabeth Street location, 20 feet from RDB, 10 feet above river bottom, grab sample.
ES-2-B	Elizabeth Street location, 60 feet from RDB, 1 foot above river bottom, grab sample.
ES-2-T	Elizabeth Street location, 60 feet from RDB, 10 feet above river bottom, grab sample.
ES-C	Elizabeth Street location, composite sample of four sample points
ES-S	Elizabeth Street location, sterile sample
CH-1-B	Court Street location, 20 feet from RDB, 1 foot above river bottom, grab sample.
CH-1-T	Court Street location, 20 feet from RDB, 10 feet above river bottom, grab sample.
	Court Street location, 60 feet from RDB, 1 foot above river bottom, grab sample.
	Court Street location, 60 feet from RDB, 10 feet above river bottom, grab sample.
СН-С	Courthouse location, composite sample of four sample points
CH-S	Courthouse location, sterile sample

	Riv	ver Flow		Precipitation		
Date	Start (cfs)	Finish (cfs)	Average (cfs)	Previous 24 hours (in)	Previous 72 hours (in)	Туре
06/24/2015	6,660	5,950	6,305	0.36	0.36	Rain
07/07/2015	19,000	21,000	20,000	0.21	0.61	Rain
07/20/2015	8,950	8,430	8,690	0.09	1.82	Rain
08/03/2015	4,140	3,870	4,005	0	0	
08/17/2015	1,690	1,460	1,575	0	0	
09/01/2015	1,990	1,960	1,975	0	0	
09/15/2015	2,840	2,400	2,620	0	0.16	Rain
09/29/2015	12,500	12,800	12,650	0	0.87	Rain
10/13/2015	7,400	7,160	7,280	0.09	0.09	Rain
11/03/2015	9,750	9,790	9,770	0	0.1	Rain
11/09/2015	7,840	7,910	7,875	0	0.11	Rain
11/17/2015	9,980	9,860	9,920	0	0	
12/01/2015	10,900	9,140	10,020	0.8	0.56	Rain
12/15/2015	6,660	6,430	6,545	0.25	0.25	Rain
01/05/2016	10,400	12,800	11,600	0_	0	Rain
02/02/2016	33,700	36,600	35,150	0.41	0.41	Rain ¹
02/29/2016	25,600	24,600	25,100	0	0	
03/07/2016	20,600	20,500	20,550	0	0.41	Rain
03/21/2016	13,000	12,600	12,800	0	0.09	Rain
03/29/2016	13,000	9,750	11,375	0.35	0.35	Rain
04/13/2016	7,550	7,520	7,535	0.2	0.35	Rain
04/20/2016	6,230	6,320	6,275	0	0	
05/11/2016	14,600	18,200	16,400	0.22	0.28	Rain
06/01/2016	6,430	6,350	6,390	0	0	
No. < 5,000 cfs			4			
lo. > 10,000 cfs			10			

¹High water was primarily due to 18.6 " of snow melt from storm of 1/22/16 and 1/23/16.

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	μS/cm	151.8	210.5	207.8	206.6
07/07/2015	μS/cm	133.8	130.7	131.5	132
07/20/2015	μS/cm	140.9	152.1	151.4	160.2
08/03/2015	μS/cm	189.5	230.8	227.1	225.6
08/17/2015	μS/cm	218.4	242.6	258.9	259.2
09/01/2015	μS/cm	239.1	264.7	260	264.1
09/15/2015	μS/cm	174.7	270.3	275.8	281.9
09/29/2015	μS/cm	135.8	165.8	163.2	160.5
10/13/2015	μS/cm	137.8	149	147.1	148.1
11/03/2015	μS/cm	148	158	152	152
11/09/2015	μS/cm	99.1	108.9	109	108.3
11/17/2015	μS/cm	136	136.7	168	171
12/01/2015	μS/cm	109.9	115.7	112.6	113.6
12/15/2015	μS/cm	106.4	115.4	113.1	112.4
01/05/2016	μS/cm	86.8	92.1	91.9	92
02/02/2016	μS/cm	101.4	108	111	111
02/29/2016	μS/cm	147	152	148	156
03/07/2016	μS/cm	93.2	101	100.5	101
03/21/2016	μS/cm	100.6	108.5	108.3	109.5
03/29/2016	μS/cm	127.1	136.5	135.2	134.4
04/13/2016	μS/cm	127.5	143.7	142.9	143.7
04/20/2016	μS/cm	136.1	151.1	152.3	152.4
05/11/2016	μS/cm	105.1	115.6	112.9	112.6
06/01/2016	μS/cm	138.2	153.1	153.6	153.8

Date	Units	MNT-C	M-C	ES-C	СН-С
	Units	Result	Result	Result	Result
06/24/2015	μS/cm	154.4	206.1	202.6	199.1
07/07/2015	μS/cm	142.7	143.5	143.5	143.4
07/20/2015	μS/cm	142.2	156.2	155.3	153.7
08/03/2015	μS/cm	186	225.7	220.3	217.5
08/17/2015	μS/cm	212.4	238.2	247.2	247.1
09/01/2015	μS/cm	237.3	256	252	252.2
09/15/2015	μS/cm	188.8	274.9	278.5	280.8
09/29/2015	μS/cm	145.3	175	172.2	169.3
10/13/2015	μS/cm	155.2	168.2	166.2	166.4
11/03/2015	μS/cm	161	172	168	167
11/09/2015	μS/cm	122.6	134.9	135	134.4
11/17/2015	μS/cm	185.5	184.5	185.0	186
12/01/2015	μS/cm	154	163.9	159.6	160.6
12/15/2015	μS/cm	147.9	163.1	159.5	157.6
01/05/2016	μS/cm	136.8	140.7	139.8	139.8
02/02/2016	μS/cm	148.2	138	149	148
02/29/2016	μS/cm	111	121	118	123
03/07/2016	μS/cm	147.1	158	157.3	157.3
03/21/2016	μS/cm	140.8	149.3	148.4	149.5
03/29/2016	μS/cm	163	179.9	177.8	175.2
04/13/2016	μS/cm	169	193.8	192.2	192.4
04/20/2016	μS/cm	159.2	180.4	180.9	179.8
05/11/2016	μS/cm	126.3	140.4	136.6	136.3
06/01/2016	μS/cm	144	161.8	162.7	163.1

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	7.1	7.1	6.37	6.93
07/07/2015	mg/L	7.9	7.8	8.2	7.51
07/20/2015	mg/L	6.32	7.11	6.81	6.64
08/03/2015	mg/L	6.43	5.7	6.27	6.94
08/17/2015	mg/L	6.3	7.68	7.24	7.35
09/01/2015	mg/L	6.4	7.28	7.6	7.29
09/15/2015	mg/L	6.84	6.01	6.16	6.77
09/29/2015	mg/L	7.03	7.29	6.81	7.68
10/13/2015	mg/L	7.31	7.17	7.26	7.78
11/03/2015	mg/L	7.7	7.7	7.74	7.7
11/09/2015	mg/L	8.81	7.25	9	8.6
11/17/2015	mg/L	8.25	7.48	7.52	7.49
12/01/2015	mg/L	7.76	7.92	9.95	9.18
12/15/2015	mg/L	7.28	7.41	7.81	8.1
01/05/2016	mg/L	14.5	13.83	13.8	13.8
02/02/2016	mg/L	12.8	13.3	12.9	12.7
02/29/2016	mg/L	10.6	10.4	10.4	10.6
03/07/2016	mg/L	12.87	12.56	12.29	12.84
03/21/2016	mg/L	10.6	10.9	10.06	10.85
03/29/2016	mg/L	8.67	8.37	8.51	7.94
04/13/2016	mg/L	7.55	8.71	8.06	7.68
04/20/2016	mg/L	8.13	7.26	6.86	8.25
05/11/2016	mg/L	7.02	6.93	6.19	6.32
06/01/2016	mg/L	6.82	6.89	6.62	6.48
Number < 5r	ng/L	0	0	0	0

WV Category A WQS = > 5 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Date Units	Result	Result	Result	Result
06/24/2015	mV	-129.8	-276.8	-347.5	-210.3
07/07/2015	mV	-380	-364.3	-389.2	-333.9
07/20/2015	mV	-404.6	-396	-398	-421
08/03/2015	mV	-307.8	-365.7	-391.7	-314.9
08/17/2015	mV	-304.2	-314	-325.4	-282.1
09/01/2015	mV	-269.1	-457	-255.8	-284
09/15/2015	mV	-171.8	-242.5	-234.6	-281.7
09/29/2015	mV	-227.9	-189.7	-261.8	-228
10/13/2015	mV	-330.7	-215.8	-289.3	-220.7
11/03/2015	mV	-266	-204	-244	-246
11/09/2015	mV	-126.6	-201	-229	-209.4
11/17/2015	mV	-201.6	-190.4	-198.0	-201
12/01/2015	mV	-167.9	-132.1	-162.3	-82.5
12/15/2015	mV	-215.4	-232.8	-111.0	-218.3
01/05/2016	mV	-202	-192.5	-157.4	-165.9
02/02/2016	mV	-236	-231	-238	-244
02/29/2016	mV	-148	-128	-131	-116
03/07/2016	mV	-104.4	-122	-67.7	-194.4
03/21/2016	mV	-105	-77.4	-152	-32.6
03/29/2016	mV	-78.6	-72.5	-91.6	-104.6
04/13/2016	mV	-69	-135.3	-82	-142
04/20/2016	mV	-149	-137.7	-110	-141.6
05/11/2016	mV	-145.1	-231.4	-255.1	-238
06/01/2016	mV	-168	-192.2	-192.7	-207.2

Doto	TT:4-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	S.U.	7.15	7.35	7.23	7.73
07/07/2015	S.U.	7.84	7.72	7.68	7.69
07/20/2015	S.U.	8.07	7.73	7.71	7.69
08/03/2015	S.U.	8.30	7.91	7.99	8.00
08/17/2015	S.U.	8.26	8.38	8.45	8.34
09/01/2015	S.U.	8.33	8.41	8.67	8.53
09/15/2015	S.U.	8.38	8.01	8.05	8.25
09/29/2015	S.U.	7.98	7.83	7.84	7.83
10/13/2015	S.U.	7.84	7.68	7.73	7.76
11/03/2015	S.U.	7.8	7.5	7.6	7.62
11/09/2015	S.U.	7.61	7.64	7.7	7.67
11/17/2015	S.U.	8.02	8.31	8.0	8.1
12/01/2015	S.U.	7.0	7.12	7.23	7.28
12/15/2015	S.U.	7.57	7.35	7.49	7.62
01/05/2016	S.U.	7.26	7.43	7.56	7.63
02/02/2016	S.U.	7.12	7.3	7.21	7.28
02/29/2016	S.U.	7.28	7.31	7.28	7.3
03/07/2016	S.U.	7.21	6.76	6.9	6.98
03/21/2016	S.U.	8.3	7.99	7.95	7.97
03/29/2016	S.U.	7.65	7.47	7.59	7.68
04/13/2016	S.U.	7.93	7.68	7.83	7.87
04/20/2016	S.U.	8.26	7.82	7.72	7.91
05/11/2016	S.U.	7.65	7.13	7.28	7.41
06/01/2016	S.U.	8.3	7.78	7.62	7.7
Number < 6	or > 9	0	0	0	0

WV Category A WQS = 6 - 9 S.U.

D-4:	T7*4	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	°C	24.2	26.2	26.4	26.7
07/07/2015	°C	30.0	21.7	25.2	26.6
07/20/2015	°C	24.5	23.7	23.7	23.8
08/03/2015	°C	26.1	26,2	26.6	26.9
08/17/2015	°C	26.5	27.3	27.5	27.5
09/01/2015	°C	25.4	26.9	26.6	27.7
09/15/2015	°C	21.0	24.1	26.7	25.2
09/29/2015	°C	21.6	22.3	22.3	22.4
10/13/2015	°C	18.7	19.1	19.2	19.2
11/03/2015	°C	14.1	14.7	14.1	14.3
11/09/2015	°C	14.9	14.9	14.9	14.9
11/17/2015	°C	11.0	11.4	11.5	11.6
12/01/2015	°C	10.0	9.6	9.6	9.7
12/15/2015	°C	10.4	9.7	9.8	9.8
01/05/2016	°C	6.2	7.0	7.0	7.1
02/02/2016	°C	4.1	4.4	4.4	4.4
02/29/2016	°C	6.6	6.2	6.2	5.8
03/07/2016	°C	5.8	12.9	6.1	6.2
03/21/2016	°C	10.0	10.7	10.9	11.0
03/29/2016	°C	13.5	12.4	12.7	12.8
04/13/2016	°C	12.1	11.5	11.7	11.7
04/20/2016	°C	17.4	16.4	16.7	17.2
05/11/2016	°C	16.2	15.7	15.8	15.9
06/01/2016	°C	25.1	22.1	22.0	22.0

Date	Units	MNT	'-C	M-	C	ES-C	C	CH-	C
Date	Onus	Resu	ılt	Res	ult	Resu	lt	Resu	lt
06/24/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
07/07/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
07/20/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
08/03/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
08/17/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
09/01/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
09/15/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
09/29/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
10/13/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
11/03/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
11/09/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
11/17/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
12/01/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
12/15/2015	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
01/05/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
02/02/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
02/29/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
03/07/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
03/21/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
03/29/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
04/13/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
04/20/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
05/11/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
06/01/2016	mg/L	0.02	(U)	0.02	(U)	0.02	(U)	0.02	(U)
Number > 4	mg/L	0		0		0		0	

Primary MCL or TT =

D-4-	TT24-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	44.6	47.1	47.2	48.6
07/07/2015	mg/L	40.5	32.4	30.7	30.3
07/20/2015	mg/L	40.6	38.7	38.3	36.2
08/03/2015	mg/L	48.0	50.1	50.5	50.9
08/17/2015	mg/L	62.8	63.2	62.5	63.3
09/01/2015	mg/L	67.6	61.3	61.6	61.7
09/15/2015	mg/L	44.7	66.8	65.2	64.3
09/29/2015	mg/L	55.8	58.7	58.7	56.7
10/13/2015	mg/L	43.1	41.9	41.6	41.5
11/03/2015	mg/L	46.3	48.2	48.3	47.1
11/09/2015	mg/L	41.4	46.0	45.6	43.5
11/17/2015	mg/L	39.5	39.6	38.4	38.4
12/01/2015	mg/L	44.0	43.6	43.2	42.4
12/15/2015	mg/L	44.4	46.3	45.0	45.3
01/05/2016	mg/L	42.8	39.4	39.6	40.0
02/02/2016	mg/L	30.2	30.0	30.5	30.3
02/29/2016	mg/L	36.5	34.1	34.1	34.5
03/07/2016	mg/L	39.6	35.9	35.9	35.8
03/21/2016	mg/L	40.0	37.6	38.5	36.6
03/29/2016	mg/L	48.0	47.0	46.9	46.5
04/13/2016	mg/L	50.9	53.7	53.5	52.9
04/20/2016	mg/L	49.5	49.7	49.4	49.0
05/11/2016	mg/L	33.5	34.5	33.8	33.1
06/01/2016	mg/L	42.7	41.3	40.7	40.5

Dete	TT- 22-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	65.5	82.8	81.0	74.2
07/07/2015	mg/L	55.7	57.4	54.8	54.7
07/20/2015	mg/L	59.1	58.9	56.8	58.4
08/03/2015	mg/L	68.9	83.9	81.5	79.4
08/17/2015	mg/L	90.5	97.7	96.0	96.8
09/01/2015	mg/L	96.0	90.9	89.6	91.2
09/15/2015	mg/L	72.9	102	102	102
09/29/2015	mg/L	88.7	92.9	98.5	92.8
10/13/2015	mg/L	62.4	64.4	64.2	64.7
11/03/2015	mg/L	60.6	65.6	63.5	66.8
11/09/2015	mg/L	59.5	66.2	62.1	65.1
11/17/2015	mg/L	59.3	62.6	57.5	54.9
12/01/2015	mg/L	66.0	64.4	60.1	59.3
12/15/2015	mg/L	63.5	73.0	72.2	73.7
01/05/2016	mg/L	62.2	59.0	61.0	59.4
02/02/2016	mg/L	53.9	56.9	55.1	56.5
02/29/2016	mg/L	54.3	52.8	51.9	53.1
03/07/2016	mg/L	53.7	60.2	61.1	58.8
03/21/2016	mg/L	62.4	60.6	59.7	60.6
03/29/2016	mg/L	66.5	69.0	69.4	68.6
04/13/2016	mg/L	73.2	77.4	77.8	78.3
04/20/2016	mg/L	68.2	76.1	76.1	75.5
05/11/2016	mg/L	53.9	55.9	54.4	54.2
06/01/2016	mg/L	55.4	60.6	62.4	63.8

Date	Units	MNI	r-C	M-(C	ES-	C	СН-С	C
Date	Units	Resi	ult	Resu	lt	Res	ult	Resu	lt
06/24/2015	mg/L	0.110		0.0588		0.0422		0.0288	
07/07/2015	mg/L	0.0270	(J)	0.0270	(J)	0.0298		0.0278	(J)
07/20/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
08/03/2015	mg/L	0.100	(U,H)	0.0250	(U)	0.100	(U,H)	0.0250	(U)
08/17/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
09/01/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
09/15/2015	mg/L	0.0250	(U)	0.0270	(J)	0.0250	(U)	0.0260	(J)
09/29/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
10/13/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
11/03/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
11/09/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
11/17/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
12/01/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
12/15/2015	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
01/05/2016	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
02/02/2016	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
02/29/2016	mg/L	0.0318	(J)	0.0458	(J)	0.0362	(J)	0.0288	(J)
03/07/2016	mg/L	0.0250	(U)	0.0250	(U)	0.0250	(U)	0.0250	(U)
03/21/2016	mg/L	0.0500	(U)	0.0500	(U)	0.0500	(U)	0.0500	(U)
03/29/2016	mg/L	0.0500	(U)	0.0500	(U)	0.0500	(U)	0.0500	(U)
04/13/2016	mg/L	0.0710	(J)	0.0500	(U)	0.0500	(U)	0.0500	(U)
04/20/2016	mg/L	0.126		0.0785	(J)	0.112	(J)	0.129	
05/11/2016	mg/L	0.0500	(U)	0.0500	(U)	0.0500	(U)	0.0500	(U)
06/01/2016	mg/L	0.0500	(U)	0.0500	(U)	0.0500	(U)	0.0500	(U)
Number > 0 .	.5 mg/L	0		0		0		0	

Secondary MCL =

0.5 mg/L

The 8/3/2015 samples for MNT-C and ES-C exceeded their holding times because the laboratory's first quality control sample failed and the samples were not re-analyzed within the holding time.

70.4	TT 14	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	2.11	1.91	2.10	1.96
07/07/2015	mg/L	2.44	2.29	2.23	2.40
07/20/2015	mg/L	2.61	2.48	2.60	2.63
08/03/2015	mg/L	2.37	2.07	2.07	2.27
08/17/2015	mg/L	2.40	2.39	2.51	2.67
09/01/2015	mg/L	3.03	2.46	2.41	2.38
09/15/2015	mg/L	2.46	2.20	2.09	2.05
09/29/2015	mg/L	2.53	2.62	2.34	2.37
10/13/2015	mg/L	2.88	3.16	2.88	2.98
11/03/2015	mg/L	2.73	2.39	3.14	2.78
11/09/2015	mg/L	2.83	2.23	2.17	2.23
11/17/2015	mg/L	2.87	2.24	2.51	2.29
12/01/2015	mg/L	1.88	1.95	2.19	1.99
12/15/2015	mg/L	2.07	2.12	1.68	1.77
01/05/2016	mg/L	1.50	1.98	1.67	1.82
02/02/2016	mg/L	1.54	1.65	1.71	1.76
02/29/2016	mg/L	2.05	2.07	1.98	2.11
03/07/2016	mg/L	1.41	1.44	1.51	1.64
03/21/2016	mg/L	1.75	2.00	2.00	2.07
03/29/2016	mg/L	1.48	1.20	1.14	1.22
04/13/2016	mg/L	1.59	1.12	1.41	1.58
04/20/2016	mg/L	2.12	1.80	1.42	1.56
05/11/2016	mg/L	1.97	2.23	2.04	2.13
06/01/2016	mg/L	2.35	2.21	2.08	2.12

Data	TT 54	MNT	-C	M-	C	ES-	C	CH-	C
Date	Units	Result		Res	Result		lt	Resu	lt
06/24/2015	mg/L	2.0	(J)	5.5		7.50		5.0	
07/07/2015	mg/L	25.5		14.5		18.0		19.0	
07/20/2015	mg/L	9.0		1.0	(U)	11.0		10	
08/03/2015	mg/L	5.0		3.5	(J)	8.5		6.0	
08/17/2015	mg/L	5.0		7.0		7.5		7.0	
09/01/2015	mg/L	6.0		5.0		7.5		5.0	
09/15/2015	mg/L	11.0		5.0	(J)	7.0	(J)	5.0	(J)
09/29/2015	mg/L	9.0		10		11.0		10	
10/13/2015	mg/L	4.0	(J)	8.0	(J)	5.0	(J)	8.0	(J)
11/03/2015	mg/L	8.0		9.0		5.5		6.0	
11/09/2015	mg/L	8.5		6.0		5.5		5.5	
11/17/2015	mg/L	6.0		6.5		8.0		7.5	
12/01/2015	mg/L	2.0	(J)	4.5	(J)	4.5	(J)	4.5	(J)
12/15/2015	mg/L	3.0	(J)	7.5		4.5	(J)	4.0	(J)
01/05/2016	mg/L	3.0	(J)	5.0		4.0	(J)	4.5	(J)
02/02/2016	mg/L	17.0		18.0		22.5		24.0	
02/29/2016	mg/L	17.5		10		9.5		9.5	
03/07/2016	mg/L	8.0		5.5		5.5		5.0	
03/21/2016	mg/L	3.5	(J)	4.0	(J)	3.5	(J)	4.0	(J)
03/29/2016	mg/L	3.0	(J)	1.0	(U)	2.5	(J)	2.5	(J)
04/13/2016	mg/L	3.0	(J)	5.0		2.5	(J)	4.5	(J)
04/20/2016	mg/L	5.5		3.0	(J)	5.5		3.0	(J)
05/11/2016	mg/L	9.5		8.5		9.5		14.0	
06/01/2016	mg/L	11.0		6.0		6.5		7.5	

7/20/2015 - 8.5 mg/L detected in field blank.

08/03/2015 - MNT-C field duplicate exceeded 30 percent RPD.

11/09/2015 - MNT-C field duplicate exceeded 30 percent RPD.

D-4-	TT:4	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	83	115	143	109
07/07/2015	mg/L	102	104	111	105
07/20/2015	mg/L	76	91	82	82
08/03/2015	mg/L	103	139	131	123
08/17/2015	mg/L	129	159	167	162
09/01/2015	mg/L	123	133	143	131
09/15/2015	mg/L	114	159	157	157
09/29/2015	mg/L	113	131	129	127
10/13/2015	mg/L	81	87	93	87
11/03/2015	mg/L	111	125	118	115
11/09/2015	mg/L	97	120	96	105
11/17/2015	mg/L	91	87	84	90
12/01/2015	mg/L	80	86	86	86
12/15/2015	mg/L	135	130	120	116 (J)
01/05/2016	mg/L	82	81	80	79
02/02/2016	mg/L	164	87	83	79
02/29/2016	mg/L	108	77	79	79
03/07/2016	mg/L	98	110	109	99
03/21/2016	mg/L	87	109	95	97
03/29/2016	mg/L	120	128	120	129
04/13/2016	mg/L	100	108	121	124
04/20/2016	mg/L	128	143	136	129
05/11/2016	mg/L	87	116	105	101
06/01/2016	mg/L	76	84	91	110
Number > 50	00 mg/L	0	0	0	0

 ${\bf Secondary\ MCL} =$

D.4	WY *4	MNT	-C	M-	C	ES-	С	СН-	C
Date	Units	Resu	lt	Resi	ult	Resu	llt	Resu	lt
06/24/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
07/07/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
07/20/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
08/03/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
08/17/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/01/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/15/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/29/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
10/13/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/03/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/09/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/17/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
12/01/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
12/15/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
01/05/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
02/02/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
02/29/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/07/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/21/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/29/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
04/13/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
04/20/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
05/11/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
06/01/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)

D-4-	TT:4-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	6.13	7.57	7.89	8.54
07/07/2015	mg/L	4.83	5.02	5.11	5.11
07/20/2015	mg/L	3.80	4.86	4.60	4.77
08/03/2015	mg/L	6.28	6.98	7.06	7.16
08/17/2015	mg/L	6.68	2.09	8.78	8.77
09/01/2015	mg/L	7.43	9.81	9.73	9.53
09/15/2015	mg/L	5.62	12.5	13.1	12.3
09/29/2015	mg/L	6.42	9.32	9.22	9.04
10/13/2015	mg/L	7.15	7.84	7.60	7.68
11/03/2015	mg/L	6.79	7.21	7.00	7.37
11/09/2015	mg/L	6.01	7.28	7.15	9.27
11/17/2015	mg/L	5.46	6.60	6.27	6.46
12/01/2015	mg/L	4.85	5.90	6.22	5.68
12/15/2015	mg/L	4.67	5.78	5.79	5.88
01/05/2016	mg/L	4.90	5.31	5.50	5.60
02/02/2016	mg/L	7.22	6.90	7.35	7.13
02/29/2016	mg/L	6.93	7.14	7.24	7.27
03/07/2016	mg/L	8.26	8.01	8.27	8.16
03/21/2016	mg/L	5.62	5.93	6.08	6.12
03/29/2016	mg/L	5.59	6.94	6.92	6.76
04/13/2016	mg/L	7.21	9.34	9.41	9.26
04/20/2016	mg/L	5.84	6.94	7.51	6.84
05/11/2016	mg/L	4.00	4.47	4.38	4.56
06/01/2016	mg/L	4.26	4.93	5.01	5.20
Number > 25	50 mg/L	0	0	0	0

Date	Units	MNT	'-C	M-	C	ES-	Ċ	СН-	C
Date	Units	Result		Res	Result		lt	Result	
06/24/2015	mg/L	0.05	(J)	0.07	(J)	0.09	(J)	0.05	(U)
07/07/2015	mg/L	0.05	(J)	0.05	(U)	0.05	(U)	0.05	(U)
07/20/2015	mg/L	0.07	(J)	0.11	(J)	0.13	(J)	0.05	(U)
08/03/2015	mg/L	0.08	(J)	0.05	(J)	0.05	(U)	0.08	(J)
08/17/2015	mg/L	0.17	(J)	0.05	(U)	0.10	(J)	0.05	(U)
09/01/2015	mg/L	0.13	(J)	0.06	(J)	0.11	(J)	0.11	(J)
09/15/2015	mg/L	0.05	(U)	0.10	(J)	0.05	(U)	0.11	(J)
09/29/2015	mg/L	0.11	(J)	0.14	(J)	0.14	(J)	0.14	(J)
10/13/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/03/2015	mg/L	0.05	(U)	0.12	(J)	0.07	(J)	0.10	(J)
11/09/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/17/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
12/01/2015	mg/L	0.11	(J)	0.05	(U)	0.11	(J)	0.11	(J)
12/15/2015	mg/L	0.13	(J)	0.08	(J)	0.12	(J)	0.11	(J)
01/05/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.07	(J)
02/02/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
02/29/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/07/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/21/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/29/2016	mg/L	0.05	(U)	0.05	(U)	0.06	(J)	0.06	(J)
04/13/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
04/20/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
05/11/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
06/01/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.07	(J)
Number > 1 .		0		0		0		0	
Number > 4	mg/L	0		0		0		0	
Number > 2	mg/L	0		0		0		0	

Data	TI-14-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.61	0.51	0.48	0.46
07/07/2015	mg/L	0.45	0.46	0.42	0.46
07/20/2015	mg/L	0.45	0.39	0.38	0.42
08/03/2015	mg/L	0.90	0.22	0.22	0.21
08/17/2015	mg/L	0.32	0.15	0.27	0.27
09/01/2015	mg/L	0.38	0.32	0.30	0.32
09/15/2015	mg/L	0.27	0.46	0.47	0.44
09/29/2015	mg/L	0.36	0.40	0.39	0.34
10/13/2015	mg/L	0.68	0.57	0.55	0.56
11/03/2015	mg/L	0.52	0.56	0.58	0.66
11/09/2015	mg/L	0.56	0.48	0.46	0.47
11/17/2015	mg/L	0.51	0.40	0.44	0.43
12/01/2015	mg/L	0.67	0.52	0.52	0.50
12/15/2015	mg/L	0.80	0.69	0.69	0.66
01/05/2016	mg/L	0.68	0.71	0.72	0.69
02/02/2016	mg/L	0.71	0.84	0.75	0.77
02/29/2016	mg/L	0.72	0.69	0.75	0.73
03/07/2016	mg/L	0.70	0.70	0.71	0.71
03/21/2016	mg/L	0.65	0.57	0.58	0.59
03/29/2016	mg/L	0.64	0.64	0.67	0.64
04/13/2016	mg/L	0.59	0.49	0.48	0.61
04/20/2016	mg/L	0.31	0.31	0.33	0.31
05/11/2016	mg/L	0.50	0.43	0.44	0.46
06/01/2016	mg/L	0.44	0.32	0.34	0.33
Number > 10		0	0	0	0

WV Category A WQS = 10 mg/L Primary MCL or TT = 10 mg/L

08/03/2015 - MNT-C field duplicate exceeded 30 percent RPD.

Date	Units	MNT-C		М-С		ES-C		СН-С	
Date		Result		Result		Result		Result	
06/24/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
07/07/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
07/20/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
08/03/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
08/17/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/01/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/15/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
09/29/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
10/13/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/03/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/09/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
11/17/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
12/01/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
12/15/2015	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
01/05/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
02/02/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
02/29/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/07/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/21/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
03/29/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
04/13/2016	mg/L	0.08	(J)	0.08	(J)	0.05	(U)	0.07	(J)
04/20/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
05/11/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
06/01/2016	mg/L	0.05	(U)	0.05	(U)	0.05	(U)	0.05	(U)
Number > 1 mg/L		0		0		0		0	

Primary MCL or TT =

Date	Units	MNT-C	M-C	ES-C	CH-C	
		Result	Result	Result	Result	
06/24/2015	mg/L	16.2	34.5	34.2	31.8	
07/07/2015	mg/L	13.7	19.9	19.9	20.0	
07/20/2015	mg/L	14.3	20.2	19.7	19.8	
08/03/2015	mg/L	18.6	36.1	32.5	30.8	
08/17/2015	mg/L	19.9	7.51	31.1	31.1	
09/01/2015	mg/L	23.4	32.0	31.1	31.3	
09/15/2015	mg/L	32.0	41.0	44.3	45.0	
09/29/2015	mg/L	21.1	31.0	30.5	30.2	
10/13/2015	mg/L	12.9	19.0	18.8	19.4	
11/03/2015	mg/L	11.4	14.9	14.4	14.3	
11/09/2015	mg/L	13.8	15.6	15.1	14.9	
11/17/2015	mg/L	11.9	15.5	15.1	15.1	
12/01/2015	mg/L	12.9	17.6	15.5	14.7	
12/15/2015	mg/L	13.3	17.3	15.8	15.5	
01/05/2016	mg/L	8.86	13.2	12.8	12.9	
02/02/2016	mg/L	12.9	20.9	20.9	20.7	
02/29/2016	mg/L	9.89	12.1	11.9	12.9	
03/07/2016	mg/L	12.3	17.8	17.6	17.6	
03/21/2016	mg/L	10.7	17.3	16.8	16.8	
03/29/2016	mg/L	13.5	22.0	21.4	20.5	
04/13/2016	mg/L	15.7	25.7	25.2	24.7	
04/20/2016	mg/L	14.5	86.8	21.1	22.0	
05/11/2016	mg/L	13.3	19.2	18.4	17.9	
06/01/2016	mg/L	14.4	21.9	21.9	22.0	
Number > 250 mg/L		0	0	0	0	

 ${\bf Secondary\ MCL} =$

Data	Timita	MNT	-C	M-(C	ES-C		СН-	C
Date	Units	Resu	lt	Resi	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
07/07/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
07/20/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
08/03/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
08/17/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/01/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/15/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/29/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
10/13/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/03/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/09/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/17/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
12/01/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
12/15/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
01/05/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
02/02/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
02/29/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/07/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/21/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/29/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
04/13/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
04/20/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
05/11/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
06/01/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
Number > 0.	005 mg/L	0		0		0		0	
Number > 0 .	2 mg/L	0		0		0		0	

WV Category A WQS = Primary MCL or TT =

0.005 mg/L 0.2 mg/L

D-4-	TT24	MNT	-C	M-(C	ES-C		СН-	C
Date	Units	Resu	lt	Rest	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
07/07/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
07/20/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
08/03/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
08/17/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/01/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/15/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
09/29/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
10/13/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/03/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/09/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
11/17/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
12/01/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
12/15/2015	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
01/05/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
02/02/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
02/29/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/07/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/21/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
03/29/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
04/13/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
04/20/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
05/11/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)
06/01/2016	mg/L	0.005	(U)	0.005	(U)	0.005	(U)	0.005	(U)

Date	Units	MN	T-C	Ī	M-C	ES	S-C	CI	I-C
Date	Units	Re	sult	R	esult	Re	sult	Re	sult
06/24/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
07/07/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
07/20/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
08/03/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
08/17/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
09/01/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
09/15/2015	Oocysts/L	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)
09/29/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
10/13/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(Ú)
11/03/2015	Oocysts/L	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)
11/09/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
11/17/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
12/01/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
12/15/2015	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
01/05/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
02/02/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
02/29/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/07/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/21/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/29/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
04/13/2016	Oocysts/L		(U)		(U)		(U)		(U)
04/20/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
05/11/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
06/01/2016	Oocysts/L	0.00	(U)	0.00	(U)	0.00	(U,T+)	0.00	(U,T+)
Number > 0	Oocysts/L	0		0		0		0	

99 % Removal

The April 13, 2016 samples were not analyzed because there was a laboratory incident where the samples were contaminated with a positive control (a prepared sample containing a known concentration of oocysts/cysts).

Upon receipt at the laboratory, samples for this analysis are supposed to be less than 20°C, but above freezing. A temperature of 0°C is typically frozen. The samples collected on 9/15/2015 and 11/03/2015 arrive at the laboratory at temperatures less than 0°C. However, there was no ice in the sample containers, so the lab was instructed to proceed with analysis. The samples for ES-C and CH-C on 6/1/2016 were 20.9°C and the lab was instructed to proceed with analysis.

Date	Units	MN	T-C	M	-C	ES	S-C	CH	I-C
Date	Units	Re	sult	Re	sult	Re	sult	Re	sult
06/24/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
07/07/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
07/20/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
08/03/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
08/17/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
09/01/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
09/15/2015	cysts/L	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)
09/29/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
10/13/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
11/03/2015	cysts/L	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)	0.00	(U,T-)
11/09/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
11/17/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
12/01/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
12/15/2015	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.10	
01/05/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
02/02/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
02/29/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/07/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/21/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
03/29/2016	cysts/L	0.00	(U)	0.00	(U)	0.18		0.00	(U)
04/13/2016	cysts/L	-							
04/20/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.00	(U)
05/11/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U)	0.09	
06/01/2016	cysts/L	0.00	(U)	0.00	(U)	0.00	(U,T+)	0.00	(U,T+)
Number > 0	cysts/L	0		0		1		2	

99.9 % Removal or inactivation

The April 13, 2016 samples were not analyzed because there was a laboratory incident where the samples were contaminated with a positive control (a prepared sample containing a known concentration of oocysts/cysts).

Upon receipt at the laboratory, samples for this analysis are supposed to be less than 20°C, but above freezing. A temperature of 0°C is typically frozen. The samples collected on 9/15/2015 and 11/03/2015 arrive at the laboratory at temperatures less than 0°C. However, there was no ice in the sample containers, so the lab was instructed to proceed with analysis. The samples for ES-C and CH-C on 6/1/2016 were 20.9°C and the lab was instructed to proceed with analysis.

D-4-	TT-24-	MNT	-S	M-	S	ES-	·S	СН-	S
Date	Units	Resu	lt	Resi	ult	Resi	ult	Resu	lt
06/24/2015	col/100 mL	56	T(+)	56	T(+)	56	T(+)	69	T(+)
07/07/2015	col/100 mL	150		200	T(+)	220	T(+)	94	T(+)
07/20/2015	MPN/100 mL	96		69		40		49	
08/03/2015	MPN/100 mL	18		41		20		16	
08/17/2015	MPN/100 mL	96		17		6		28	
09/01/2015	MPN/100 mL	1		3		3		11	
09/15/2015	MPN/100 mL	27		12		11		15	-
09/29/2015	MPN/100 mL	26		41		62		67	
10/13/2015	MPN/100 mL	66		98		48		98	-
11/03/2015	MPN/100 mL	73		75		66		55	
11/09/2015	MPN/100 mL	50		26		16	T.	11	
11/17/2015	MPN/100 mL	126		93		111		108	
12/01/2015	MPN/100 mL	162		579		326		2,419.6	(G)
12/15/2015	MPN/100 mL	178		147		147		114	
01/05/2016	MPN/100 mL	32		73		86		73	
02/02/2016	MPN/100 mL	345		167		214		770	
02/29/2016	MPN/100 mL	42		107		79		84	
03/07/2016	MPN/100 mL	50		74		61		74	
03/21/2016	MPN/100 mL	108		110		68		73	
03/29/2016	MPN/100 mL	69		59		72		79	
04/13/2016	MPN/100 mL	25		8		23		21	
04/20/2016	MPN/100 mL	59		12		28		30	
05/11/2016	MPN/100 mL	101		238		189		114	
06/01/2016	MPN/100 mL	30		27		17		20	
Number > 0	MPN/100 mL	24		24		24		24	

0 MPN/100 mL

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than improper storage and handling, thus the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the 7/20/2015 samples, bacteriological samples were taken to a different laboratory.

Data	TT	MNT-S	M-	S	ES-	S	CH-	S
Date	Units	Result	Res	ult	Resi	ult	Resu	ılt
06/24/2015	cfu/100 mL	81 T(+)	88	T(+)	44	T(+)	200	T(+)
07/07/2015	cfu/100 mL	387	647	T(+)	553	T(+)	553	T(+)
07/20/2015	col/100 mL	230	94		54		77	
08/03/2015	col/100 mL	30	21		25		34	
08/17/2015	col/100 mL	400	26		4		35	
09/01/2015	col/100 mL	6	7		8		26	
09/15/2015	col/100 mL	50	24		12		44	
09/29/2015	col/100 mL	20	53		36		53	
10/13/2015	col/100 mL	70	50		54		86	
11/03/2015	col/100 mL	40	49		47		44	
11/09/2015	col/100 mL	62	24		20		30	
11/17/2015	col/100 mL	76	91		200		50	
12/01/2015	col/100 mL	76	645		280		5,800	
12/15/2015	col/100 mL	200	94		108		121	
01/05/2016	col/100 mL	35	42		60		35	
02/02/2016	col/100 mL	340	120		220		636	
02/29/2016	col/100 mL	32	59		67		52	
03/07/2016	col/100 mL	35	59		49		60	
03/21/2016	col/100 mL	76	95		74		71	
03/29/2016	col/100 mL	10	42		21		39	
04/13/2016	col/100 mL	14	21		13		20	
04/20/2016	col/100 mL	28	17		20		13	
05/11/2016	col/100 mL	82	220		200	'	220	
06/01/2016	col/100 mL	22	22		6		21	
Number > 40	00 col/100 mL	0	2		1		3	
Number > 0	col/100 mL	24	24		24		24	

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than improper storage and handling, thus the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of $E.\ coli$ by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the 7/20/2015 samples, bacteriological samples were taken to a different laboratory.

Date	Units	MNT-S	M-S	ES-S	CH-S
Date	Units	Result	Result	Result	Result
06/24/2015	MPN/100 mL				
07/07/2015	MPN/100 mL				
07/20/2015	MPN/100 mL	382	646	532	589
08/03/2015	MPN/100 mL	244	321	231	306
08/17/2015	MPN/100 mL	325	1,540	1,120	550
09/01/2015	MPN/100 mL	165	70.0	30.0	135
09/15/2015	MPN/100 mL	50.5	39.0	32.5	28.0
09/29/2015	MPN/100 mL	520	245	180	265
10/13/2015	MPN/100 mL	635	400	355	290
11/03/2015	MPN/100 mL	170	125	190	120
11/09/2015	MPN/100 mL	252	185	206	116
11/17/2015	MPN/100 mL	170	330	330	150
12/01/2015	MPN/100 mL	95.0	855	365	1,140
12/15/2015	MPN/100 mL	100	210	2,230	1,780
01/05/2016	MPN/100 mL	170	200	200	225
02/02/2016	MPN/100 mL	325	455	380	350
02/29/2016	MPN/100 mL	384	325	295	215
03/07/2016	MPN/100 mL	190	155	115	350
03/21/2016	MPN/100 mL	520	455	305	225
03/29/2016	MPN/100 mL	400	145	135	205
04/13/2016	MPN/100 mL	145	40.0	50.0	100
04/20/2016	MPN/100 mL	170	50.0	50.0	50.0
05/11/2016	MPN/100 mL	170	245	495	365
06/01/2016	MPN/100 mL	210	90.0	155	160
Number > 50	00 MPN/100 mL	3	3	3	4

500 MPN/100 mL

11/19/2015 - MNT-C field duplicate exceeded 30 percent RPD. 06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of $E.\ coli$ by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the 7/20/2015 samples, bacteriological samples were taken to a different laboratory.

Date	Units	MNT	-S	M-S	5	ES-S	S	СН-	S
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	cfu/100mL	188	T(+)	181	T(+)	169	T(+)	330	T(+)
07/07/2015	cfu/100mL	460	T(+)	838	T(+)	600	T(+)	536	T(+)
07/20/2015	MPN/100mL	2,419.6	(G)	2,419.6	(G)	1,730		1,410	
08/03/2015	MPN/100mL	420		1,730		629		1,410	
08/17/2015	MPN/100mL	1,990		2,420		1,300		1,990	
09/01/2015	MPN/100mL	2,420		2,419.6	(G)	792		1,410	
09/15/2015	MPN/100mL	2,420		1,990		2,419.6	(G)	1,200	
09/29/2015	MPN/100mL	1,990		2,420		1,450		2,420	(G)
10/13/2015	MPN/100mL	870		2,420		1,550		2,419.6	(G)
11/03/2015	MPN/100mL	120		870		1,200		1,730	
11/09/2015	MPN/100mL	921		816		548		361	
11/17/2015	MPN/100mL	1,730		2419.6	(G)	961		961	
12/01/2015	MPN/100mL	2,419.6	(G)	2,419.6	(G)	2,419.6	(G)	2,419.6	(G)
12/15/2015	MPN/100mL	1,550		2,420		2,420		2,419.6	(G)
01/05/2016	MPN/100mL	1,300		649		1,120		1,410	. ` .
02/02/2016	MPN/100mL	2,419.6	(G)	2,419.6	(G)	2,420		2,419.6	(G)
02/29/2016	MPN/100mL	454		387		1,050		649	
03/07/2016	MPN/100mL	1,200		613		649		770	
03/21/2016	MPN/100mL	687		770		687		687	
03/29/2016	MPN/100mL	649		260		727		613	
04/13/2016	MPN/100mL	328		435		261		579	
04/20/2016	MPN/100mL	1,300		361		980		687	
05/11/2016	MPN/100mL	2,419.6	(G)	2,419.6	(G)	2,419.6	(G)	2,420	
06/01/2016	MPN/100mL	1,050		2,419.6	(G)	980		980	
Number > 0	MPN/100 mL	24		24		24		24	

0 MPN/100 mL

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

The samples for the first two sampling events were received by the lab above the method-specified temperatures because the samples were submitted to the laboratory before they had the opportunity to cool. While temperature is a critical issue for bacteriological analysis, the observed temperatures are believed to be reflective of the river temperatures at the time of sample collection rather than improper storage and handling, thus the quality of the samples is not believed to have been affected.

The laboratory that was used to analyze samples for the first two sampling events was unable to perform analysis of *E. coli* by the method requested and was unable to analyze bacteria by HPC within the method-specified holding time. Beginning with the 7/20/2015 samples, bacteriological samples were taken to a different laboratory.

Doto	TY:4	MNT-	C	M-C		ES-C		СН-С	7
Date	Units	Resu	lt	Resu	t	Resu	lt	Resu	lt
06/24/2015	mg/L	0.029	(J)	0.052	(J)	0.056	(J)	0.042	(J)
07/07/2015	mg/L	0.119		0.136		0.128		0.124	-
07/20/2015	mg/L	0.199		0.617		0.168		0.249	
08/03/2015	mg/L	0.111		0.111		0.105		0.108	
08/17/2015	mg/L	0.073	(J)	0.127		0.141		0.102	
09/01/2015	mg/L	0.093	(J)	0.108		0.098	(J)	0.067	(J)
09/15/2015	mg/L	0.155		0.116		0.132	-	0.121	
09/29/2015	mg/L	0.191		0.127		0.173		0.125	
10/13/2015	mg/L	0.211		0.188		0.149		0.172	
11/03/2015	mg/L	0.185		0.142		0.159		0.177	
11/09/2015	mg/L	0.116		0.121		0.109	\neg	0.091	(J)
11/17/2015	mg/L	0.157		0.156		0.177		0.127	
12/01/2015	mg/L	0.117		0.175		0.163		0.175	
12/15/2015	mg/L	0.095	(J)	0.109		0.097	(J)	0.093	(J)
01/05/2016	mg/L	0.231		0.168		0.200		0.176	
02/02/2016	mg/L	0.523		0.399		0.327		0.377	
02/29/2016	mg/L	0.424		0.359		0.269		0.439	
03/07/2016	mg/L	0.308		0.163		0.252		0.273	
03/21/2016	mg/L	0.203		0.211		0.171		0.242	
03/29/2016	mg/L	0.096	(J)	0.082	(J)	0.083	(J)	0.080	(J)
04/13/2016	mg/L	0.070	(J)	0.062	(J)	0.060	(J)	0.079	(J)
04/20/2016	mg/L	0.057	(J)	0.062	(J)	0.056	(J)	0.042	(J)
05/11/2016	mg/L	0.223		0.210		0.140		0.186	
06/01/2016	mg/L	0.148		0.102		0.141		0.118	
Number > 0.0		23		24		23		22	
Number > 0.2	mg/L	7		5		2		5	

Secondary MCL = 0.05 to 0.2 mg/L

D-4-	TT24	MNT-C		M-C	C	ES-C	7	СН-С	Ĉ
Date	Units	Result		Resu	lt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
07/07/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
07/20/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
08/03/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
08/17/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/01/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/15/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/29/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0003	(J)
10/13/2015	mg/L	0.0002	(U)	0.0003	(J)	0.0002	(U)	0.0002	(U)
11/03/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
11/09/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
11/17/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
12/01/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0005	(J)
12/15/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
01/05/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
02/02/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
02/29/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/07/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/21/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/29/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
04/13/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
04/20/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
05/11/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
06/01/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
Number > 0.		0		0		0		0	
Number > 0.	.006 mg/L	0		0		0		0	

WV Category A WQS = Primary MCL or TT =

0.014 mg/L 0.006 mg/L

D	TT *4	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/07/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/20/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/03/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/29/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
10/13/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/03/2015	mg/L	0.0014 (J)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/09/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
01/05/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/02/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/07/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/21/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/13/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/20/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
05/11/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
06/01/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
Number > 0.01 mg/L		0	0	0	0

WV Category A WQS =
Primary MCL or TT =

0.010 mg/L 0.010 mg/L

Data	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0310	0.0365	0.0355	0.0357
07/07/2015	mg/L	0.0397	0.0370	0.0366	0.0334
07/20/2015	mg/L	0.0320	0.0343	0.0326	0.0326
08/03/2015	mg/L	0.0328	0.0378	0.0349	0.0367
08/17/2015	mg/L	0.0361	0.0393	0.0357	0.0356
09/01/2015	mg/L	0.0372	0.0405	0.0397	0.0434
09/15/2015	mg/L	0.0345	0.0414	0.0425	0.0424
09/29/2015	mg/L	0.0382	0.0440	0.0435	0.0421
10/13/2015	mg/L	0.0308	0.0308	0.0313	0.0305
11/03/2015	mg/L	0.0282	0.0310	0.0306	0.0299
11/09/2015	mg/L	0.0268	0.0292	0.0283	0.0276
11/17/2015	mg/L	0.0257	0.0267	0.0287	0.0280
12/01/2015	mg/L	0.0283	0.0290	0.0279	0.0276
12/15/2015	mg/L	0.0248	0.0275	0.0258	0.0279
01/05/2016	mg/L	0.0220	0.0266	0.0256	0.0263
02/02/2016	mg/L	0.0302	0.0326	0.0310	0.0320
02/29/2016	mg/L	0.0255	0.0269	0.0228	0.0268
03/07/2016	mg/L	0.0260	0.0289	0.0275	0.0292
03/21/2016	mg/L	0.0250	0.0277	0.0273	0.0279
03/29/2016	mg/L	0.0265	0.0285	0.0289	0.0289
04/13/2016	mg/L	0.0252	0.0269	0.0274	0.0272
04/20/2016	mg/L	0.0256	0.0286	0.0285	0.0272
05/11/2016	mg/L	0.0268	0.0259	0.0261	0.0253
06/01/2016	mg/L	0.0303	0.0300	0.0296	0.0290
Number > 1	mg/L	0	0	0	0
Number > 2	mg/L	0	0	0	0

WV Category A WQS = Primary MCL or TT =

1.0 mg/L 2 mg/L

Doto	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
07/07/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
07/20/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
08/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
08/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/29/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
10/13/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/09/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
12/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
12/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
01/05/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
02/02/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
02/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/07/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/21/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
04/13/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
04/20/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
05/11/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
06/01/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
Number > 0	.004 mg/L	0	0	0	0

 $WV \ Category \ A \ WQS = 0.004 \quad mg/L$ $Primary \ MCL \ or \ TT = 0.004 \quad mg/L$

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
07/07/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
07/20/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
08/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
08/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
09/29/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (J)
10/13/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/09/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
11/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
12/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
12/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
01/05/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
02/02/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
02/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/07/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/21/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
03/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
04/13/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
04/20/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
05/11/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
06/01/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)
Number > 0 .		0	0	0	0
Number > 0 .	005 mg/L	0	0	0	0

¹ Based on a hardness of 69 mg/L CaCO₃, which is the average measured across all stations.

Date	Units	MNT-C		M-C	7	ES-C		СН-С	C
Date	Units	Result		Resu	lt	Resu	lt	Resul	lt
06/24/2015	μg/L	0.024		0.035		0.030		0.030	
07/07/2015	μg/L	0.028		0.033		0.039		0.038	
07/20/2015	μg/L	0.062		0.073		0.072		0.068	
08/03/2015	μg/L	0.0060 (U)	0.0060	(U)	0.0060	(U)	0.0060	(U)
08/17/2015	μg/L	0.049		0.038		0.044		0.038	
09/01/2015	μg/L	0.038		0.044		0.046		0.041	
09/15/2015	μg/L	0.029		0.035		0.037		0.032	
09/29/2015	μg/L	0.036		0.043		0.047		0.034	
10/13/2015	μg/L	0.038		0.047		0.049		0.029	
11/03/2015	μg/L	0.011		0.045		0.037		0.032	
11/09/2015	μg/L	0.025		0.027		0.0060	(U)	0.017	
11/17/2015	μg/L	0.0060 (U)	0.0060	(U)	0.0060	(U)	0.0060	(U)
12/01/2015	μg/L	0.039		0.028		0.044		0.055	
12/15/2015	μg/L	0.046		0.026		0.030		0.025	
01/05/2016	μg/L	0.023		0.021		0.026		0.025	
02/02/2016	μg/L	0.050		0.053		0.063		0.058	
02/29/2016	μg/L	0.072		0.061		0.047		0.060	
03/07/2016	μg/L	0.060		0.043		0.035		0.066	
03/21/2016	μg/L	0.038		0.034		0.033		0.037	
03/29/2016	μg/L	0.016		0.025		0.015		0.021	
04/13/2016	μg/L	0.028		0.041		0.025		0.029	
04/20/2016	μg/L	0.041		0.029		0.033		0.025	
05/11/2016	μg/L	0.037		0.035		0.058		0.055	
06/01/2016	μg/L	0.044		0.032		0.037		0.027	
Number > 5	0 μg/L	0		0		0		0	

50 μg/L

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

D. 4	TT 14	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	μg/L	0.35	0.25	0.30	0.29
07/07/2015	μg/L	0.33	0.34	0.31	0.32
07/20/2015	μg/L	0.25	0.39	0.26	0.24
08/03/2015	μg/L	0.39	0.36	0.36	0.39
08/17/2015	μg/L	0.33	0.31	0.31	0.34
09/01/2015	μg/L	0.44	0.37	9.42	0.44
09/15/2015	μg/L	0.35	0.33	0.34	0.32
09/29/2015	μg/L	0.31	0.30	0.34	0.33
10/13/2015	μg/L	0.47	0.45	0.45	0.48
11/03/2015	μg/L	0.21	0.35	0.24	0.23
11/09/2015	μg/L	0.48	0.23	0.23	0.22
11/17/2015	μg/L	0.28	0.16	0.19	0.23
12/01/2015	μg/L	0.31	0.31	0.50	0.30
12/15/2015	μg/L	0.22	0.31	0.36	0.19
01/05/2016	μg/L	0.21	0.28	0.47	0.48
02/02/2016	μg/L	0.40	0.50	0.60	0.26
02/29/2016	μg/L	0.46	0.53	0.65	0.58
03/07/2016	μg/L	0.48	0.46	0.46	0.50
03/21/2016	μg/L	3.3	4.0	0.49	0.47
03/29/2016	μg/L	0.47	0.43	0.45	0.40
04/13/2016	μg/L	0.46	0.32	0.43	0.44
04/20/2016	μg/L	0.40	0.40	0.40	0.51
05/11/2016	μg/L	0.7	0.8	0.6	0.7
06/01/2016	μg/L	0.7	0.7	0.7	0.7
Number > 50	μg/L	0	0	0	0

50 μg/L

09/01/2015 - $0.012~\mu g/L$ detected in field blank.

11/19/2015 - MNT-C field duplicate exceeded 30 percent RPD.

02/29/2016 - $0.22~\mu g/L$ detected in field blank.

 $5/11/2016 = 0.4 \mu g/L$ detected in field blank.

A different laboratory did the analysis for 5/11/2016 and 6/01/2016.

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0022 (J)	0.0021 (J)	0.0029 (J)	0.0022 (J)
07/07/2015	mg/L	0.0015 (J)	0.0016 (J)	0.0018 (J)	0.0014 (J)
07/20/2015	mg/L	0.0029 (J)	0.0023 (J)	0.0022 (J)	0.0020 (J)
08/03/2015	mg/L	0.0023 (J)	0.0026 (J)	0.0020 (J)	0.0021 (J)
08/17/2015	mg/L	0.0020 (J)	0.0018 (J)	0.0015 (J)	0.0016 (J)
09/01/2015	mg/L	0.0018 (J)	0.0017 (J)	0.0024 (J)	0.0020 (J)
09/15/2015	mg/L	0.0021 (J)	0.0022 (J)	0.0021 (J)	0.0019 (J)
09/29/2015	mg/L	0.0023 (J)	0.0024 (J)	0.0034 (J)	0.0023 (J)
10/13/2015	mg/L	0.0021 (J)	0.0024 (J)	0.0022 (J)	0.0024 (J)
11/03/2015	mg/L	0.0032 (J)	0.0022 (J)	0.0023 (J)	0.0022 (J)
11/09/2015	mg/L	0.0017 (J)	0.0017 (J)	0.0016 (J)	0.0019 (J)
11/17/2015	mg/L	0.0027 (J)	0.0017 (J)	0.0023 (J)	0.0025 (J)
12/01/2015	mg/L	0.0017 (J)	0.0018 (J)	0.0019 (J)	0.0024 (J)
12/15/2015	mg/L	0.0020 (J)	0.0021 (J)	0.0012 (J)	0.0012 (J)
01/05/2016	mg/L	0.0014 (J)	0.0016 (J)	0.0015 (J)	0.0013 (J)
02/02/2016	mg/L	0.0015 (J)	0.0020 (J)	0.0016 (J)	0.0035 (J)
02/29/2016	mg/L	0.0018 (J)	0.0014 (J)	0.0014 (J)	0.0022 (J)
03/07/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/21/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/29/2016	mg/L	0.0032 (J)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/13/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0011 (J)
04/20/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
05/11/2016	mg/L	0.0018 (J)	0.0010 (U)	0.0011 (Л)	0.0010 (U)
06/01/2016	mg/L	0.0015 (J)	0.0010 (U)	0.0010 (U)	0.0012 (J)
Number > 1	mg/L	0	0	0	0
Number > 1.	3 mg/L	0	0	0	0

Date	Units	MNT-	С	М-С	ES-C	СН-С
Date	Units	Resul	t	Result	Result	Result
06/24/2015	mg/L	0.083	(J)	0.197	0.128	0.111
07/07/2015	mg/L	0.353		0.494	0.341	0.278
07/20/2015	mg/L	0.366		0.425	0.321	0.440
08/03/2015	mg/L	0.223		0.214	0.202	0.201
08/17/2015	mg/L	0.128		0.194	0.184	0.181
09/01/2015	mg/L	0.188		0.202	0.187	0.156
09/15/2015	mg/L	0.312		0.204	0.219	0.207
09/29/2015	mg/L	0.368		0.253	0.348	0.271
10/13/2015	mg/L	0.422		0.391	0.351	0.373
11/03/2015	mg/L	0.360		0.265	0.282	0.314
11/09/2015	mg/L	0.254		0.248	0.233	0.217
11/17/2015	mg/L	0.343		0.308	0.333	0.298
12/01/2015	mg/L	0.220		0.306	0.276	0.294
12/15/2015	mg/L	0.189		0.231	0.213	0.226
01/05/2016	mg/L	0.334		0.288	0.316	0.286
02/02/2016	mg/L	0.747		0.685	0.558	0.656
02/29/2016	mg/L	0.496		0.504	0.386	0.635
03/07/2016	mg/L	0.399		0.296	0.398	0.424
03/21/2016	mg/L	0.290		0.318	0.267	0.358
03/29/2016	mg/L	0.164		0.165	0.173	0.164
04/13/2016	mg/L	0.137		0.129	0.127	0.161
04/20/2016	mg/L	0.114		0.134	0.127	0.116
05/11/2016	mg/L	0.371		0.317	0.228	0.297
06/01/2016	mg/L	0.288		0.181	0.237	0.229
Number > 1.		0		0	0	0
Number > 0 .	3 mg/L	12		9	9	7

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

D. (TT *4	MNT-	-C	M-C	C	ES-C		СН-С	7
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	t
06/24/2015	mg/L	0.0005	(J)	0.0004	(J)	0.0004	(J)	0.0004	(J)
07/07/2015	mg/L	0.0011		0.0008	(J)	0.0008	(J)	0.0005	(J)
07/20/2015	mg/L	0.0006	(J)	0.0004	(J)	0.0004	(J)	0.0005	(J)
08/03/2015	mg/L	0.0002	(J)	0.0003	(J)	0.0003	(J)	0.0003	(J)
08/17/2015	mg/L	0.0002	(J)	0.0003	(J)	0.0003	(J)	0.0002	(J)
09/01/2015	mg/L	0.0003	(J)	0.0003	(J)	0.0003	(J)	0.0002	(J)
09/15/2015	mg/L	0.0003	(J)	0.0003	(J)	0.0002	(J)	0.0002	(U)
09/29/2015	mg/L	0.0005	(J)	0.0007	(J)	0.0036		0.0050	
10/13/2015	mg/L	0.0008	(J)	0.0007	(J)	0.0006	(J)	0.0005	(J)
11/03/2015	mg/L	0.0007	(J)	0.0004	(J)	0.0004	(J)	0.0004	(J)
11/09/2015	mg/L	0.0004	(J)	0.0005	(J)	0.0007	(J)	0.0004	(J)
11/17/2015	mg/L	0.0004	(J)	0.0004	(J)	0.0005	(J)	0.0005	(J)
12/01/2015	mg/L	0.0005	(J)	0.0005	(J)	0.0005	(J)	0.0005	(J)
12/15/2015	mg/L	0.0004	(J)	0.0004	(J)	0.0004	(J)	0.0004	(J)
01/05/2016	mg/L	0.0004	(J)	0.0005	(J)	0.0006	(J)	0.0005	(J)
02/02/2016	mg/L	0.0007	(J)	0.0008	(J)	0.0007	(J)	0.0010	(J)
02/29/2016	mg/L	0.0007	(J)	0.0009	(J)	0.0007	(J)	0.0008	(J)
03/07/2016	mg/L	0.0006	(J)	0.0018		0.0006	(J)	0.0007	(J)
03/21/2016	mg/L	0.0004	(J)	0.0005	(J)	0.0005	(J)	0.0005	(J)
03/29/2016	mg/L	0.0004	(J)	0.0003	(J)	0.0003	(J)	0.0002	(J)
04/13/2016	mg/L	0.0002	(J)	0.0002	(J)	0.0002	(U)	0.0003	(J)
04/20/2016	mg/L	0.0002	(U)	0.0002		0.0002	(U)	0.0002	(J)
05/11/2016	mg/L	0.0006	(J)	0.0004	(J)	0.0007	(J)	0.0008	(J)
06/01/2016	mg/L	0.0012		0.0048		0.0003	(J)	0.0003	(J)
Number > 0 .	05 mg/L	0		0		0		-0	
Number > 0 .	015 mg/L	0		0		0		0	

WV Category A WQS = Primary MCL or TT =

0.050 mg/L 0.015 mg/L

Date	Units	MNT	'-C	M-	C	ES-	Ċ	CH-	C
Date	Units	Resu	ılt	Res	ult	Resu	lt	Resu	lt
06/24/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
07/07/2015	ng/L	1.80	(U)	1.80	(U)	1.81	(J)	1.80	(U)
07/20/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
08/03/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
08/17/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
09/01/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
09/15/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
09/29/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
10/13/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
11/03/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
11/09/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
11/17/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
12/01/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
12/15/2015	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
01/05/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
02/02/2016	ng/L	1.80	(U)	1.95	(J)	1.80	(U)	1.84	(J)
02/29/2016	ng/L	3.60	(U)	3.60	(U)	3.60	(U)	3.60	(U)
03/07/2016	ng/L	3.60	(U)	1.80	(U)	1.80	(U)	1.80	(U)
03/21/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
03/29/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
04/13/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
04/20/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
05/11/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
06/01/2016	ng/L	1.80	(U)	1.80	(U)	1.80	(U)	1.80	(U)
Number > 14		0		0		0		0	
Number > 20	000 ng/L	0		0		0		0	

The MDL for mercury was higher for the samples collected on 2/29/2016 and the MNT-C sample collected on 3/7/2016 due to matrix interference with the internal quality control samples run by the laboratory.

Date	Units	MNT-	-C	M-C	C	ES-C		СН-	Ċ
Date	Units	Resu	lt	Rest	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.036	(J)	0.050	(J)	0.053	(J)	0.042	(J)
07/07/2015	mg/L	0.109		0.069	(J)	0.065	(J)	0.046	(J)
07/20/2015	mg/L	0.057	(J)	0.056	(J)	0.050	(J)	0.053	(J)
08/03/2015	mg/L	0.047	(J)	0.045	(J)	0.044	(J)	0.045	(J)
08/17/2015	mg/L	0.049	(J)	0.047	(J)	0.049	(J)	0.046	(J)
09/01/2015	mg/L	0.073	(J)	0.046	(J)	0.041	(J)	0.039	(J)
09/15/2015	mg/L	0.063	(J)	0.050	(J)	0.052	(J)	0.047	(J)
09/29/2015	mg/L	0.056	(J)	0.064	(J)	0.075	(J)	0.062	(J)
10/13/2015	mg/L	0.046	(J)	0.043	(J)	0.041	(J)	0.038	(J)
11/03/2015	mg/L	0.039	(J)	0.030	(J)	0.029	(J)	0.029	(J)
11/09/2015	mg/L	0.034	(J)	0.029	(J)	0.027	(J)	0.027	(J)
11/17/2015	mg/L	0.035	(J)	0.037	(J)	0.036	(J)	0.035	(J)
12/01/2015	mg/L	0.025	(J)	0.033	(J)	0.031	(J)	0.030	(J)
12/15/2015	mg/L	0.025	(J)	0.032	(J)	0.030	(J)	0.031	(J)
01/05/2016	mg/L	0.020	(J)	0.029	(J)	0.030	(J)	0.028	(J)
02/02/2016	mg/L	0.070	(J)	0.068	(J)	0.058	(J)	0.069	(J)
02/29/2016	mg/L	0.033	(J)	0.036	(J)	0.035	(J)	0.040	(J)
03/07/2016	mg/L	0.025	(J)	0.042	(J)	0.041	(J)	0.040	(J)
03/21/2016	mg/L	0.022	(J)	0.034	(J)	0.033	(J)	0.035	(J)
03/29/2016	mg/L	0.019	(J)	0.028	(J)	0.033	(J)	0.028	(J)
04/13/2016	mg/L	0.019	(J)	0.027	(J)	0.026	(J)	0.028	(J)
04/20/2016	mg/L	0.020	(J)	0.028	(J)	0.027	(J)	0.026	(J)
05/11/2016	mg/L	0.046	(J)	0.047	(J)	0.040	(J)	0.041	(J)
06/01/2016	mg/L	0.035	(J)	0.037	(J)	0.039	(J)	0.040	(J)
Number > 1	mg/L	0		0		0		0	
Number > 0 .	05 mg/L	6		4		5		3	

WV Category A WQS = Secondary MCL =

1.0 mg/L 0.05 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С	
Date	Units	Result	Result	Result	Result	
06/24/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
07/07/2015	mg/L	0.0022 (J)	0.0020 (U)	0.0022 (J)	0.0021 (J)	
07/20/2015	mg/L	0.0020 (U)	0.0024 (J)	0.0020 (U)	0.0020 (U)	
08/03/2015	mg/L	0.0020 (U)	0.0020 (J)	0.0020 (U)	0.0020 (U)	
08/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
09/01/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0022 (J)	0.0020 (U)	
09/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
09/29/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
10/13/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/03/2015	mg/L	0.0051 (J)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/09/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
12/01/2015	mg/L	0.0021 (J)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
12/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (J)	
01/05/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
02/02/2016	mg/L	0.0027 (J)	0.0020 (U)	0.0023 (J)	0.0029 (J)	
02/29/2016	mg/L	0.0020 (U)	0.0035 (J)	0.0020 (J)	0.0070 (J)	
03/07/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
03/21/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
03/29/2016	mg/L	0.0024 (J)	0.0020 (U)	0.0029 (J)	0.0028 (J)	
04/13/2016	mg/L	0.0020 (U)	0.0037 (J)	0.0020 (U)	0.0020 (U)	
04/20/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
05/11/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0032 (J)	0.0020 (U)	
06/01/2016	mg/L	0.0023 (J)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
Number > 0 .	51 mg/L	0	0	0	0	

0.51 mg/L

Data	TT\$4-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/07/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/20/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/03/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/29/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
10/13/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/03/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/09/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
01/05/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/02/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/07/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/21/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/13/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/20/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
05/11/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
06/01/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
Number > 0	.05 mg/L	0	0	0	0

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/07/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
07/20/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/03/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
08/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
09/29/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
10/13/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/03/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/09/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
11/17/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/01/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
12/15/2015	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
01/05/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/02/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
02/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/07/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/21/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
03/29/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/13/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
04/20/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
05/11/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
06/01/2016	mg/L	0.0010 (U)	0.0010 (U)	0.0010 (U)	0.0010 (U)
Number > 0 .		0	0	0	0
Number > 0 .	1 mg/L	0	0	0	0

¹ Based on a hardness of 69 mg/L CaCO₃, which is the average measured across all stations.

Date	Units	MNT-	·C	M-(C	ES-C	7	CH-	C
Date	Units	Resu	lt	Resu	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
07/07/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
07/20/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
08/03/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
08/17/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/01/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/15/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
09/29/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
10/13/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
11/03/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
11/09/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
11/17/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
12/01/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
12/15/2015	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
01/05/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
02/02/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
02/29/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/07/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/21/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
03/29/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
04/13/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
04/20/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
05/11/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
06/01/2016	mg/L	0.0002	(U)	0.0002	(U)	0.0002	(U)	0.0002	(U)
Number > 0.		0		0		0		0	`
Number > 0 .	002 mg/L	0		0		0		0	

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Onits	Result	Result	Result	Result
06/24/2015	mg/L	0.0043 (J)	0.0068 (J)	0.0054 (J)	0.0037 (J)
07/07/2015	mg/L	0.0063 (J)	0.0060 (J)	0.0064	0.0042 (J)
07/20/2015	mg/L	0.0047 (J)	0.0035 (J)	0.0047 (J)	0.0044 (J)
08/03/2015	mg/L	0.0037 (J)	0.0038 (J)	0.0030 (U)	0.0039
08/17/2015	mg/L	0.0130	0.0042 (J)	0.0051 (J)	0.0056 (J)
09/01/2015	mg/L	0.0035 (J)	0.0030 (U)	0.0106	0.0039 (J)
09/15/2015	mg/L	0.0064 (J)	0.0044 (J)	0.0030 (U)	0.0034 (J)
09/29/2015	mg/L	0.0030 (U)	0.0033 (J)	0.0106	0.0042 (J)
10/13/2015	mg/L	0.0044 (J)	0.0065 (J)	0.0050 (J)	0.0061 (J)
11/03/2015	mg/L	0.0087 (J)	0.0043 (J)	0.0033 (J)	0.0043 (J)
11/09/2015	mg/L	0.0072 (J)	0.0041 (J)	0.0040 (J)	0.0033 (J)
11/17/2015	mg/L	0.0065 (J)	0.0045 (J)	0.0080 (J)	0.0054 (J)
12/01/2015	mg/L	0.0125	0.0072 (J)	0.0225	0.0075 (J)
12/15/2015	mg/L	0.0035 (J)	0.0053 (J)	0.0045 (J)	0.0030 (U)
01/05/2016	mg/L	0.0030 (U)	0.0111	0.0116	0.0107
02/02/2016	mg/L	0.0071 (J)	0.0086 (J)	0.0076 (J)	0.0110
02/29/2016	mg/L	0.0068 (J)	0.0081 (J)	0.0102	0.0089 (J)
03/07/2016	mg/L	0.0049 (J)	0.0081 (J)	0.0077 (J)	0.0061 (J)
03/21/2016	mg/L	0.0030 (U)	0.0037 (J)	0.0180	0.0033 (J)
03/29/2016	mg/L	0.0062 (J)	0.0036 (J)	0.0030 (U)	0.0030 (U)
04/13/2016	mg/L	0.0030 (U)	0.0087 (J)	0.0157	0.0062 (J)
04/20/2016	mg/L	0.0078 (J)	0.0030 (U)	0.0030 (U)	0.0030 (U)
05/11/2016	mg/L	0.0191	0.0075 (J)	0.0094 (J)	0.0070 (J)
06/01/2016	mg/L	0.0098 (J)	0.0076 (J)	0.0047 (J)	0.0085 (J)
Number > 5	mg/L	0	0	0	0

Secondary MCL =

5 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Umis	Result	Result	Result	Result
06/24/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
07/07/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0021 (U)
07/20/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)
08/03/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
08/17/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
09/01/2015	mg/L	0.0022 (U)	0.0022 (U)	0.0022 (U)	0.0022 (U)
09/15/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
09/29/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
10/13/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/03/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/09/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
12/01/2015	mg/L	0.0023 (U)	0.0023 (U)	0.0023 (U)	0.0023 (U)
12/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
01/05/2016	mg/L	0.0024 (U)	0.0024 (U)	0.0026 (U)	0.0023 (U)
02/02/2016	mg/L	0.0020 (U)	0.0022 (U)	0.0021 (U)	0.0021 (U)
02/29/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0020 (U)
03/07/2016	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
03/21/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0021 (U)	0.0020 (U)
03/29/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
04/13/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)
04/20/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
05/11/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)
06/01/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)
Number > 0.00	0011 mg/L	0	0	0	0

0.00011 mg/L

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

Doto	Timia	MNT-C	М-С	ES-C	СН-С	
Date	Units	Result	Result	Result	Result	
06/24/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
07/07/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0021 (U)	
07/20/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)	
08/03/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
08/17/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
09/01/2015	mg/L	0.0022 (U)	0.0022 (U)	0.0022 (U)	0.0022 (U)	
09/15/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
09/29/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
10/13/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/03/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/09/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
12/01/2015	mg/L	0.0023 (U)	0.0023 (U)	0.0023 (U)	0.0023 (U)	
12/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
01/05/2016	mg/L	0.0024 (U)	0.0024 (U)	0.0026 (U)	0.0023 (U)	
02/02/2016	mg/L	0.0020 (U)	0.0022 (U)	0.0021 (U)	0.0021 (U)	
02/29/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0020 (U)	
03/07/2016	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
03/21/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0021 (U)	0.0020 (U)	
03/29/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
04/13/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)	
04/20/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
05/11/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)	
06/01/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)	
Number > 1 m	g/L	0	0	0	0	

1 mg/L

Data	TIm:4a	MNT-C	M-C	ES-C	СН-С	
Date	Units	Result	Result	Result	Result	
06/24/2015	mg/L	0.0020 (U	0.0020 (U)	0.0020 (U)	0.0020 (U)	
07/07/2015	mg/L	0.0021 (U	0.0020 (U)	0.0020 (U)	0.0021 (U)	
07/20/2015	mg/L	0.0020 (U	0.0021 (U)	0.0020 (U)	0.0021 (U)	
08/03/2015	mg/L	0.0020 (U	0.0021 (U)	0.0021 (U)	0.0021 (U)	
08/17/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
09/01/2015	mg/L	0.0022 (U	0.0022 (U)	0.0022 (U)	0.0022 (U)	
09/15/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
09/29/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)	
10/13/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/03/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/09/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
11/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
12/01/2015	mg/L	0.0023 (U)	0.0023 (U)	0.0023 (U)	0.0023 (U)	
12/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
01/05/2016	mg/L	0.0024 (U)	0.0024 (U)	0.0026 (U)	0.0023 (U)	
02/02/2016	mg/L	0.0020 (U)	0.0022 (U)	0.0021 (U)	0.0021 (U)	
02/29/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0020 (U)	
03/07/2016	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
03/21/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0021 (U)	0.0020 (U)	
03/29/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
04/13/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)	
04/20/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)	
05/11/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)	
06/01/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)	
Number > 0.01	134 mg/L	0	0	0	0	

0.0134 mg/L

Date	Units	MNT-	C	M-(C	ES-C		CH-C	C
Date	Units	Resul	t	Resu	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0051	(U)	0.0051	(U)	0.0050	(U)	0.0050	(U)
07/07/2015	mg/L	0.0051	(U)	0.0050	(U)	0.0051	(U)	0.0051	(U)
07/20/2015	mg/L	0.0051	(U)	0.0052	(U)	0.0051	(U)	0.0052	(U)
08/03/2015	mg/L	0.0051	(U)	0.0052	(U)	0.0052	(U)	0.0051	(U)
08/17/2015	mg/L	0.0050	(U)	0.0072	(J)	0.0097	(J)	0.0098	(J)
09/01/2015	mg/L	0.0055	(U)	0.0056	(U)	0.0056	(U)	0.0056	(U)
09/15/2015	mg/L	0.0052	(U)	0.0053	(U)	0.0051	(U)	0.0052	(U)
09/29/2015	mg/L	0.0052	(U)	0.0051	(U)	0.0052	(U)	0.0053	(U)
10/13/2015	mg/L	0.0056	(J)	0.0064	(J)	0.0051	(U)	0.0051	(U)
11/03/2015	mg/L	0.0050	(U)	0.0050	(U)	0.0051	(J)	0.0050	(U)
11/09/2015	mg/L	0.0051	(U)	0.0051	(U)	0.0100	(J)	0.0051	(U)
11/17/2015	mg/L	0.0051	(U)	0.0050	(U)	0.0051	(U)	0.0051	(U)
12/01/2015	mg/L	0.0058	(U)	0.0058	(U)	0.0057	(U)	0.0057	(U)
12/15/2015	mg/L	0.0051	(U)	0.0050	(U)	0.0051	(U)	0.0051	(U)
01/05/2016	mg/L	0.0060	(U)	0.0061	(U)	0.0066	(U)	0.0057	(U)
02/02/2016	mg/L	0.0050	(U)	0.0060	(J)	0.0053	(U)	0.0052	(U)
02/29/2016	mg/L	0.0066	(J)	0.0052	(U)	0.0052	(U)	0.0051	(U)
03/07/2016	mg/L	0.0184		0.0051	(U)	0.0051	(U)	0.0051	(U)
03/21/2016	mg/L	0.0050	(U)	0.0051	(U)	0.0052	(U)	0.0051	(U)
03/29/2016	mg/L	0.0051	(U)	0.0051	(U)	0.0050	(U)	0.0051	(U)
04/13/2016	mg/L	0.0051	(U)	0.0052	(U)	0.0051	(U)	0.0051	(U)
04/20/2016	mg/L	0.0050	(U)	0.0051	(U)	0.0050	(U)	0.0050	(U)
05/11/2016	mg/L	0.0051	(U)	0.0051	(U)	0.0051	(U)	0.0051	(U)
06/01/2016	mg/L	0.0050	(U)	0.0052	(U)	0.0051	(U)	0.0052	(U)
Number > 0.0	06 mg/L	2		2		2		1	

Primary DWS =

0.006 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
07/07/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0021 (U)
07/20/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)
08/03/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
08/17/2015	mg/L	0.0020 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
09/01/2015	mg/L	0.0022 (U)	0.0022 (U)	0.0022 (U)	0.0022 (U)
09/15/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
09/29/2015	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0021 (U)
10/13/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/03/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/09/2015	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
11/17/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
12/01/2015	mg/L	0.0023 (U)	0.0023 (U)	0.0023 (U)	0.0023 (U)
12/15/2015	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
01/05/2016	mg/L	0.0024 (U)	0.0024 (U)	0.0026 (U)	0.0023 (U)
02/02/2016	mg/L	0.0020 (U)	0.0022 (U)	0.0021 (U)	0.0021 (U)
02/29/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0021 (U)	0.0020 (U)
03/07/2016	mg/L	0.0021 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
03/21/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0021 (U)	0.0020 (U)
03/29/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
04/13/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)
04/20/2016	mg/L	0.0020 (U)	0.0020 (U)	0.0020 (U)	0.0020 (U)
05/11/2016	mg/L	0.0021 (U)	0.0021 (U)	0.0020 (U)	0.0020 (U)
06/01/2016	mg/L	0.0020 (U)	0.0021 (U)	0.0020 (U)	0.0021 (U)
Number > 0.000	00072 mg/L	0	0	0	0
Number > 0.001	mg/L	0	0	0	0

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS or PDWS. Values reported as an exceedence are both above the MDL and the applicable standard.

Date	Units	MNT-	·C	M-(C	ES-C		CH-C	C
Date	Units	Resu	lt	Resu	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0005	(U)	0.0005	(U)	0.0005	(U)	0.0005	(U)
07/07/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/20/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/29/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
10/13/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/09/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
01/05/2016	mg/L	0.0005	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/02/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/07/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/21/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/13/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/20/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
05/11/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
06/01/2016	mg/L	0.0005	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
Number > 0.06	021 mg/L	0		0		0		0	

0.0021 mg/L

Dete	TT!4-	MNT-	C	M-(3	ES-C	7	СН-С	
Date	Units	Result	t	Resu	lt	Resul	t	Resul	t
06/24/2015	mg/L	0.0005	(U)	0.0005	(U)	0.0005	(U)	0.0005	(U)
07/07/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/20/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0005	(U)	0.0004	(U)
08/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/29/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
10/13/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/09/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
01/05/2016	mg/L	0.0005	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/02/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/07/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/21/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/13/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/20/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
05/11/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
06/01/2016	mg/L	0.0005	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
Number > 0.09	93 mg/L	0		0		0		0	

0.093 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
07/07/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
07/20/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
08/03/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
08/17/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
09/01/2015	mg/L	0.0003 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
09/15/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
09/29/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
10/13/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
11/03/2015	mg/L	0.0003 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
11/09/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
11/17/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
12/01/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
12/15/2015	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
01/05/2016	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
02/02/2016	mg/L	0.0004 (U	0.0004 (U)	0.0003 (U)	0.0004 (U)
02/29/2016	mg/L	0.0004 (U	0.0004 (U)	0.0004 (U)	0.0004 (U)
03/07/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
03/21/2016	mg/L	0.0003 (U)	0.0004 (U)	0.0004 (U)	0.0003 (U)
03/29/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
04/13/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
04/20/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
05/11/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
06/01/2016	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
Number > 0.5	54 mg/L	0	0	0	0

0.54 mg/L

Dete	TT *4	MNT-C	М-С	ES-C	СН-С	
Date	Units	Result	Result	Result	Result	
06/24/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
07/07/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
07/20/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
08/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
08/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
09/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
09/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
09/29/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
10/13/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
11/03/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
11/09/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
11/17/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
12/01/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
12/15/2015	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
01/05/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
02/02/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
02/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
03/07/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
03/21/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
03/29/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
04/13/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
04/20/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
05/11/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
06/01/2016	mg/L	0.0002 (U)	0.0002 (U)	0.0002 (U)	0.0002 (U)	
Number > 0.07	7 mg/L	0	0	0	0	

0.07 mg/L

Date	ET-SA-	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0004 (U)	0.0004 (U)	0.0004 (U)	0.0004 (U)
07/07/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
07/20/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
08/03/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
08/17/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
09/01/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
09/15/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
09/29/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
10/13/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
11/03/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
11/09/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
11/17/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
12/01/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
12/15/2015	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
01/05/2016	mg/L	0.0004 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
02/02/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
02/29/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
03/07/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
03/21/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
03/29/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
04/13/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
04/20/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
05/11/2016	mg/L	0.0003 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
06/01/2016	mg/L	0.0004 (U)	0.0003 (U)	0.0003 (U)	0.0003 (U)
Number > 0 .	12 mg/L	0	0	0	0

0.12 mg/L

Date	Units	MNT-	C	M-(ES-C	C	СН-С	
Date	Units	Resul	t	Resu	lt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/07/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/20/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/29/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
10/13/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/09/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
01/05/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/02/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/07/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/21/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/13/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
04/20/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
05/11/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
06/01/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
Number > 0.00	0028 mg/L	0		0		0	`	0	
Number > 0.00	01 mg/L	0		0		0		0	

WV Category A WQS = 0.00028 mg/L Primary DWS = 0.001

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

mg/L

Date	Units	MNT-	·C	M-C	C	ES-C		CH-(C
Date	Units	Resu	lt	Resu	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/07/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
07/20/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/03/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
08/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/01/2015	mg/L	0.0003	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
09/29/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
10/13/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/03/2015	mg/L	0.0003	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/09/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
11/17/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/01/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
12/15/2015	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
01/05/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
02/02/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0003	(U)	0.0004	(U)
02/29/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/07/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
03/21/2016	mg/L	0.0003	(U)	0.0004	(U)	0.0004	(U)	0.0003	(U)
03/29/2016	mg/L	0.0004	(U)	0.0013		0.0004	(U)	0.0004	(U)
04/13/2016	mg/L	0.0010	(U)	0.0010	(U)	0.0010	(U)	0.0010	(U)
04/20/2016	mg/L	0.0010	(U)	0.0010	(U)	0.0010	(U)	0.0010	(U)
05/11/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
06/01/2016	mg/L	0.0004	(U)	0.0004	(U)	0.0004	(U)	0.0004	(U)
Number >21	mg/L	0		0		0		0	

21 mg/L

Data	TImite:	MNT-	·C	M-(C	ES-C	7	СН-	C
Date	Units	Resu	lt	Resu	ılt	Resu	lt	Result	
06/24/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
07/07/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
07/20/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
08/03/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
08/17/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/01/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/15/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/29/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
10/13/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/03/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/09/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/17/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
12/01/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
12/15/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
01/05/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
02/02/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
02/29/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/07/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/21/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/29/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
04/13/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
04/20/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
05/11/2016	mg/L	0.0001	(U)	0.0001	(U)	0.000	(U)	0.0001	(U)
06/01/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
Number > 0.6	7 mg/L	0		0		0		0	

0.67 mg/L

Date	Units	MNT-C	M-C		ES-C	СН-С
Date	Units	Result	Result		Result	Result
06/24/2015	mg/L	J) 6000.0	0.0003	(U)	J) 6000.0	J) 0.0003 (U)
07/07/2015	mg/L	J) 6000.0	0.0003	(U) (J) 6000.0	D) 0.0003 (U)
07/20/2015	mg/L	J) 8000.0	0.0003	(U) I	J) 6000.0	J) 0.0003 (U)
08/03/2015	mg/L	0.0003 (L	0.0003	(U)	J) 8000.0	J) 0.0003 (U)
08/17/2015	mg/L	0.0003 (L	0.0003	(U) (0.0003 (U	D 0.0003 (U)
09/01/2015	mg/L	0.0003 (L	0.0003	(U) ().0003 (L	D) 0.0003 (U)
09/15/2015	mg/L	0.0003 (L	0.0003	(U) (J) 6000.0	(U) 0.0003 (U)
09/29/2015	mg/L	0.0003 (L	0.0003 ((U) ().0003 (L	0.0003 (U)
10/13/2015	mg/L	0.0003 (U	0.0003 ((U) ().0003 (L	0.0003 (U)
11/03/2015	mg/L	0.0003 (L	0.0003 ((U) ().0003 (U	0.0003 (U)
11/09/2015	mg/L	0.0003 (U	0.0003 ((U) ().0003 (L	0.0003 (U)
11/17/2015	mg/L	0.0003 (U	0.0003 ((U) (J) 8000.0	0.0002 (U)
12/01/2015	mg/L	0.0003 (U) 0.0003 ((U) ().0003 (U) 0.0025 (U)
12/15/2015	mg/L	0.0003 (U	0.0002 ((U) ().0003 (U	0.0002 (U)
01/05/2016	mg/L	0.0003 (U	0.0003 ((U) (J) 8000.0	0.0003 (U)
02/02/2016	mg/L	0.0003 (U	0.0003 (U) ().0003 (U	0.0003 (U)
02/29/2016	mg/L	0.0003 (U	0.0002 ((U) ().0003 (U) 0.0003 (U)
03/07/2016	mg/L	0.0003 (U	0.0003 ((U) ().0003 (U) 0.0003 (U)
03/21/2016	mg/L	0.0003 (U	0.0003 (U) (0.0003 (U) 0.0003 (U)
03/29/2016	mg/L	0.0003 (U	0.0003 (U) (0.0003 (U	0.0003 (U)
04/13/2016	mg/L	0.0003 (U	0.0003 (U) (0.0003 (U) 0.0003 (U)
04/20/2016	mg/L	0.0003 (U	0.0003 (U) (0.0003 (U) 0.0003 (U)
05/11/2016	mg/L	0.0003 (U	0.0003 (U) (0.0003 (U) 0.0003 (U)
06/01/2016	mg/L	0.0003 (U	0.0003 (U) (.0003 (U) 0.0003 (U)
Number > 8.3	mg/L	0	0		0	0

8.3 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
07/07/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
07/20/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
08/03/2015	mg/L	0.0006 (U)	0.0007 (U)	0.0006 (U)	0.0006 (U)
08/17/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
09/01/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
09/15/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
09/29/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
10/13/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/03/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/09/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/17/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
12/01/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0063 (U)
12/15/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
01/05/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
02/02/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
02/29/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
03/07/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
03/21/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
03/29/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
04/13/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
04/20/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
05/11/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
06/01/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
Number > 0.0000	0038 mg/L	0	0	0	0

0.0000038 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0013 (U)
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 0.0000	0038 mg/L	0	0	0	0
Number > 0.0002	2 mg/L	0	0	0	0

WV Category A WQS = Primary DWS =

 $\begin{array}{ccc} 0.0000038 & mg/L \\ 0.0002 & mg/L \end{array}$

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0013 (U)
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 0.0000	0038 mg/L	0	0	0	0

0.0000038 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С	
Date	Units	Result	Result	Result	Result	
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0013 (U)	
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)	
Number > 0.0000	038 mg/L	0	0	0	0	

0.0000038 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
07/07/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
07/20/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
08/03/2015	mg/L	0.0006 (U)	0.0007 (U)	0.0006 (U)	0.0006 (U)
08/17/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
09/01/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
09/15/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
09/29/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
10/13/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/03/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/09/2015	mg/L	0.0007 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
11/17/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
12/01/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0063 (U)
12/15/2015	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
01/05/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
02/02/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
02/29/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0007 (U)
03/07/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
03/21/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
03/29/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
04/13/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
04/20/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
05/11/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
06/01/2016	mg/L	0.0006 (U)	0.0006 (U)	0.0006 (U)	0.0006 (U)
Number > 0.0000	038 mg/L	0	0	0	0

0.0000038 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0013 (U)
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 0.000	0038 mg/L	0	0	0	0

0.0000038 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 0 .	3 mg/L	0	0	0	0

0.3 mg/L

D	ET 14	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0013 (U)
12/15/2015	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 1	.1 mg/L	0	0	0	0

1.1 mg/L

Date	Units	MNT	-C	M-(C	ES-C	C	СН-	C
Date	Units	Resu	lt	Resu	ılt	Resu	lt	Resu	lt
06/24/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
07/07/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
07/20/2015	mg/L	0.0001	(U)	0.0001	(Ü)	0.0001	(U)	0.0001	(U)
08/03/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
08/17/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/01/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/15/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
09/29/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
10/13/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/03/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/09/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
11/17/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
12/01/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0013	(U)
12/15/2015	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
01/05/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
02/02/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
02/29/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/07/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/21/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
03/29/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
04/13/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
04/20/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
05/11/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
06/01/2016	mg/L	0.0001	(U)	0.0001	(U)	0.0001	(U)	0.0001	(U)
Number > 0.0000	0038 mg/L	0		0		0		0	

0.0000038 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.0001 (U) 0.0001 (U)	0.0001 (U)	0.0001 (U)
07/07/2015	mg/L	0.0001 (U) 0.0001 (U)	0.0001 (U)	0.0001 (U)
07/20/2015	mg/L	0.0001 (U) 0.0001 (U)	0.0001 (U)	0.0001 (U)
08/03/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
08/17/2015	mg/L	0.0001 (U) 0.0001 (U)	0.0001 (U)	0.0001 (U)
09/01/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/15/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
09/29/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
10/13/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/03/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/09/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
11/17/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
12/01/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0013 (U)
12/15/2015	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
01/05/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/02/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
02/29/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/07/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/21/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
03/29/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/13/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
04/20/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
05/11/2016	mg/L	0.0001 (U)	0.0001 (U)	0.0001 (U)	0.0001 (U)
06/01/2016	mg/L	0.0001 (U	0.0001 (U)	0.0001 (U)	0.0001 (U)
Number > 0.8	3 mg/L	0	0	0	0

0.83 mg/L

2-B	ult	9										-	9		3		9		9	(3)	9		3		3		-
M-2-B	Result	0.500	0.500	L			L					0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	,
T-:	ult	9	9					1] [3	9] E	9]5	E	9	9	3	9		3	9	3		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500			0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
Ą	ılt	3	9	15	3	15	<u> </u>	3	3	9	(D)	(U)	(D)	(5)	(D)	(E)	(D)	9	<u>(</u>	Ω	(3)	9	9	Ð	9		•
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
Ţ	ılt	(D)	(U)	9	3	9	3	9	9	(D)	9	9	9	9	9	9	9	9	Ω	Ω	Ω	9	3	9	9		•
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	į
2-B	11	(D)	(n)	3	3	9	3	9	3	(C)	(C)	Ω	Ω	$\widehat{\mathbb{U}}$	(Ω)	(Ω)	Ω	(U)	(U)	9	(D)	9	(D)	Ω	9	-	
MINT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
L-7	1,	Ω	Ω	(D)	(C)	3	9	(D)	(3)	(D)	(U)	(0)	Ð	Ω	(U)	Ω	(D)	9	3	9	9	(D)	<u>(C</u>	Ω	(D)		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
-1-B	#	9	9	Ω	(D)	Ω	(Ω)	(0)	$\widehat{\mathbb{O}}$	<u>(C)</u>	9	3	9	9	3	3	3	9	3	9	3	9	9	3	<u>(</u>		
MNT-	Resu	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
Ľ-I	=	9	9	9	$\widehat{\mathbb{O}}$	(D)	(D)	9	3	3	9	9	9	9	5	9	3	3	5	5	5	9	3	9	9		
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
Units		ng/L	µg/L	ng/L	µg/L	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	ng/L	ng/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	2000 µg/L	
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 12000 µg/L	

WV Category A WQS =
Primary DWS =

12,000 μg/L 200 μg/L

	Kesuit Kesuit	0020	(U) 0.500 (T) 0.500	(U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.
	0 500 (TD) 0	(0) 0000	O.500 (II)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U) 0.500	0.500 (U)	0.500 (U)	0.500 (U) 0.500	0.500 (U)	0.500 (U)
ATD 0 500		0.500	0000	ŀ	0.500	0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.	0.500 0.	0.500 0.5000 0.5	0.500 0.
		0.500			0.500 (U)																					
99	3		9	Ξ		9	233	E EE	5333	55555	555555	2555555	22222222	22222222	2222222222	2222222222	2222222222	22222222222	222222222222	2222222222222	2222222222222	22222222222222	22222222222222	222222222222222	2222222222222222	222222222222222
0.500	0.500	0.500	00000	0.500	0 500				0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
225	93	Ε		<u>(</u>	(D)		<u>(</u>	3 3	555	2222	55555	22222	200000	2525555	200000000	252525552	200000000000000000000000000000000000000	20202020202	25255555555	200000000000000000000000000000000000000	255555555555	2525555555555	20202020202020	255555555555555	202000000000000000000000000000000000000	255555555555555
0.500			L		0.500	0.500		0.500																		
					(0) 000	0.500 (U)	500 (U)		0.500 (U)																	
					Ļ		(U) 0.500	705 0 VIL	0.00	(U) 0.500																
				D 500) 00c.v	0.500 (U	0.500 (L	0.500	22.22																	
0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)					1	0.500 (U)	0.500 (U)	0.500 (U)		0.500 (U)																
µg/L µg/L µg/L	111		4			/L	ng/L	ng/L		T/g1	1g/L	ng/L ng/L ng/L	hg/L hg/L hg/L	T/gu T/gu T/gu T/gu	Hg/L Hg/L Hg/L Hg/L Hg/L	Lygu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu 1/gu	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	Hg/L	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	T/gm T/gm T/gm T/gm T/gm T/gm T/gm T/gm	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10/13/2015 μg/L 11/03/2015 μg/L 11/09/2015 μg/L 11/17/2015 μg/L 12/01/2015 μg/L 02/02/2016 μg/L 03/07/2016 μg/L 03/21/2016 μg/L 03/29/2016 μg/L 04/13/2016 μg/L
] =		ng/l	µg/L	µg/L	µg/L	µg/L	3	=																		

WV Category A WQS = Primary DWS =

12,000 μg/L 200 μg/L

		15	15	15	15	15	[5	15	15	16	15	15	18	15	5	15	15	15			E		15	15	1 <u>=</u>	1
æ	Ħ	٦		ľ				-	5	ľ	[1		-]5		15	5	9	9	5		5		ı
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	c
	+	9	9	3	5	3	9	3	9	9	9	3	9	9	5	9	9	3	9	9	9	9	9	9	5	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
~	1	3	9	3	9	3	3	3	5	9	9	3	9	9	Ð	9	9	3	(3)	3	3	5	3	9	5	
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	t	3	3	5	5	3	3	9	3	9	3	9	9	(0)	9	3	5	<u>(C)</u>	<u>(</u>	Ω	Ω	(D)	3	9	3	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ą	ţ	9	(D)	9	9	3	9	9	Ω	Ω	<u>(1)</u>	Ω	(D)	$\widehat{\mathbb{O}}$	(U)	(D)	Ω	(D)	(D)	Ω	(D)	(0)	(3)	Ω	5	-
MINT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
[(U)	(D)	Ω	(D)	(D)	9	<u>(</u>	Ω	(0)	Ω	Ω	3	9	(C)	Ω	Ω	<u>(1)</u>	9	9	9	9	(U)	(0)	(3)	
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-1-B		9	9	9	9	Ω	(2)	<u>(D</u>	3	5	9	9	3	3	3	9	3	3	3	3	3	9	9	<u>(</u>	$\widehat{\mathbb{G}}$	
MINT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-L	+	3	9	3	3	(D)	9	9	3	9	3	3	9	3	3	3	3	3	5	5	5	5	9	9	9	
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		ng/L	ng/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	hg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	μg/L	µg/L	µg/L	ng/L	ηg/L	µg/L	.17
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.17

0.17 µg/L

		15	15	15	15		15	1=	15	1=	1=	1=	1	1 <u>~</u>		1=		1	ī	1	<u>1</u> ←	1=	1⊆	1=	1⊆	1
8	ıļt	اح	5	15			5	9		ľ	15	12	5	9	2	2	9	15	5	9	9	15	15	15]5	
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
I		3	2	9	9	9	9	3	3	3	3	3	9	9	9	9	3	3	9	9	3	9	3	5	9	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B	ı	9	3	9	9	3	3	3	3	9	3	3	3	9	9	3	9	9	9	(E)	3	9	3	3	3	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
ľ	1	3	9	3	9	3	3	3	9	9	3	9	9	$\widehat{\mathbb{O}}$	9	(0)	Ω	Ω	Ω	Ω	Ω	3	9	9	9	
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
~		9	9	3	(D)	3	9	9	(0)	Ω	9	(U)	Ω	(3)	(3)	Ω	Ω	9	9	9	$\widehat{\mathbf{G}}$	Ω	(5)	9	9	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
		Ω	(0)	Ω	Ω	9	(n)	9	<u>(C</u>	Ω	(D)	Ω	9	9	3	9	3	9	3	5	3	(0)	(U)	Ω	(U)	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
		(D)	(D)	9	9	Ω	(0)	(1)	3	3	9	3	9	5	5	9	3	9	3	9	5	3	3	Ω	<u>e</u>	
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	ţ	9	9	9	3	9	9	9	5	5	3	3	2	2	5	5	9	9	3	2	5	5	3	5	9	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		ηg/L	µg/L	ng/L	µg/L	µg/L	hg/L	µg/L	ng/L	µg/L	µg/L	ng/L	ng/L	µg/L	.17											
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.17

0.17 µg/L

		ī	1	1 <u>-</u>	1	1	1=	1	1	1		10		1		1=							1	1	10	1
m	=	9	3	9		9	12	15	15	15	15	15	9	15	()	2	()	5	9	9	5	5	9	5	9	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	ţ	9	9	3	9	3	3	9	3	9	9	9	3	9	9	9	9	9	(D)	9	9	9	9	9	9	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_	_	3	9	9	9	9	9	3	9	9	9	9	9	9	9	9	9	Ω	(1)	3	3	3	9	9	3	
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
		3	9	9	9	9	9	(D)	(U)	Ω	9	9	3	9	$\widehat{\Omega}$	<u>(D</u>	Ω	(0)	(0)	Ω	Ω	Ω	9	Ω	9	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B	1	(D)	(n)	(0)	Ω	Ω	9	(U)	(D)	Ω	(3)	Ω	(C)	Ω	Ω	Ω	Ω	9	3	Ω	<u>(C</u>	Ω	<u>(C</u>	Ω	9	
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-T	Ĺ	Ω	Ω	Ω	(0)	Ω	Ω	(0)	(0)	(1)	(D)	$\widehat{\mathbb{G}}$	Ω	(D)	3	9	3	3	9	9	Ē	$\widehat{\mathbb{C}}$	(C)	Ω	Ω	
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B		(1)	9	9	9	9	(D)	9	9	3	3	3	3	3	3	3	E	9	a	9	9	3	3	3	9	
MINT-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ţ.	ı	<u>(C</u>	9	9	9	9	3	9	9	9	9	E	9	3	3	9	3	5	2	3	5	5	3	5	9	
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	ng/L	µg/L	πg/L	ng/L	µg/L							
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 5 μg/L

Primary DWS =

5.00 µg/L

		<u> </u>	15]5	15	15	15	15	<u> 1</u> 5]5	[5	15	[5]	15	9	<u>a</u>	15	[5]	9	<u> </u>	[2]	3	15	15	15	1
CH-2-B	ink			-								٦							ľ	_	_		9	5		
CH	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	c
T.	11	9	3	3	3	5	9	9	3	9	9	3	9	3	9	9	3	5	3	9	3	5	3	9	5	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
В	t	3	5	9	5	3	5	3	3	9	5	9	9	3	9	9	9	3	(2)	3	9	9	3	9	9	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	t	9	9	3	5	5	3	3	3	9	3	3	3	5	E	9	9	(D)	(D)	<u>(D</u>	Ω	(n)	3	9	3	
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_	t.	(U)	Ω	3	5	9	3	9	(D)	Ω	9	Ω	$\widehat{\mathbb{O}}$	9	(Ω)	(U)	(U)	(3)	Ω	Ω	(Ω	9	(E)	9	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Н	_	<u>(C</u>	(0)	(0)	3	3	3	<u>(</u>	$\widehat{\Omega}$	Ω	Ω	Ω	Ω	Ω	<u>(</u>	Ω	Ð	9	3	9	3	3	(U)	Ω	Ω	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
m i		3	3	Ω	Ω	(U)	(2)	(D)	9	3	3	3	3	9	3	9	9	3	3	9	3	3	3	(D)	9	
ES-1-	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T.	1	9	9	9	9	Ω	(U)	9	9	5	3	3	9	3	9	9	9	9	9	3	3	3	3	3	3	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	ng/L	µg/L	ng/L	ng/L	µg/L	µg/L	µg/L	ng/L	ng/L	µg/L	µg/L	µg/L	ng/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 5 µg/L

Primary DWS =

5.00 µg/L

Result Result		5	(U) 0.500 (U) 0.500	555	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.500	(C)	(C)	(G)	(C)	(C)	(C)	(C)
	0.500 (U) 0		0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U)	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500
0020	0000 (0)	(U) 0.500		(U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.	(C)	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(C)	(U) 0.500 (U) 0.
	ı	0.500	0.500 (U)		0.500 (U)																					
99	E	4	$\widehat{\Xi}$	9		9	99	555	5555	55555	555555	5555555	55555555	555555555	555555555	5555555555	55555555555	555555555555	555555555555	5555555555555	55555555555555	555555555555555	5555555555555555	555555555555555555	55555555555555555	555555555555555555
0.500				0.500	0.500		0.500																			
(D) (D) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O				(U) 00	(U) 00		(O) 00												255555555555	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
					0.500	J) 0.500		0000 (6																		
0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)				_		0.500 (U)	0.500 (U)		0.500																	
0.500 (U) 0 0.500 (U) 0 0.500 (U) 0 0.500 (U) 0 0.500 (U) 0	55555	9998	563	98	710		9	3		3	55	555	eeee	55555	55555	555555	5555555	55555555	555555555	5555555555	55555555555	55555555555	555555555555	5555555555555	5555555555555	5555555555555
0.500 (U) 0.500 0.500 (U) 0.00 0.500 (U) 0.00 0.500 (U) 0.00	5555	5555	595	55	UL	(2)	5	9	0 500 ATD 0	2	29	355	3555	33333	22222	222222	222222	2222222	22222222	000000000000000000000000000000000000000	000000000000000000000000000000000000000	2222222222	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	222222222222
				µg/L	1	+	+	ng/L	1/611	+																
- 1		07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	1	15	15 51	115	115 215	115 115 115 115	015 015 015 015 016	115 215 215 215 215 215 215 215 215 215	015 015 015 016 016	015 015 015 016 016 016	015 015 015 016 016 016 016	015 015 015 016 016 016 016	0115 0115 0116 0116 0116 0116 0116 0116	115 115 116 116 116 116 116 117 118 118 118 118 118 118 118 118 118	115 115 116 116 116 116 116 117 118 118 118 118 118 118 118 118 118	0115 0115 0116 0116 0116 0116 0116 0116	11/03/2015 中度 11/09/2015 中度 11/17/2015 中度 12/01/2015 中度 12/15/2015 中度 02/02/2016 中度 02/02/2016 中度 03/21/2016 中度 03/21/2016 中度 03/21/2016 中度 04/20/2016 中度 06/01/2016 中度

0.03WV Category A WQS = Primary DWS =

µg/L µg/L

available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard. Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the

Project No. 0101-15-0018

Date	T Tue tides	ES-1-T		ES-1-B	8	ES-2-T		ES-2-B	m	CH-1-T	L	CH-1-B	B	CH-2-T	H	CH-2-B	22
Date	OHES	Result		Result	t l	Result	t	Result	#	Result	+	Result		Result	+	Result	1
06/24/2015	μg/L	0.500	a	0.500	(D)	0.500	Ω	0.500	3	0.500	9	0.500	3	0.500	3	0.500	3
07/07/2015	µg/L	0.500	(3)	0.500	(D)	0.500	(D)	0.500	9	0.500	9	0.500	3	0.500	9	0.500	3
07/20/2015	µg/L	0.500	6	0.500	9	0.500	Ω	0.500	(D)	0.500	9	0.500	3	0.500	3	0.500	3
08/03/2015	µg/L			0.500	9	0.500	9	0.500	5	0.500	9	0.500	9	0.500	9	0.500	3
08/17/2015	μg/L	\neg		0.500	3	0.500	(D)	0.500	Ω	0.500	(0)	0.500	9	0.500	5	0.500	9
09/01/2015	µg/L		<u>.</u>	0.500	9	0.500	$\widehat{\mathbb{O}}$	0.500	(D)	0.500	9	0.500	3	0.500	3	0.500	3
09/15/2015	η/gπ		5	0.500	9	0.500	9	0.500	(U)	0.500	(U)	0.500	3	0.500	5	0.500	9
09/29/2015	ng/L		_ (3	0.500	9	0.500	(D)	0.500	Ω	0.500	9	0.500	9	0.500	9	0.500	3
10/13/2015	ng/L			0.500	3	0.500	9	0.500	(U)	0.500	(1)	0.500	9	0.500	9	0.500	9
11/03/2015	ng/L		5	0.500	5	0.500	9	0.500	(D)	0.500	(3)	0.500	3	0.500	3	0.500	3
11/09/2015	ng/L	ı	_	0.500	5	0.500	3	0.500	9	0.500	(U)	0.500	9	0.500	9	0.500	(E)
11/17/2015	µg/L		5	0.500	5	0.500	9	0.500	9	0.500	(D)	0.500	9	0.500	9	0.500	9
12/01/2015	μg/L	0.500	5	0.500	9	0.500	9	0.500	(Ω)	0.500	<u>(D)</u>	0.500	9	0.500	9	0.500	9
12/15/2015	µg/L			0.500	5	0.500	3	0.500	<u>(</u>	0.500	(0)	0.500	(0)	0.500	9	0.500	9
01/05/2016	µg/L		<u> </u>	0.500	5	0.500	9	0.500	(D)	0.500	Ω	0.500	(E)	0.500	9	0.500	9
02/02/2016	µg/L	0.500	5	0.500	3	0.500	9	0.500	<u>(D</u>	0.500	(D)	0.500	3	0.500	9	0.500	9
02/29/2016	µg/L	Ī		0.500	9	0.500	9	0.500	<u>(1</u>	0.500	(D)	0.500	(0)	0.500	9	0.500	9
03/07/2016	µg/L		<u> </u>	0.500	5	0.500	5	0.500	3	0.500	(D)	0.500	(D)	0.500	9	0.500	9
03/21/2016	ng/L	0.500 (1	5	0.500	5	0.500	9	0.500	9	0.500	(D)	0.500	(D)	0.500	(1)	0.500	9
03/29/2016	µg/L		5	0.500	E	0.500	3	0.500	9	0.500	(D)	0.500	(0)	0.500	3	0.500	9
04/13/2016	µg/L	0.500 (1	5	0.500	9	0.500	9	0.500	9	0.500	Ω	0.500	(Ω)	0.500	9	0.500	3
04/20/2016	µg/L			0.500	5	0.500	9	0.500	9	0.500	(D)	0.500	(D)	0.500	3	0.500	9
05/11/2016	ug/L	0.500 (1	9	0.500	9	0.500	9	0.500	$\widehat{\mathbb{G}}$	0.500	Ω	0.500	(0)	0.500	9	0.500	3
06/01/2016	µg/L	0.500 (1	5	0.500	3	0.500	5	0.500	(C)	0.500	Ω	0.500	(D)	0.500	3	0.500	5
Number > 0.03 µg/L	3 µg/L	0	-	0		0		0		0		0	Г	0		0	
Number > 7 µg/L	g/L	0	-	0	П	0		0		0		0		0		0	

0.03 WV Category A WQS = Primary DWS =

ug/L ug/L

			17	10	10	10	10	17	10	1 <u>~</u>	10	10		1	T							_	ı_			
m	H	2	9	2	15]5]2	15	2	9	9	3	9	9	5	5	5	5	9	5	5	5	9	5	9	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	1	9	9	9	9	9	3	3	3	3	9	3	9	3	9	3	9	3	9	3	5	9	9	9	9	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_	.	9	(J)	9	3	9	3	9	9	9	5	9	3	9	9	9	(0)	Ω	Ω	$\widehat{\mathbb{O}}$	3	9	3	9	3	
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	_	3	9	3	9	9	3	9	9	3	3	9	9	9	Ω	(U)	(0)	(Ω)	Ω	Ω	(D)	9	9	<u>(</u>	9	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ą	Ţ	(0)	(U)	(D)	9	9	9	9	9	Ω	(3)	(U)	<u>(</u>	\mathbb{G}	(0)	Ω	$\widehat{\mathbb{D}}$	<u>Đ</u>	9	(D)	(C)	(U)	(D)	Ω	(0)	
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ļ	t	(U)	Ω	Ω	Ω	9	9	<u>(</u>	Ω	Ω	Ω	Ω	(0)	Ω	3	9	9	9	3	3	9	Ω	Ω	(U)	(U)	
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
.1-B		<u>(</u>	3	<u>(</u>	Ω	Ω	(U)	Ω	(D)	9	9	3	9	9	3	9	9	3	5	3	3	9	(D)	9	3	
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
L		9	9	()	9	9	(C)	(0)	9	3	3	3	9	3	3	3	3	9	3	9	5	9	3	3	3	
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	ng/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	0 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 70 μg/L

Primary DWS =

70 µg/L

		15	15	[5]	[2]5	<u> </u>	15	18	15	<u>1</u>	[5]	[5]	<u>1</u> 5	9	<u>a</u>	15	[5	<u> </u>	5	[5]	5	15	6	15	1
CH-2-B	Result			١		1				0		١		ľ			(C)			ľ				ľ	-	1
E	2	0.500	0.500	0.500	0.500	0.500	0.500	1.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	ī	3	5	3	9	5	9	3	3	9	3	9	9	3	9	3	3	3	3	3	9	5	9	9	9	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	1.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B	It	9	5	3	5	3	3	9	9	9	3	5	3	3	9	9	9	3	9	9	9	9	9	9	3	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	lt l	3	9	9	9	9	5	9	9	Ω	3	9	9	3	(D)	(3)	9	3	3	(D)	<u>(</u>	9	3	9		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	1.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.030	0
B	±.	9	<u>(</u>	3	9	3	9	3	Ω	Ω	(D)	Ω	(0)	(Ω)	Ω	Ω	$\widehat{\mathbb{U}}$	(C)	Ω	$\widehat{\mathbb{O}}$	$\widehat{\mathbb{O}}$	(D)	9	(D)	3	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	It	(0)	Ω	Ω	Ω	(U)	(0)	(D)	(D)	9	(0)	(D)	(D)	<u>(D</u>	3	9	(D)	Ω	Ω	9	(D)	Ω	Ω	(D)	Ω	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-B	It	Ð	(0)	(U)	Ω	(D)	(U)	<u>(D</u>	3	3	3	9	9	9	3	9	(D)	Ð	9	9	3	Ω	(D)	Ω	3	
	Resu	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
H	1	9	9	9	9	(D)	9	(C)	9	5	9	3	9	5	3	3	9	9	3	9	3	9	9	9	<u>(</u>	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	mg/L	µg/L	µg/L	hg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	ng/L	µg/L	ng/L	µg/L	µg/L	µg/L	0 µg/L							
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 70 μg/L

Primary DWS =

 $70 \mu g/L$

В	It	9	[5	[5	3	15	9	15	[5	15	[5	9	5	9	<u>(</u>	3	9	3	9	3	9	3	3	9	9	1	Γ
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
L	+	9	5	5	3	9	9	3	5	9	3	9	3	5	3	5	9	9	9	9	9	E	9	5	9		T
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
8	11	9	9	9	9	5	3	3	5	3	9	9	9	(U)	3	9	(E)	9	9	9	9	9	3	9	3		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
ľ	lt	Ω	3	9	9	9	3	3	5	5	<u>(D</u>	(U)	(U)	Ω	$\widehat{\Omega}$	9	<u>(D</u>	Ω	Ω	(0)	(D)	(D)	9	(D)	3		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-B	T.	(Ω)	(D)	9	<u>(C</u>	Ω	(0)	Ω	9	<u>(C</u>	Ω	(U)	(1)	9	(U)	(U)	(D)	(0)	(D)	9	9	(U)	Ω	Ω	(0)		r
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T.	<u>+</u>	<u>(D</u>	Ω	(Ω)	(U)	(0)	(U)	Ω	(0)	$\widehat{\Omega}$	<u>(C</u>	3	3	3	E	(0)	9	9	E	3	9	3	9	9	(U)		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B	Ţ	3	9	Ω	9	5	3	3	<u>(C</u>	9	3	5	5	5	9	3	9	9	2	9	9	3	3	3	9	Ī	
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	#	9	(D)	9	(C)	9	9	9	3	9	9	9	9	9	9	9	3	9	5	3	5	5	3	5	9		
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	mg/L	ug/L	ng/L	µg/L	µg/L	µg/L	µg/L	ng/L	700 µg/L	00 ug/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 2700 µg/L	Number $> 600 \text{ µg/L}$

2,700 WV Category A WQS = Primary DWS =

µg/L µg/L

		ī	15	15	15	1=	15	15	1=	1=	1	I⊆		\ <u></u>	1	1	1	1 <u>~</u>	I C	1	I C	1	۱ <u>۲</u>	<u> </u> _	ग्व		_
-B	alt	5		1		1		1		1		9	9		5		5	1	9	9	5	5	15	5]2		
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
H	+	9	9	3	3	3	3	3	3	3	3	9	3	9	9	9	9	9	9	9	9	9	9	9	9		
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
B	ţ	9	5	3	3	3	3	9	5	9	3	3	3	3	9	3	9	3	3	3	3	9	3	9	3		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	t	3	5	9	9	9	9	9	9	9	9	$\widehat{\Omega}$	(2)	Ω	9	3	3	9	(D)	Ω	3	9	3	(D)	9		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~		9	9	3	5	3	9	9	3	9	(D)	Ω	(U)	\odot	Ω	3	<u>(</u>	(U)	(U)	Ω	(U)	(D)	(U)	(U)	9	Ī	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
_	_	Ω	(D)	(D)	$\widehat{\mathbb{C}}$	Ω	(U)	Ω	9	Ω	9	9	9	<u>(</u>	9	Ω	(D)	Ω	3	<u>e</u>	Ω	(Ω)	(D)	(D)	Ω		
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~		9	(U)	Ω	(D)	$\widehat{\mathbb{O}}$	<u>(D</u>	Ω	Ω	(1)	9	3	3	9	5	(C)	<u>(D</u>	9	3	9	3	$\widehat{\Omega}$	<u>(</u>	<u>E</u>	$\widehat{\mathbb{O}}$		
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
<u>F</u>		3	9	9	(D)	<u>(1)</u>	9	9	3	3	9	5	9	3	3	9	3	9	3	9	9	9	9	3	9	ī	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	hg/L	μg/L	µg/L	mg/L	ng/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	700 µg/L	00 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number $> 2700 \mu g/L$	Number > 600 μg/L

2,700 WV Category A WQS = Primary DWS =

µg/L µg/L

		ī	\⊆	1⊂		া ⊆	1=	10	1	1	10	10	T C	10	I C	10	10	10	T =	i C	गि⊂	ا	10	1		т	_
m	Ħ	5	15	15	9	15	12	15	9	15	9	15	3	15	5	9	5	15	5	9	5	15	5	E	5		
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
r .	_	9	9	3	3	5	3	3	3	3	5	9	3	3	3	3	9	3	3	3	3	3	9	3	5		T
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	_	3	3	5	3	3	3	3	3	9	3	3	9	9	3	3	3	9	9	3	3	3	9	9	9		T
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	4	3	3	3	3	3	9	9	5	9	3	9	9	3	Ω	9	9	9	Ω	(0)	5	9	9	3	9		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
B		9	3	9	3	3	3	3	<u>(C)</u>	Ω	9	(1)	(C)	Ω	(D)	<u>(1)</u>	(1)	(0)	Ω	Ω	9	$\widehat{\mathbb{S}}$	3	9	$\widehat{\Omega}$		H
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ţ		Ω	9	(D)	3	<u>(1</u>	3	(U)	Ω	Ω	9	\odot	3	(0)	3	Ω	(U)	9	<u>(C</u>	(0)	(0)	Ω	Ω	9	$\widehat{\Omega}$		-
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
2		9	(0)	(U)	(0)	Ω	Ω	(D)	9	9	3	9	3	9	3	9	9	9	5	3	(D)	\odot	Ω	9	9		
MINT-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ĺ		3	3	9	<u>(</u>	9	9	9	3	9	3	3	5	3	5	9	5	3	3	9	3	9	3	5	3	Ħ	
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Inite		µg/L	ng/L	ng/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	ng/L	µg/L	.035 µg/L	ng/L						
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.035 µg/L	Number > 5 µg/I

0.035 WV Category A WQS = Primary DWS =

 mg/Γ $\mu g/L$ S

	_		10	10	12	1~	10	10	10	10	10	1~		1	10	<u> </u>					10	100		J.			_
þ	<u> </u>	15	5	15	15	15	15	15	15	15	5	15	15	15	15	15	9	2	5	15	5	15	5	2	5		
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
I	_	9	3	9	9	3	3	9	9	3	3	9	3	3	9	3	3	3	3	5	5	3	5	3	9		
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
m		5	5	3	3	3	3	3	9	9	9	9	9	3	3	3	9	9	(0)	3	9	3	9	3	9		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ŀ		9	9	9	5	9	9	9	9	9	9	(3)	9	9	9	9	(0)	(D)	Ω	<u>(</u>	9	3	9	9	9		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
_		9	3	3	3	3	9	9	3	9	(0)	Ω	(3)	(D)	(2)	Ω	Ω	Ω	(C)	9	Ω	5	5	3	(3)		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	1	(D)	9	(D)	9	9	9	(D)	9	Ω	Ω	9	9	Ω	(0)	Ω	9	9	9	(0)	(0)	(0)	(D)	(0)	Ω	Т	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
8	Ţ	Ω	3	5	3	9	(C)	9	3	9	3	9	$\widehat{\mathbb{C}}$	Ω	Ω	Ω	9										
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	1	9	3	(D)	(D)	(U)	9	<u>(D</u>	(5)	9	9	9	9	9	9	3	9	9	2	9	3	(3)	<u>(1</u>	9	3		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Tinife		ng/L	ng/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	hg/L	.035 µg/L	ng/L						
Date	nar.	06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.035 µg/L	Number > 5 μg/L

ng/L 0.035WV Category A WQS = Primary DWS =

ng/L

_		Læ		l.=			-		1	r :=																
B	14	[3	3	3	3	3	3	9	3	9	9	9	5	E	9	9	(9	9	(E)	9	9	9	9	3	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	t	3	9	3	9	9	3	3	5	5	5	3	9	9	9	3	9	9	9	9	3	9	3	9	3	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
8	t	9	9	9	9	9	9	9	3	5	3	9	5	9	Ω	9	(0)	(U)	(3)	Ω	9	(0)	9	(0)	3	
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	ŧ	3	(0)	3	9	3	3	9	9	Ω	9	(D)	9	9	(0)	(D)	Ω	(D)	(U)	(0)	Ω	(U)	Ω	<u>(1)</u>	3	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-B	ıt	(U)	(0)	(D)	<u>(C</u>	(1)	9	5	(E)	Ω	(C)	Ω	(D)	(U)	(U)	Ω	9	9	(0)	9	(0)	Ω	(D)	Ω	$\widehat{\mathbb{O}}$	
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T-/	<u>.</u>	(U)	(D)	(0)	Ω	(U)	Ω	9	Ω	Ω	Ω	Ω	(0)	(U)	3	(0)	9	9	Ð	9	9	()	9	(D)	Ω	
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
1-B	ij	9	3	9	(2)	<u>e</u>	(D)	(D)	<u>(D</u>	3	9	9	9	9	3	9	5	3	3	5	3	3	3	9	3	
MNT-1	Resul	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
I-T	#	9	9	9	9	9	9	$\widehat{\mathbb{U}}$	<u>(C)</u>	5	9	9	9	9	9	9	9	3	3	3	9	3	5	3	9	
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 5 µg/L

Primary DWS =

5 µg/L

				1~	10	ا ا	10	10	1	1	12	1	1	1_		1~						T ~	I.	1	T 255	
æ	=	9	5]5	5	15	5	15	3	9	3]5	9	9	5	9	5]5	9	9	3	5	9]5	3	
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
I		9	9	3	9	9	3	3	3	5	9	3	3	3	9	9	9	3	9	3	9	9	3	9	3	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
2	J	9	5	3	9	3	3	3	9	9	9	3	3	9	3	3	9	9	Ω	(D)	3	9	3	9	3	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	J	9	9	9	9	9	9	3	3	(2)	3	9	3	(D)	(D)	9	(D)	Ω	(0)	Ω	(U)	(D)	9	9	9	
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
~	1	3	(C)	9	9	3	3	9	(U)	Ω	9	9	(D)	Ω	(U)	Ω	(D)	Ω	9	Ð	(D)	Ω	(U)	Ω	9	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	1	Ω	(U)	Ω	(U)	Ω	Ω	5	Ω	(D)	(U)	Ω	(D)	9	9	$\widehat{\mathbb{O}}$	(3)	9	3	3	9	Ω	Ω	Ω	(0)	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
8		<u>(C)</u>	3	<u>(D)</u>	(D)	(0)	(D)	(D)	9	9	(0)	<u>(D</u>	9	5	3	9	9	9	3	9	3	3	3	<u>(1)</u>	<u>E</u>	
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_		9	9	9	9	9	9	Ω	9	5	3	5	9	5	3	9	9	3	2	3	3	3	3	3	9	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Unite		µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	mg/L	ng/L	ng/L	µg/L	ng/L	µg/L	ng/L	µg/L	μg/L	µg/L	ng/L	µg/L	µg/L	µg/L	mg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 5 µg/L

Primary DWS =

5 µg/L

	1	15		n =	15	NE	15	1=	1=	1	1	1⊆	1	1 ⊆		1⊂	1 <u>-</u>	1	10		1₽	1	1 ⊆		ि	1
m	#	 5		-	ľ	-	9	-	15	15	15	15	5	15	5	2	9	9	9	5	9	9	15	5	9	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_		9	9	3	3	3	9	3	3	9	9	3	9	3	9	3	9	3	9	3	3	9	9	3	3	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
~		9	3	3	3	3	3	9	9	9	5	3	3	3	9	3	9	9	9	9	3	9	3	9	3	
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	_	3	9	3	3	9	3	9	3	(U)	9	9	3	3	(0)	3	3	3	(3)	(D)	(0)	9	3	<u>(D</u>	3	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-B	_	5	9	9	9	9	5	3	(0)	Ω	(U)	Ω	(D)	Ω	(D)	(U)	Ω	Ω	Ω	(1)	(2)	Ω	Ω	Ω	9	
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ţ-	t	9	9	9	(D)	Ω	(D)	Ω	(0)	9	$\widehat{\mathbb{O}}$	Ω	Ω	(D)	3	(0)	(D)	(U)	3	9	<u>(</u>	Ω	<u>(D</u>	(0)	(0)	
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-1-B	1	Ω	\odot	Ω	$\widehat{\mathbb{O}}$	<u>(1)</u>	(U)	(D)	9	5	3	9	3	9	3	3	3	9	9	9	3	9	9	9	9	
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	<u></u>	\odot	(C)	(F)	3	9	Ð	3	5	3	9	9	9	3	3	3	2	3	2	3	9	9	9	5	3	
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
IInite	Curre	µg/L	µg/L	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	ng/L	μg/L	ng/L	µg/L	ng/L	ng/L	ng/L	µg/L	µg/L	µg/L	00 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 400 μg/L

WV Category A WQS =

400 µg/L

		15	15	18	15][15][18	18	18	15	15	15	1	12	9	18	<u> </u>	1	<u>[</u>	<u> </u>	<u> </u>	15	15	
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
I	+	5	9	3	9	9	9	3	3	9	9	3	9	9	E	3	9	9	3	9	9	()	9	9	9	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
-B	It	9	9	5	5	9	3	3	9	9	9	9	3	5	(D)	9	<u> </u>	9	(3)	(D)	3	9	3	9	3	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	ı ı	3	9	9	9	9	9	9	3	(U)	3	3	<u>e</u>	9	(0)	Ω	(U)	(D)	(U)	Ω	(D)	(D)	9	(0)	3	
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B	It	<u>(</u>	Ð	9	9	9	9	(D)	(U)	Ω	(0)	Ω	(D)	(U)	Ω	Ω	(D)	Ω	Ω	Ω	(D)	Ω	(U)	Ω	9	
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	It	(0)	Ω	(U)	Ω	<u>(</u>	9	(D)	Ω	(U)	Ω	(U)	(C)	(U)	3	(D)	9	<u>(C)</u>	Ð	9	(D)	(U)	Ω	(0)	(Ω)	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
B	#	(D)	(D)	(0)	(U)	Ω	(0)	Ð	9	9	<u>(C</u>	(D)	9	3	3	9	3	3	3	3	9	9	9	9	(U)	
ES-1-B	Resu	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Ţ	#	9	9	\odot	Ω	Ω	Ω	(3)	9	3	(D)	9	9	3	2	9	2	9	3	9	9	9	3	3	9	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	ng/L	µg/L	mg/L	mg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	ug/L	00 µg/L										
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 400 µg/L

WV Category A WQS =

400 µg/L

Result Result	ATA 0.500	0000 (0)	35	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(U) 0.500 (U) 0.	(C)	(C)	(C)	(C)	(C)	(C)
	0.500 (U)	0.500 (1.1)	(0) 200.0	0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500	0.500 (U) 0.500
(D)		00 (U) 0.500	UD	(0)	99	999	222	2555	25555	555555	5555555	99999999	22222222	2555555555	2222222222	255555555555	222222222222	222222222222	2222222222222	2222222222222	22222222222222	222222222222222	2222222222222222	2222222222222222	22222222222222222	22222222222222222
(U) 0.500			(U) 0.500		(U) 0.500																					
0.500 (U) 0.500 (U)				0.500 (U)		(U) 00C:0													-1-1-1-1-1-1-1-1-1-1-1-1-1					9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
555	55	9		9	9		9	99	222	5555	55555	55555	555555	5555555	55555555	555555555	5555555555	55555555555	20222222222	202020202020	252525555555	55555555555555	20202020202020	25222222222222	5555555555555555	2555555555555555
0.500																										
0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)					1																					
	5555	EEE	555	9			9	0.500 (U) 0		()	99	999	5555	55555	555555	555555	5555555	55555555	555555555	5555555555	88888888888	555555555555	8888888888888	222222222222	88988888888888	2222222222222
55555	5555	555	998	95		9	E	9		5)	3	225	255	2555	25555	9999999	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
				+					μ <u>σ/</u> Ι΄ ()	+	+															
06/24/2015	07/07/2015		07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	10/29/2015	10/13/5015	10000	3/2015	9/2015	3/2015 9/2015 7/2015	3/2015 9/2015 7/2015 1/2015	3/2015 9/2015 7/2015 1/2015 5/2015	11/03/2015 11/09/2015 11/17/2015 12/01/2015 12/15/2015 01/05/2016	3/2015 9/2015 7/2015 1/2015 5/2016 5/2016 2/2016	3/2015 9/2015 7/2015 1/2015 5/2016 2/2016 9/2016							3/2015 9/2015 7/2015 7/2015 5/2016 5/2016 7/2016 7/2016 1/2016 1/2016 1/2016	9

WV Category A WQS = Primary DWS =

400 μg/L5 μg/L

		T	1=	N C	1=	1=	া ⊆	1=	ৰ	\ <u>_</u>		10		<u>1</u> ⊂		10	10	10	<u> </u>		1 <u>-</u>	10	10	17	া	1	_
8	Ħ	5	5	15	5			5	15	5	15	15	15	9	5	5	5]5	9	5	15	9	9	9]5		
CH-7-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	+	9	9	3	3	9	9	3	2	3	3	5	5	9	9	9	3	3	9	9	3	9	9	3	3		
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
m		9	3	3	3	3	9	9	3	3	9	9	9	3	9	3	9	3	9	9	3	9	3	9	3		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
E	ţ	9	3	9	9	3	9	9	9	9	(E)	Ω	(Ω)	Ω	(n)	9	9	Ω	Ω	Ω	<u>(</u>	9	9	(D)	9		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~	1	(3)	9	5	9	3	9	9	3	<u>(C</u>	$\widehat{\mathbb{O}}$	(3)	(0)	$\widehat{\mathbb{C}}$	(U)	\mathbb{G}	(0)	Ω	(D)	<u>(D</u>	(U)	Ω	Ω	(0)	3		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
ľ	,	(0)	Ω	(0)	9	Ω	Ω	(0)	9	(Ω)	3	5	9	3	5	(C)	(D)	9	3	9	3	9	(3)	Ω	(0)		
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~		<u>(D</u>	Ω	Ω	<u>(D</u>	<u>(D)</u>	3	<u>(D</u>	Ω	9	3	5	3	5	3	3	3	9	2	9	3	3	3	3	3		
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	<u>t</u>	9	Ð	9	9	9	3	9	9	9	3		9	3	3	5	3	9	5	9	3	5	3	5	9		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	hg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	mg/L	mg/L	µg/L	µg/L	ng/L	µg/L	00 µg/L	mg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number $> 400 \mu g/L$	Number > 5 µg/L

5 WV Category A WQS = Primary DWS =

µg/L µg/L

T MNT-2-B	MNT-1-B MNT-2-T MNT-2-B	-1-B MNT-2-T MNT-2-B	MNT-2-B		M-1-T			M-1-B	M-2-T	M-2-B
TESUIT RESUIT RESUIT RESUIT RESUIT	The Result Result Result Result	The Result Result Result	The Result Result	III Kesult	닄	1 /-	4	=	븳	Result
7500 (1) 7500 (1)	(U) 005.7 (U) 005.7 (U) 005.7 (U)	(U) 0057 (U) 0057 (U)	(U) 7500 (U)	96	006.7	~ `		(U) 00C./	7.500 (U)	7.500
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500	\sim		7.500 (U)	7.500 (U)	7.500 (1)
(0)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	(0)		1	7	7.500 (U)	7.500	7.500
(U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	(D)	7.500	$ \cdot $	(0)	7.500 (U)	(U) 005.7	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			(0) 7.	7.500 (U)	(0.000)	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			\mathbf{U} 7.	7.500 (U)	7.500 (U	U) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500	7.500		(U) 7.	7.500 (U)	7.500 (U)	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			(U) 7.	7.500 (U)	(U) 002.7	U) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	3		\smile	(U) 7.	7.500 (U)	7.500 (U)	(1) 7.500 (U
7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9		\cup	(U) 7.	7.500 (U)	(U) 002.7	J) 7.500 (U
7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	<u>(</u>	7.500		(0) 7.	7.500 (U)	7.500 (U)	U) 7.500 (U
7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500		(0) 7.	7.500 (U)	(U) 002.7	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500	\neg	(U) 7.	7.500 (U)	(U) 002.7	U) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	<u> </u>	7.500		(0) 7.	7.500 (U)	7.500 (U	(U) 7.500 (U
(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500		(U) 7.	7.500 (U)	(U) 005.7	U) 7.500 (U)
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500	\subseteq	(U) 7.	7.500 (U)	7.500 (U	7) 7.500
7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	<u> </u>	7.500	0	(0) 7.	7.500 (U)	7.500 (U	(U) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	3	7.500	٦	(U) 7.	7.500 (U)	7.500 (U)	(1) 7.500 (1)
9	(U) 7.500 (U) 7.500 (U) 7.500 (U)	(U) 7.500 (U) 7.500 (U)	(U) 7.500 (U)	9	7.500		(0) 7.	7.500 (U)	7.500 (U)	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			(0) 7.	7.500 (U)	7.500 (U)	D) 7.500 (U
(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			(0) 7.	7.500 (U)	7.500 (U)	J) 7.500 (U
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500			(U) 7.	7.500 (U)	7.500 (U)	7.500
7.500 (U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500 (U) 7.500	(U) 7.500 (U) 7.500	(U) 7.500		_	(U) 7.	7.500 (U)	7.500 (U)	J) 7.500 (U
Number > 0.059 μ g/L 0 0 0 0 0 0	0 0 0	0 0	0		0			0	0	0
						l				

0.059 µg/L

7.500
7 500
7.500 (U)
7.500 (U) 7.500
1
Hg/L

0.059 µg/L

T MNT-1-B	MNT-1-B	MNT-1-B	-1-B	MN		MINT-2-T	MNT-2-B	8-7	M-1-T		M-1-B	_	M-2-T		M-2-B	_
Kesuit Kesuit	nt Kesult	Kesult	늷		Kesult	H	Result	_	Result		Result	ţ	Result	t	Result	•
3	(U) 0.500	0.500	Ì		0.500	9	0.500	9	0.500	(0)	0.500	(0)	0.500	9	0.500	3
(U) 0.500 (U)	(U) 0.500 (U)	9	9		0.500	Ð	0.500	(U)	0.500	Ω	0.500	9	0.500	9	0.500	3
(U) 0.500 (U)	(U) 0.500 (U)) 0.500 (U)	<u>D</u>		0.500	9	0.500	Ω	0.500	(D)	0.500	3	0.500	9	0.500	3
	(U) 0.500				0.500	9	0.500	(D)	0.500	Ω	0.500	(3)	0.500	9	0.500	3
μg/L 0.500 (U) 0.500 (U)	(U) 0.500	0.500			0.500	9	0.500	9	0.500	(0)	0.500	Ω	0.500	9	0.500	9
	(U) 0.500	0.500			0.500	3	0.500	(C)	0.500	(0)	0.500	3	0.500	3	0.500	<u>E</u>
0.500 (U)	(U) 0.500	0.500		_	0.500	9	0.500	(0)	0.500	Ω	0.500	9	0.500	9	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	9	0.500	9	0.500	(0)	0.500	9	0.500	3	0.500	9
-	(U) 0.500	0.500			0.500	9	0.500	(1)	0.500	Ω	0.500	(D)	0.500	9	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	9	0.500	9	0.500	Ω	0.500	(0)	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	Ð		0.500	3	0.500	(C)	0.500	Ω	0.500	(0)	0.500	9	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	9	0.500	(D)	0.500	(D)	0.500	(D)	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	9		9	0.500	Ω	0.500	Ω	0.500	3	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	9	0.500	E	0.500	9	0.500	(U)	0.500	Ω	0.500	(D)
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(U)	0.500	3	0.500	(D)	0.500	Ω	0.500	E	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	<u> </u>		0.500	(C)	0.500	9	0.500	9	0.500	(D)	0.500	Ω	0.500	9
0.500 (U)	3		0.500 (U)		0.500	(D)	0.500	9	0.500	<u>(D</u>	0.500	Ω	0.500	(D)	0.500	9
0.500 (U) 0.500	(U) 0.500	0.500			0.500	<u> </u>	0.500	3	0.500	Ω	0.500	(D)	0.500	(D)	0.500	3
0.500 (U) 0.500	(U) 0.500	0.500	_		0.500	9	0.500	5	0.500	9	0.500	(U)	0.500	(U)	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	(C)	0.500	9	0.500	(U)	0.500	(U)	0.500	9	0.500	9
3	(U) 0.500	0.500			0.500	9	0.500	3	0.500	Ω	0.500	(U)	0.500	(U)	0.500	9
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(U)	0.500	(C)	0.500	Ω	0.500	9	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	9	0.500	9	0.500	(Ω)	0.500	Ω	0.500	(D)	0.500	9
0	(U) 0.500	0.500			0.500	(J)	0.500	<u>(D</u>	0.500	(D)	0.500	(D)	0.500	9	0.500	9
Number > 0.66 µg/L 0 0		0	0		0		0		0		0		0		0	
Number $> 5 \mu g/L$ 0 0 0		0	0		0		0	H	0		0		0		0	
						!								١		1

µg/L µg/L

ES-1-T ES-1-B ES-2-T ES-2-B	ES-1-B ES-2-T	I-B ES-2-T	ES-2-T			ES-	آلما	m 1	CH-1-T	L,	CH-1-B	æ .	CH-2-T	Ę.	CH-2-B	m
Ę	ặ		Kesun	ļ	Result		Kesult		Kesult		Kesult	<u>.</u>	Kesult	Ţ	Result	+
		3		9	0.500	9	0.500	9	0.500	9	0.500	9	0.500	(0)	0.500	9
- 1	0.500	E	0.500	9	0.500	(0)	0.500	Ω	0.500	9	0.500	9	0.500	5	0.500	9
		9	l	<u>(</u>	0.500	(0)	0.500	9	0.500	3	0.500	9	0.500	3	0.500	3
	0.500	3		<u>e</u>	0.500	(U)	0.500	(0)	0.500	9	0.500	5	0.500	9	0.500]5
	0.500	9	0.500	Ω	0.500	(D)	0.500	9	0.500	3	0.500	9	0.500	9	0.500	3
	0.500	<u>(1)</u>	0.500	(D)	0.500	(C)	0.500	3	0.500	3	0.500	3	0.500	9	0.500	[
	0.500	9	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	9	0.500	5	0.500	3
	0.500	$\widehat{\mathbb{C}}$	0.500	(D)	0.500	9	0.500	3	0.500	5	0.500	3	0.500	15	0.500	[5
ı	0.500	9	0.500	<u>(D</u>	0.500	Ω	0.500	<u> </u>	0.500	9	0.500	9	0.500	3	0.500	3
		9	0.500	3	0.500	9	0.500	Ω	0.500	3	0.500	3	0.500	9	0.500	3
µg/L		5	0.500	9	0.500	Ω	0.500	Ω	0.500	9	0.500	9	0.500	5	0.500	3
		3	0.500	5	0.500	Ω	0.500	Ω	0.500	3	0.500	9	0.500	5	0.500	3
µg/L		9	0.500	$\widehat{\mathbb{C}}$	0.500	Ω	0.500	3	0.500	9	0.500	3	0.500	3	0.500	15
µg/L	0.500	3	0.500	5	0.500	9	0.500	Ω	0.500	()	0.500	9	0.500	9	0.500	3
μg/L	0.500	5	0.500	9	0.500	9	0.500	(D)	0.500	(0)	0.500	3	0.500	9	0.500	3
µg/L		3		5	0.500	9	0.500	(C)	0.500	(D)	0.500	3	0.500	3	0.500	3
- 1		9		3	0.500	9	0.500	$\widehat{\mathbb{U}}$	0.500	Ω	0.500	9	0.500	9	0.500	3
µg/L		3		3	0.500	9	0.500	(1)	0.500	(U)	0.500	9	0.500	9	0.500	9
µg/L	ľ	5	0.500	9	0.500	9	0.500	(D)	0.500	(0)	0.500	9	0.500	9	0.500	3
		3	0.500	3	0.500	(C)	0.500	Ω	0.500	9	0.500	5	0.500	9	0.500	3
μg/L	-	3	Ĭ	3	0.500	<u>(C</u>	0.500	(D)	0.500	(0)	0.500	9	0.500	9	0.500	9
		3	0.500	3	0.500	Ω	0.500	$\widehat{\mathbb{U}}$	0.500	3	0.500	3	0.500	9	0.500	[5
	0.500	9	0.500	$\widehat{\mathbb{G}}$	0.500	Ω	0.500	(0)	0.500	(D)	0.500	9	0.500	9	0.500	9
	0.500	9	0.500	(3)	0.500	Ω	0.500	3	0.500	3	0.500	3	0.500	9	0.500	[5
Number > 0.66 μg/L	0		0		0		0		0		0		0		0	
	0		0		0		0		0		0		0		0	
						ĺ				1		1		1		7

ug/L ug/L

20	4	[5	[5]	15	[5	[5	15)5	3	3	<u> </u>	15	3	18	9	18	3	3	9	9	9	3	[5	9	[5]	,	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	C
	+	9	9	9	9	9	3	3	3	9	3	3	9	9	9	3	3	3	9	(E)	3	9	3	9	3		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
8	#	9	9	9	5	9	9	9	3	9	9	9	9	9	9	9	5	9	(U)	(U)	9	5	9	9	3		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
H	<u>+</u>	5	(D)	9	9	9	9	9	9	9	3	9	9	9	9	3	9	(U)	(U)	Ω	(D)	9	9	9	9		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
e e	ţ	3	3	9	5	9	3	9	3	(D)	(D)	Ω	(U)	Ω	(D)	(0)	<u>(C</u>	(D)	9	3	Ω	(D)	9	Ω	(0)		
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T-T	Ιŧ	(0)	Ω	Ω	(Ω)	(U)	(U)	Ð	9	Ω	(D)	\mathbb{G}	(D)	(D)	(C)	(U)	(U)	(1)	9	5	3	(0)	Ω	(0)	(U)		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B	ılt	(0)	(D)	(D)	Ω	(Ω)	(U)	Ω	Ω	(D)	<u>D</u>	9	9	3	9	<u>(C</u>	9	3	3	3	9	9	<u>(D</u>	(D)	9		
MNT-1	Resu	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
I- 1	Į.	9	5	9	3	(0)	(U)	(D)	$\widehat{\mathbb{C}}$	9	9	3	9	5	9	3	3	3	9	5	3	9	9	3	9		
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ilmite	Curto	µg/L	µg/L	ug/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	ng/L	ng/L	µg/L	ng/L	µg/L	μg/L	µg/L	.55 µg/L	0 µg/L						
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number $> 0.55 \mu g/L$	Number $> 80 \mu g/L$

μg/L μg/L (as part of total

Result Result	15	2000	0.500	0.500	0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.	0.500 0.5000 0.5	0.500 0.5000 0.5	0.500 0.5000 0.5	0.500 0.5000 0.5
Result	0	,	0.500	0.500 (0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500	0.500 0.500	0.500 0.500
11000	0	n) 0.500 (U)		(U) 0.500 (U)	0.500 (0.500 (0.5	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500	0.500 0.500	0.500 0.500
0.500 CIN	0000	(U) 0.500	0.500 (U)	2000	0.500	0.500	0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500	0.500 0.500
O 500	(a) one o	(U) 005.0	0.500 (U)	U D 0050	(0) 000:0	0.500	0.500	0.500 (0.5	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
ı	0.500	0.500 (U)	0.500 (U)	0.500 (U)		0.500 (U)	99	999	5555	55555	555555	5555555	5555555	55555555	555555555	5555555555	55555555555	55555555555	5555555555555	5555555555555	55555555555555	555555555555555	2222222222222	55555555555555555	22222222222222	22222222222222
	0.500 (U)	0.500 (U)	ŀ	0.500 (U)	0.500	1	1 1	1 1 1																		
TENOMIE	0.500 (U)	0.500 (U)		0.500 (U)	0.500	+	0.500 (U)																			
	ng/L	5 µg/L	5 µg/L		J/gn o	ng/L	1				J/gµ J/gµ J/gµ mg/L	Light Tight	Light Tight	Jen Jen Jen Jen Jen Jen Jen Jen Jen	Light Tight	T/gu T/gu T/gu T/gu T/gu T/gu T/gu	Light Tight	T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn	T/8n T/8n T/8n T/8n T/8n T/8n T/8n T/8n	T/8n T/8n T/8n T/8n T/8n T/8n T/8n T/8n	T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn	T/8m T/8m T/8m T/8m T/8m T/8m T/8m T/8m	Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu	Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu		Typu Typu Typu Typu Typu Typu Typu Typu
	06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015		/2015	5/2015	5/2015 9/2015 3/2015	5/2015 9/2015 3/2015 3/2015	5/2015 9/2015 3/2015 3/2015	09/15/2015 09/29/2015 10/13/2015 11/03/2015 11/09/2015 11/17/2015	09/15/2015 09/29/2015 10/13/2015 11/03/2015 11/17/2015 12/01/2015	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/15/2015	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/15/2015 01/05/2016	5/2015 5/2015 5/2015 5/2015 7/2015 7/2015 7/2016 5/2016	5/2015 3/2015 3/2015 3/2015 3/2015 1/2015 5/2016 3/2016	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/15/2015 02/02/2016 03/07/2016	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/115/2015 02/02/2016 02/02/2016 03/07/2016 03/07/2016	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/15/2015 01/05/2016 02/29/2016 03/07/2016 03/29/2016	5/2015 5/2015 5/2015 5/2015 7/2015 7/2016 7/2016 7/2016 7/2016 7/2016 7/2016 7/2016 7/2016	5/2015 5/2015 5/2015 5/2015 5/2015 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016 5/2016	72015 72015 72015 72015 72015 72016 72016 72016 72016 72016 72016 72016 72016 72016 72016 72016	72015 72015 72015 72015 72015 72016 72016 72016 72016 72016 72016 72016 72016 72016	09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/109/2015 11/17/2015 12/15/2015 02/02/2016 03/07/2016 03/21/2016 03/21/2016 04/13/2016 04/13/2016 04/13/2016

0.55 µg/L 80 µg/L

(U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) (U)	0.500 (U) 0.500	0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U) (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U) 0.500
(U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (T) 0.500 (T) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(a) socia (a) socia (a) socia
(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)		(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500
(U) 0.500 (U) (U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)		0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U) (U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(I) 0.500 (I) 0.500 (I) 0.500 (I)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	ATN 0500 ATN 0500 ATN	(a) com (a) (a)		(a) socia (a) socia (a)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
			(a) onc. (b) onc. (c)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500	(U) 0.500 (U)	(U) 0.500 (U) 0.500	(U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
00 (U) 0.500 (U) 0.500	0.500 (U)	(U) 0.500 (U)	(U) 00500 (U) 00500	(U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500	0.500 (U)	(U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	(U) 00500 (U) 00500 (U) 00500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 00500 (U) 00500 (U) 00500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
00 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500	(U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500
(U) 0.500	0.500 (U) 0.500	(U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500
(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U) 0.500 (T) 0.500 (T)	(U) 0.500 (U) 0.500 (T) 0.500 (T)	0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.50 (U) 0.50 (U) 0.50 (U) 0.50 (U)	0.50 (U) 0.50 (U) 0.50 (U) 0.50 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500
(U) 0.500 (U) 0.500	0.500 (U) 0.500	(U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U) (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U)
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 005.0 (U) 05.0 (U) 005.0 (U) 005.0 (U) 005.0	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(T) 0.500 (T)	(U) 0.500 (U)	0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U)	0 500 AD 0 500 AD 0 500 AD	(T) 0.500 (T) 0.500 (T)		0500 (II) 0500 (II) 0500 (II) 050	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)
(I) 0.500	(U) 0.500	0.500 (U) 0.500	(U) 0.500 (U) 0.500	0.500 (TD 0.500 (TD 0.500	OCO OTT 0500 OTT	(T) (C) (T) (C)	0.500 (TD 0.500 (TD 0.500 (TD 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500
(U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 0.500 (U) 0.500 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500	(U) 0.500 (U)	0.500 (U)
20000	20000	0.500 (U) 0.500	(U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) (U) (U) 0.500 (U) (U) (U) 0.500 (U) (U) (U) 0.500 (U) 0.50	0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) (U) (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) (U) 0.500 (U)	0.500 (U)
		0.500 0.500 0.500 0.500 0.500 0.500	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 0.500 (U) 0.500 0.500 (U) 0.500 0.500 (U) 0.500 0.500 (U) 0.500 0.500 (U) 0.500	(U) 0.500 (U)	(U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500	0.500 (U) 0.500 (U) 0.500 0.500 (U) 0.500 (U) 0.500	(U) 0.500 (U) 0.	0.500 (U) 0.500
	0 0 0 0 0		22222222	0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U) 0.500 (U)	(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U) 0.500	(U) 0.500 (U) 0.500 (U) (U) 0.500 (U	0.500 (U) 0.500

4.3 μg/L80 μg/L

(as part of total trihalomethanes (TTHM))

Doto	TImite	ES-1-T	T	ES-1-1	e e	ES-2-T		ES-7-B	B	CH-1-T	T	CH-1-B	-B	CH-2-T	Ŀ	CH-2-B	22
anc	CIIIC	Result	Į,	Result	t	Result	4	Result	#	Result	<u>+</u>	Result	=	Result	#	Result	<u>+</u>
06/24/2015	µg/L	0.500	Ω	0.500	Ω	0.500	9	0.500	3	0.500	3	0.500	9	0.500	9	0.500	9
07/07/2015	µg/L	0.500	Ω	0.500	Ω	0.500	9	0.500	9	0.500	5	0.500	9	0.500	3	0.500	3
07/20/2015	μg/L	0.500	(U)	0.500	(3)	0.500	9	0.500	3	0.500	3	0.500	3	0.500	9	0.500) [
08/03/2015	µg/L	0.500	(D)	0.500	Ω	0.500	9	0.500	9	0.500	5	0.500	3	0.500	3	0.500	3
08/17/2015	ug/L	0.500	<u>(C</u>	0.500	(D)	0.500	(D)	0.500	9	0.500	9	0.500	9	0.500	3	0.500	3
09/01/2015	µg/L	0.500	9	0.500	Ω	0.500	(C)	0.500	9	0.500	9	0.500	9	0.500	3	0.500	9
09/15/2015	µg/L	0.500	9	0.500	(D)	0.500	(0)	0.500	3	0.500	3	0.500	9	0.500	9	0.500	3
09/29/2015	ug/L	0.500	9	0.500	(U)	0.500	9	0.500	3	0.500	9	0.500	3	0.500	2	0.500	3
10/13/2015	µg/L	0.500	(3)	0.500	(D)	0.500	(D)	0.500	9	0.500	5	0.500	3	0.500	3	0.500	3
1/03/2015	µg/L	0.500	9	0.500	<u>(D</u>	0.500	(D)	0.500	9	0.500	3	0.500	3	0.500	3	0.500	3
1/09/2015	µg/L	0.500	3	0.500	3	0.500	$\widehat{\mathbb{O}}$	0.500	$\widehat{\mathbb{G}}$	0.500	$\widehat{\mathbf{G}}$	0.500	9	0.500	9	0.500	3
1/17/2015	ng/L	0.500	9	0.500	3	0.500	(C)	0.500	(D)	0.500	<u>(C</u>	0.500	3	0.500	9	0.500	9
2/01/2015	µg/L	0.500	3	0.500	9	0.500	(D)	0.500	(D)	0.500	(D)	0.500	9	0.500	3	0.500	3
2/15/2015	µg/L	0.500	3	0.500	3	0.500	<u>(C</u>	0.500	Ω	0.500	(E)	0.500	9	0.500	Ð	0.500	9
01/05/2016	µg/L	0.500	9	0.500	9	0.500	(U)	0.500	(0)	0.500	<u>(</u>	0.500	9	0.500	9	0.500	9
02/02/2016	µg/L	0.500	9	0.500	(D)	0.500	Ω	0.500	9	0.500	9	0.500	9	0.500	3	0.500	9
02/29/2016	µg/L	0.500	9	0.500	<u>(D</u>	0.500	Ω	0.500	9	0.500	3	0.500	9	0.500	3	0.500	3
03/07/2016	µg/L	0.500	3	0.500	Ω	0.500	Ω	0.500	9	0.500	3	0.500	9	0.500	9	0.500	9
03/21/2016	µg/L	0.500	<u>(</u>	0.500	Ω	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	9	0.500	3
03/29/2016	µg/L	0.500	(0)	0.500	Ω	0.500	(D)	0.500	<u> </u>	0.500	9	0.500	5	0.500	3	0.500	3
04/13/2016	µg/L	0.500	Ω	0.500	(D)	0.500	9	0.500	9	0.500	9	0.500	9	0.500	9	0.500	3
04/20/2016	µg/L	0.500	(D)	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	3	0.500	5	0.500	3
05/11/2016	µg/L	0.500	Ð	0.500	Ω	0.500	(D)	0.500	(D)	0.500	9	0.500	9	0.500	9	0.500	9
06/01/2016	µg/L	0.500	(D)	0.500	$\widehat{\mathbb{O}}$	0.500	(D)	0.500	9	0.500	9	0.500	3	0.500	9	0.500	3
Number > 4.3 µg/L	3 µg/L	0		0		0		0		0		0		0		0	
Number > 80 µg/L	mg/L	0		0		0		0		0		0		0		0	
											1]

4.3 μg/L 80 μg/L

(as part of total trihalomethanes (TTHM))

Date	TInito	MNT-1-T	T-	MNT-1-B		MINT-2-T	Ŧ.	MNT-2-B	-B	M-1-T	1	M-1-B	8	M-2-T	ı	M-2-B	8
Marc	Omto	Result	11	Result	_	Result	دب	Result	<u>+</u>	Result	<u></u>	Result		Result	<u></u>	Result	1
06/24/2015	µg/L	0.500	9	0.500	Ω	0.500	Ω	0.500	3	0.500	9	0.500	3	0.500	9	0.500	9
07/07/2015	µg/L	0.500	3	0.500	9	0.500	<u>(C</u>	0.500	9	0.500	3	0.500	9	0.500	9	0.500	3
07/20/2015	ng/L	0.500	3		<u>(</u>	0.500	\odot	0.500	(D)	0.500	5	0.500	3	0.500	3	0.500	3
08/03/2015	µg/L	0.500	5		9	0.500	Ð	0.500	(1)	0.500	(D)	0.500	3	0.500	5	0.500	3
08/17/2015	µg/L	0.500	5	I	9	0.500	(D)	0.500	Ω	0.500	(D)	0.500	5	0.500	9	0.500	3
09/01/2015	ng/L	0.500	Ð	0.500 (1	9	0.500	(Ω)	0.500	<u>(D</u>	0.500	3	0.500	3	0.500	3	0.500	3
09/15/2015	µg/L	0.500	3	0.500 (1	(D)	0.500	Ω	0.500	(U)	0.500	9	0.500	9	0.500	9	0.500	3
09/29/2015	µg/L	0.500	9	0.500	(D)	0.500	$\widehat{\mathbb{O}}$	0.500	9	0.500	3	0.500	3	0.500	5	0.500	[5
10/13/2015	µg/L	0.500	5		<u>e</u>	0.500	9	0.500	(D)	0.500	9	0.500	3	0.500	3	0.500	3
1/03/2015	µg/L	0.500	3		9	0.500	9	0.500	(0)	0.500	(D)	0.500	3	0.500	3	0.500	3
1/09/2015	ng/L	0.500	9		9	0.500	3	0.500	(0)	0.500	Ω	0.500	(U)	0.500	5	0.500	9
1/17/2015	µg/L	0.500	5		3	0.500	3	0.500	9	0.500	Ω	0.500	(D)	0.500	3	0.500	9
2/01/2015	μg/L	0.500	3		9	0.500	5	0.500	$\widehat{\mathbb{O}}$	0.500	Ω	0.500	9	0.500	9	0.500	9
2/15/2015	µg/L	0.500	3		3		3	0.500	9	0.500	$\widehat{\mathbb{O}}$	0.500	<u>(</u>	0.500	9	0.500	9
01/05/2016	µg/L	0.500	9		9	0.500	9	0.500	Ω	0.500	(Ω)	0.500	(2)	0.500	9	0.500	3
02/02/2016	µg/L	0.500	5		3	0.500	3	0.500	$\widehat{\mathbb{O}}$	0.500	(D)	0.500	3	0.500	5	0.500	3
02/29/2016	ng/L	0.500	3		5		<u>(1)</u>	0.500	(D)	0.500	9	0.500	3	0.500	3	0.500	3
03/07/2016	µg/L	0.500	3		<u>.</u>	0.500	9	0.500	\odot	0.500	(D)	0.500	5	0.500	9	0.500	3
03/21/2016	µg/L	0.500	9		<u> </u>	0.500	9	0.500	Ω	0.500	(C)	0.500	9	0.500	3	0.500	3
03/29/2016	µg/L	0.500	3	0.500	9	0.500	Ω	0.500	()	0.500	9	0.500	9	0.500	5	0.500	3
04/13/2016	µg/L	0.500	3	0.500 (1	(C)	0.500	Ω	0.500	9	0.500	3	0.500	5	0.500	3	0.500	[5
04/20/2016	µg/L		9	0.500	Ω	0.500	Ω	0.500	(D)	0.500	3	0.500	3	0.500	9	0.500	9
05/11/2016	µg/L	0.500	9	0.500	_ (D)	0.500	Ω	0.500	9	0.500	3	0.500	3	0.500	3	0.500	3
06/01/2016	μg/L	0.500	3	0.500	9	0.500	(0)	0.500	Ω	0.500	9	0.500	3	0.500	9	0.500	3
Number > 0.25 µg/L	25 µg/L	0		0	\dashv	0		0		0		0		0		0	
Number > 5 μg/L	ng/L	0		0		0		0		0		0		0		0	

µg/L 0.25 WV Category A WQS = Primary DWS =

µg/L

the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the MDL and the applicable standard.

Doto	Hinito	ES-1-T		ES-1-B		ES-2-T	r	ES-2-B	8	CH-1-T	Ŀ	CH-1-B	æ	CH-2-T	<u>-</u>	CH-2-B	22
Date	CHIES	Result		Result		Result		Result	بر	Result	=	Result	#	Result	1	Result	+
06/24/2015	µg/L	0.500	9	0.500	\odot	0.500	Ω	0.500	3	0.500	9	0.500	5	0.500	9	0.500	9
07/07/2015	µg/L	0.500	9	0.500	Ω	0.500	9	0.500	5	0.500	3	0.500	9	0.500	9	0.500	9
07/20/2015	µg/L	0.500	(D)		$\widehat{\Omega}$	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	15	0.500	[5
08/03/2015	µg/L	0.500	9	0.500	9	0.500	9	0.500	3	0.500	9	0.500	3	0.500	3	0.500	5
08/17/2015	μg/L	0.500	9	0.500	Ω	0.500	9	0.500	Ð	0.500	9	0.500	3	0.500	9	0.500	3
09/01/2015	ng/L	0.500	3	0.500	9	0.500	<u>(C</u>	0.500	9	0.500	3	0.500	3	0.500	3	0.500)5
09/15/2015	µg/L	0.500	5		9	0.500	(1)	0.500	(C)	0.500	9	0.500	9	0.500	9	0.500]5
09/29/2015	µg/L	0.500	3	0.500	(5)	0.500	(0)	0.500	9	0.500	9	0.500	3	0.500	5	0.500	[3
10/13/2015	µg/L	0.500	3		$\widehat{\mathbb{D}}$	0.500	Ω	0.500	9	0.500	9	0.500	9	0.500	3	0.500)5
11/03/2015	µg/L	0.500	5		5	0.500	9	0.500	Ω	0.500	9	0.500	3	0.500	3	0.500	3
11/09/2015	µg/L	0.500	5		5	0.500	<u>(1</u>	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	3
11/17/2015	µg/L	0.500	5		3	0.500	3	0.500	9	0.500	(D)	0.500	3	0.500	5	0.500	3
12/01/2015	μg/L	0.500	9	0.500	9	0.500	Ω	0.500	<u>(1)</u>	0.500	5	0.500	3	0.500	3	0.500	3
12/15/2015	µg/L	0.500	3	1	3	0.500	3	0.500	(1)	0.500	<u>e</u>	0.500	3	0.500	3	0.500	3
01/05/2016	µg/L	0.500	9		9	0.500	Ω	0.500	Ω	0.500	9	0.500	3	0.500	3	0.500	9
02/02/2016	ng/L	0.500	9		Ð	0.500	<u> </u>	0.500	Ω	0.500	<u>(C)</u>	0.500	9	0.500	3	0.500	9
02/29/2016	µg/L	- 1	3		9	0.500	(3)	0.500	$\widehat{\mathbb{O}}$	0.500	9	0.500	9	0.500	9	0.500	3
03/07/2016	µg/L		9		5	0.500	3	0.500	(D)	0.500	(D)	0.500	9	0.500	9	0.500	9
03/21/2016	mg/L	0.500	3	0.500	3	0.500	9	0.500	(D)	0.500	Ω	0.500	(D)	0.500	3	0.500	9
03/29/2016	µg/L	0.500	9	0.500	3	0.500	9	0.500	Ω	0.500	(n)	0.500	9	0.500	9	0.500	3
04/13/2016	µg/L	0.500	3		9	0.500	<u>(C</u>	0.500	Ω	0.500	9	0.500	3	0.500	3	0.500	3
04/20/2016	µg/L	0.500	3	0.500	<u>e</u>	0.500	Ω	0.500	<u>(D</u>	0.500	9	0.500	9	0.500	9	0.500	9
05/11/2016	µg/L	0.500	3	0.500 (1	(D)	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	3	0.500	19
06/01/2016	µg/L	0.500	5	0.500	3	0.500	Ω	0.500	Ω	0.500	9	0.500	9	0.500	9	0.500	3
Number > 0.25 μg/L	25 µg/L	0	\dashv	0	+	0		0		0		0		0		0	
Number > 5 μg/L	ng/L	0		0		0		0		0		0		0		0	

ng/L mg/L

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

		[5	3	[5	9]5	[5	[5	15	3	3	9	9	9	3	3	3	9	9	E	9	9	18	9	15)	Γ
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
F	41	9	9	15	9	3	3	5	5	9	3	9	9	3	5	3	3	9	9	9	9	3	3	3	3		F
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
3	t	9	3	9	3	3	3	9	3	3	3	3	9	9	9	5	3	<u>e</u>	<u>(D</u>	9	9	9	9	9	9		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	С
	1	(D)	9	3	9	9	5	3	3	9	9	Ω	Ω	<u>(n</u>	(E)	3	(D)	Ω	(U)	(D)	9	9	3	(D)	9		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	 -
m	t	<u>(C</u>	(D)	9	3	9	9	9	3	9	(3)	$\widehat{\mathbb{G}}$	(1)	Ω	Ω	Ω	(D)	(D)	<u>(C</u>	Ω	Ω	Ω	Ω	(3)	9		
MINT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ę	<u>+</u>	\bigcirc	(U)	3	(U)	$\widehat{\Omega}$	$\widehat{\mathbb{O}}$	<u>(D</u>	Ω	Ω	(0)	3	9	9	9	(D)	9	9	3	3	(3)	Ω	$\widehat{\mathbb{O}}$	Ω	Ω		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B		9	Ω	Ω	(D)	Ω	(D)	Ω	$\widehat{\mathbb{O}}$	(0)	9	E	3	9	5	9	3	3	5	3	9	9	E	<u>(E</u>	(1)		
MINT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
<u>-</u>	±	3	5	Ω	(D)	3	Ð	9	3	9	9	9	3	5	9	3	5	9	2	9	9	3	9	3	9		
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		µg/L	ug/L	ng/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	ng/L	µg/L	80 µg/L	00 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/02/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 680 µg/L	Number $> 100 \mu g/L$

ug/L µg/L

(J) 0.500 (1	J) 0.500 (U)	0.500	0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500	0.500 0.	0.500 0.	0.500 0.	0.500 0.	0.500 0.	0.500 0.
0.500 (U)																								
0.500 (U)	l																							
0.500 (U)																								
0.500 (U)																								
\$ 																								
	0.500	1							1						22222222222	22222222222	222222222222	2222222222222	22222222222222	222222222222222	222222222222222	2222222222222222	22222222222222222	255555555555555555555555555555555555555
E	0.500 (U)	1	98	399	5555	55555	55555	555555	5555555	55555555	555555555	5555555555	55555555555	55555555555	22222222222	22222222222	555555555555555555555555555555555555555	222222222222	222222222222	555555555555555555555555555555555555555	222222222222222	555555555555555555555555555555555555555	22222222222222222	2222222222222222
\Box	µg/L		ug/L	ug/L ug/L								Hg/L	T/gu T/gu T/gu T/gu T/gu T/gu T/gu T/gu	Tight		Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu		Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu	Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu					

µg/L µg/L

M-2-B Result	0.500 (TD	1																								
Į i	9		ľ	$\widehat{\Xi}$			3 293	55555	20000	5555555	3888888	200000000000000000000000000000000000000	22222525	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000
M-2-T Result	0			0000																						
M-1-B Result	0.500 (U)	0.500 (U		0.500 (U)																						
M-1-T Result	0.500 (U)	0.500 (U)																								
MNT-2-B Result	9	Ļ	5	98	999	3333	2000	25555	2000000	55555555	25555555	200000000000000000000000000000000000000	200000000000000000000000000000000000000	25555555555	200000000000000000000000000000000000000	255555555555	2555555555555	255555555555555	2555555555555555	200000000000000000000000000000000000000	25555555555555555	2555555555555555555	255555555555555555555555555555555555555	255555555555555555555555555555555555555	255555555555555555555555555555555555555	255555555555555555555555555555555555555
MNT-2-T M Result F	9	A IV	5	(0)	999	2999	2555	22252	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	255555555555555555555555555555555555555	255555555555555555555555555555555555555
H	(U) 0.500	(U) 0.500																								
Result	0.500	0.500		{ [−]	0.500	0.500 0.500 0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Result	0.500 (U)	0.500 (U)																								
Units	ng/L	πε/Ι΄	1																						T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn	
Date	06/24/2015	07/07/2015		2015	2015	2015	2015 2015 2015 2015	2015 2015 2015 2015 2015	2015 2015 2015 2015 2015 2015	2015 2015 2015 2015 2015 2015 2015	2015 2015 2015 2015 2015 2015 2015	2015 2015 2015 2015 2015 2015 2015 2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/29/2015 11/03/2015 11/09/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 12/15/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/01/2015 12/01/2015 12/01/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/01/2016 01/05/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 12/11/2015 12/15/2016 02/02/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 12/01/2015 12/01/2016 02/02/2016 02/02/2016 03/07/2016	2015 2015 2015 2015 2015 2015 2015 2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 11/03/2015 11/09/2015 11/17/2015 12/01/2015 12/01/2016 02/02/2016 03/07/2016 03/07/2016 03/07/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 11/17/2015 11/17/2015 11/15/2016 02/02/2016 03/21/2016 03/21/2016 03/21/2016 03/21/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/09/2015 11/17/2015 12/01/2015 12/01/2016 02/02/2016 03/29/2016 03/29/2016 04/13/2016	2015 2015 2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2016 2016 2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 11/17/2015 11/17/2016 02/02/2016 02/02/2016 03/21/2016 04/20/2016 04/20/2016 04/20/2016	2015 2015 2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2016 2016 2016

5.7 μg/L 80 μg/L

		T	<u> </u>	<u>ন</u>	বা	ন			15	<u>1</u> ⊆	16	<u>1</u> ⊆	n =	1	NC	ne	<u> 1</u>	ne	য	10	ار	<u> বি</u>	ন ক	য	ন ক	য	<u> </u>	
0	1			-		9	(J)	5	-			1	1		1][2 =					15	15	15			
CHI	- I			0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0 500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
E	,	1	2	3	3	3	9	(D)	3	9	5	9	5	15	E	5	E	5	15	5	15	9	3	3	5	5		
CH-2.T	Doenle	O COO	0.200	0.200	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
æ			3		3	\exists	9	9	(D)	9	3	3	5	5	5	15	3	3	15	9	9	3	3	3	5	5		
CH-1-B	Rount	0 500	0.200	0000	00200	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	T_	1		5		3	3	5	9	(0)	(D)	3	9	9	9	9	3	9	9	(D)	9	3	9	3	Ω	5		
CH-1-T	Result	0.500	0 500	0.500	0000	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~	_	E	E	E	JE	2 5	3	5	9	3	9	9	(0)	(0)	9	3	3	3	(0)	$\widehat{\mathbb{O}}$	Ω	Ω	Ω	9	9	(C)		Н
ES-2-B	Result	0.500	0.500	0 500	0.500	00000	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500	0.500		0.500	0.500	0	0
	_	18	15	E		5	3	3	5	a	5	5	E	9	Ω	Ω	Ω	Ω	9	5	9	5	9	5	5	9		
ES-2-T	Result	0.500	0.500	0.500	0 500	0.200	0000	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500				0.500	0	0
9	It	9	9	18	18	E	3	3	3	3	3	3	5	3	9	3	3	9	5	3	5	E	9	5	5	3	1	
ES-1-]	Resul	0.500	0.500	0.500	0.500	0.500	0000	0000	0.200	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500			0.500	0.500	- 1			္ဂါ	0	0
T	lt	(D)	9	5	9		3	9	3	3	3	3	3	5	2	2	5	9	5	3		5	3	5	3	3	7	7
ES-1-T	Result	0.500	0.500	0.500	0.500	0 500	0 500	0.200	0.200	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
Ilmite		μg/L	T/8tl	µg/L	ng/L	ug/T,	1/01	H8/L	ug/L	µg/L	ng/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	hg/L	mg/L	ug/L	/ mg/L	/ mg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/00/0015	10/12/2015	11/02/2015	11/03/2015	11/19/2015	19/01/2015	12/101/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/01/2016	03/21/2016	03/29/2010	04/13/2016	04/20/2016	02/11/2010	00/07/70/10	Number > 5.7 µg/L	Number > 80 µg/L

5.7 μg/L 80 μg/L

Nesuit
1
TINGS O
1 0 500 AT
0.500 (U)
֡
1/011
06/24/2015

80 µg/L (as part or

Primary DWS =

CH-2-B	Result	5								9	-	Ī	5	ľ	(E)	<u>(2</u>										
	Re	0							0.500			0.500		0.500	0.500	0.500		0.500								
CH-2-T	Result	D) 009		-				-	(U) 00:	(U)	ľ	-	D) 00	(U) 00	(D) 00	00 (J	(U) 00	(E) 00		0.500 (U)						
D	2	(U) 0.500	(U) 0.500	(U) 0.5	(J) 0.5	U) 0.500	(U) 0.500	J) 0.500	(U) 0.500		(U) 0.500	(U) 0.500	0.500	J) 0.500	(U) 0.500	J) 0.500	J) 0.500	(U) 0.500	ļ	0.5						
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500 (U	0.500	0.500 (U	0.500	0.500	0.500 (U)	0.500 (U	0.500 ((0.500 (U	0.500 (U	0.500	D 500							
E	+-	9	9	9	9	9	9	3	9	3	9	3	9	9	(n)	(D)	9	9	5		E	E E	555	19999	55555	55555
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500	0.500	0.500 0.500 0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500 0.500
B	=	9	9	9	3	9	3	9	Ω	(D)	3	(U)	Ω	(U)	(D)	(U)	9	$\widehat{\mathbb{G}}$	Ω	1	\bigcirc	33	555	5555	2222	55555
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0000	0.500	0.500	0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500 0.500
Ę.]t	(U)	9	(D)	3	$\widehat{\mathbb{C}}$	9	(C)	(U)	(0)	(D)	Ω	(£)	(1)	9	Ω	Ω	$\widehat{\mathbb{U}}$	9	9		<u>(C</u>	99	222	9999	55555
ES-2-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0010	0.500	0.500	0.500	0.500 0.500 0.500 0.500	0.500 0.500 0.500 0.500
-B	ult	(0)	(D)	Ω	(D)	(U)	(Ω)	(U)	9	9	(U)	9	3	3	3	9	(D)	9	9	9			35	999	225	5553
ES-1	Rest	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500	0.500	0.500	0.500 0.500 0.500 0.500
-T-	ılt	(U)	(U)	(0)	(U)	(U)	(U)	(3)	3	(3)	9	9	3	3	9	9	9	9	9	9	9	1	(E)	99	999	5666
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500	0.500	0.500 0.500 0.500	0.500 0.500 0.500 0.500
Unite	Cuito	ng/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L		µg/L	µg/L µg/L	J/gn ng/L	hg/L hg/L hg/L
Date	Ama.	06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016		04/13/2016	04/13/2016	04/13/2016 04/20/2016 05/11/2016	04/13/2016 μg/I 04/20/2016 μg/I 05/11/2016 μg/I 06/01/2016 μg/I

T/8n 08

Primary DWS =

(as part of total trihalomethanes (TTHM))

Units MNT-1-T	MNT-1-T	_		MNT-1-B	MNT-2-T	2-T	MNT-2-B	B.	M-1-T		M-1-B	~	M-2-T		M-2-B	8
Result	ult Res	Result	Result		Result	#	Result	1	Result	t	Result	+	Result	t	Result	4
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	(D)	0	0.500	Ω	0.500	9	0.500	9	0.500	3	0.500	3	0.500	3
нg/L 0.500 (U) 0.500 (U) 0.	(U) 0.500 (U)	0.500 (U)	(D)	0	0.500	(0)	0.500	9	0.500	3	0.500	3	0.500	3	0.500	3
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	<u>D</u>	0	0.500	(D)	0.500	(U)	0.500	3	0.500	3	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9	0	0.500	(E)	0.500	(Ū)	0.500	9	0.500	9	0.500	9	0.500	3
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	<u>(</u>		0.500	9	0.500	Ω	0.500	Ω	0.500	3	0.500	9	0.500	9
(U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(5)	0.500	(D)	0.500	9	0.500	3	0.500	9	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	Ð		0.500	9	0.500	Ω	0.500	Ω	0.500	9	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	<u>(</u>		0.500	9	0.500	(D)	0.500	Ω	0.500	3	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	9	0.500	(D)	0.500	$\widehat{\mathbb{O}}$	0.500	(3)	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	<u>D</u>		0.500	9	0.500	9	0.500	Ω	0.500	9	0.500	3	0.500	9
0.500 (U)	(U) 0.500	0.500			0.500	3	0.500	Ð	0.500	Ω	0.500	9	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	(U) 005.0	<u>(</u>		0.500	9	0.500	<u>(C</u>	0.500	(U)	0.500	3	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	9	0.500	9	0.500	Ω	0.500	(D)	0.500	9	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(D)	0.500	3	0.500	(D)	0.500	Ω	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	Ð		0.500	(E)	0.500	9	0.500	Ω	0.500	(2)	0.500	3	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(E)	0.500	9	0.500	(D)	0.500	(D)	0.500	9	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(D)	0.500	9	0.500	<u>(1)</u>	0.500	Ω	0.500	9	0.500	3
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	3		0.500	9	0.500	9	0.500	(3)	0.500	$\widehat{\mathbb{O}}$	0.500	9	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	<u>(</u>	0.500	9	0.500	(0)	0.500	(Ω)	0.500	9	0.500	9
μg/L 0.500 (U) 0.500 (U)	(U) 0.500	0.500			0.500	(U)	0.500	(D)	0.500	(D)	0.500	9	0.500	9	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	(U) 0.500	(£)		0.500	()	0.500	9	0.500	(D)	0.500	<u>(D</u>	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	(3)	0.500	<u>(C</u>	0.500	(U)	0.500	9	0.500	3	0.500	9
0.500 (U) 0.500 (U)	(U) 0.500 (U)	0.500 (U)	9		0.500	9	0.500	Ω	0.500	Ω	0.500	(D)	0.500	5	0.500	9
0.500 (U) 0.500 (U)	0.500 (U) 0.500 (U)	0.500 (U)	9		0.500	9	0.500	$\widehat{\mathbb{O}}$	0.500	Ω	0.500	3	0.500	3	0.500	3
0	0	0	0		0		0		0		0		0		0	
Number > 700 μ g/L 0 0 0		0	0	_1	0		0		0		0		0		0	
																l

µg/L µg/L

_	_	1	T =	1 -	J =		T -		.T.=		-									_							
m	1	5]5]5)5]5]5	[5]5][[9][)[9	3	(3)	3	9	3	3	9	3		
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
		5	9	9	5	3	5	3	3	3	3	9	3	9	9	9	3	3	9	3	3	3	5	5	3		
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
B		5	5	9	3	3	3	3	3	3	3	3	3	3	5	3	9	3	9	3	9	3	3	3	3		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
I	1	9	9	9	3	9	9	9	5	9	9	9	9	3	3	9	3	9	9	Ω	(0)	3	9	9	5		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
8		3	9	9	3	9	9	9	9	9	(U)	Ω	Ω	(U)	(3)	Ω	(D)	Ω	(D)	$\widehat{\mathbb{O}}$	(D)	Ω	Ω	(D)	9		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ŀ	t	(n)	(0)	Ω	(C)	(0)	Ω	Ω	Ω	(D)	5	9	9	9	(0)	(U)	(U)	(0)	9	9	3	(D)	3	<u>(D</u>	Ω		\exists
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-B	1	(D)	(D)	(0)	(3)	9	9	9	9	<u>(</u>	3	3	9	3	3	9	9	3	3	9	3	9	3	5	<u>e</u>		7
ES-1-]	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	ايد	9	9	9	9	9	Ð	9	3	3	3	5	2	5	9	5	3	a	5	9	3	5	5	5	3		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Thife		µg/L	µg/L	ng/L	µg/L	ηg/L	µg/L	ng/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	hg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	100 µg/L	00 μg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 3100 µg/L	Number > 700 µg/L

µg/L µg/L

			10				10					10				S	1	<u> </u>							1~	1
æ	111	E		9			5	5	15	5	5]2	5	15	5	(U.S	5	15	5	9	9	5	5	5	[5	
M-2-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
	T.	5	9)5	9	9	3		3	9	9	3	3	3	9	3	3	9	9	3	9	9	9	9	9	
M-2-T	Result	0.10			0.10	0.10	0.10	0.12	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
00	#	[5	5][3	3	3	3	(E)	9	9	9	9	9	9	9	9	9	(E)	9	9	9	3	9	9	
M-1-B	Result	0.10		0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.01	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.10	0
	t	3	5	9	5	5	3	9	9	Ω	3	9	3	9	9	3	9	(0)	Ω	(D)	(0)	Ω	<u>(C</u>	9	9	
M-1-T	Result	0.20	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	01.0	0.10	0.10	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
-B	+	9	9	3	5	3	9	5	<u>(D</u>	<u>(D</u>	(0)	Ω	(D)	Ω	Ω	9	9	(D)	9	(U)	(D)	Ω	(0)	Ω	9	
MNT-2-B	Result	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
Į-	ţ	9	9	9	3	9	(D)	<u>(D</u>	(3)	3	9	<u>(D</u>	(0)	(0)	(D)	(D)	$\widehat{\Omega}$	9	3	9	9	9	(D)	(D)	(n)	
MINT-2-T	Result	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
-B	t	(U)	Ω	(0)	3	9	(U)	9	3	3	9	9	3	3	9	9	(D)	9	3	3	3	3	3	3	(0)	
MNT-1	Result	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
H	Í	(0)	(D)	(D)	(U)	Ω	Ð	9	3	9	9	5	3	3	3	3	9	3	5	9	9	5	9	9	9	
MINT-1-T	Result	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
IInite		μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	hg/L	mg/L	µg/L	µg/L	µg/L	µg/L	T/gn	ng/L	7 µg/L										
Date	200	06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 47 µg/L

WV Category A WQS =

47 µg/L

						_		1	1	1		_	1_						<u> </u>							T
S-B	븝	[5]5	5	5	2	5	15	5	9	5	15	5	5	9	5	3	[5	(U,S	9	9	5	9	5	[5	
CH-2-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	L		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	-
Ŀ	<u>+</u>	9	3	9	9	3	9	5	3	3	3	5	3	9	3	9	3	3	9	3	5	3	3	3	9	1
CH-2-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	-
B	+	9	5	(3)	9	9	3	3	(E)	9	9	9	3	9	9	(U,S)	9	5	(U)	(0)	(U)	(D)	9	9	9	
CH-1-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	C
L		3	3	9	3	3	3	9	9	9	9	9	3	(D)	Ω	Ω	9	Ω	(0)	(D)	(D)	Ω	Ω	()	9	\vdash
CH-1-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
8	1	3	9	(U)	(C)	9	5	3	9	Ω	Ω	9	(0)	(D)	(D)	Ω	(D)	9	3	9	3	Ω	(U)	Ω	<u>(C</u>	
ES-2-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
1	It	(U)	(0)	(D)	9	(U)	9	Ω	Ω	(D)	$\widehat{\mathbb{O}}$	Ω	Ω	9	9	3	<u>(2)</u>	5	3	3	3	9	3	<u>(</u>	(0)	
ES-2-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
В	#	(3	9	(C)	Ω	Ω	$\widehat{\mathbb{U}}$	9	9	3	9	9	3	9	5	9	5	3	5	3	9	9	9	9	
ES-1-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
·T	Ħ	9	9	9	9	<u>(</u>	9	9	5	9	Ð	9	9	9	3	5	9	5	5	2	5	9	3	9	3	
ES-1-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0
Units		ug/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	hg/L	µg/L	ng/L	µg/L	µg/L	mg/L	µg/L	µg/L	hg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	7 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 47 µg/L

WV Category A WQS =

47 µg/L

		15	15	15	3][15]5	15	15	15	12	[5]	19	15	3	3	12	[5]	<u> </u>	<u> </u>	15	<u> </u>	15	15	T	Г
M-2-B	Result	-	-					1		-		-		-] _		-				-	1	-		ł	
M-	Re	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
_		9	3	5	3	3	9	3	9	3	9	9	9	9	9	3	9	3	3	3	9	3	3	5	3	-	
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~	_	9	3	5	3	9	3	3	3	3	3	3	9	9	3	3	3	3	<u>(</u>	<u>(D)</u>	9	3	9	9	3		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	1	9	9	9	3	9	9	3	9	3	9	Ω	(D)	(D)	9	9	(D)	Ω	Ω	(Ω)	Ω	9	9	9	3		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
ä		9	9	9	3	9	3	3	3	9	(U)	(U)	<u>(C</u>	(U)	(D)	(0)	(0)	$\widehat{\mathbb{G}}$	9	9	9	Ω	Ω	(D)	Ω		
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
I-	ţ	(D)	(0)	9	9	(3)	9	Ω	9	$\widehat{\mathbb{O}}$	(D)	9	3	9	(D)	(U)	9	9	3	9	9	<u>(1</u>	(D)	Ω	(D)		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B	ţ	Ω	(U)	Ω	$\widehat{\mathbb{O}}$	(D)	Ω	$\widehat{\mathbb{O}}$	Ω	<u>(D)</u>	3	9	9	5	3	3	9	9	2	5	5	9	9	9	9		
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T-	J	9	3	(D)	()	9	3	3	3	9	5	9	3	5	3	3	5	5	3	5	2	9	9	3	9		
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
IInite		µg/L	ng/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	ng/L	mg/L	µg/L	µg/L	µg/L	µg/L	.6 µg/L	mg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 4.6 μg/L	Number > 5 µg/L

4.6 μg/L 5 μg/L

	ī	I	12	10	ন_	10	12	1 ⊂	10	1 ⊆	12	10	10	10	10	17	10	<u>ا</u>		حا		10	10	17	ন ক	1	_
P	=	5	12	15	5	15	5	15	5	15	5	15	9	9	15	9	5	15	5	9	5	9	5	9	5		
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ţ		9	3	3	3	3	3	3	5	3	3	3	3	3	9	9	3	9	9	3	5	3	3	9	3		
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
B		9	3	3	3	9	9	3	9	3	9	9	3	9	3	3	9	9	9	9	5	9	3	9	3		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	_	5	3	3	9	5	9	9	3	9	(0)	Ω	(D)	Ω	9	9	5	Ω	Ω	Ω	9	3	9	9	3		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~		3	3	9	9	9	9	5	9	9	(3)	Ω	(0)	(Ω)	Ω	Ω	9	$\widehat{\mathbb{C}}$	(1)	Ð	Ω	(0)	$\widehat{\mathbb{C}}$	(D)	9		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	1	(0)	9	Ω	Ω	Ω	Ω	<u>(C)</u>	9	(D)	3	9	9	9	(3)	Ω	(3)	9	3	9	9	Ω	(U)	(0)	Ω		
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~	_	Ω	(D)	(D)	(D)	(D)	9	Ω	(0)	(3)	3	3	3	5	3	9	9	9	9	9	3	9	<u>(</u>	9	9		
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	#	9	(D)	9	(C)	9	9	9	(1)	9	9	5	3	5	9	5	9	5	3	9	9	9	9	5	E		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
IInits		µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	.6 µg/L	mg/L									
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 4.6 μg/L	Number > 5 μg/L

4.6 μg/L 700 μg/L

-B	alt.	9	9					9	3			9			9	1	3	3		9	i	9		9	9		
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
T	<u></u>	9	9	3	9	3	3	9	3	9	9	9	9	9	9	9	9	9	<u>D</u>	9	9	9	9	9	9		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
В	ıt.	9	9	3	(E)	9	9	9	3	9	<u>(1)</u>	(U)	9	9	(U)	9	9	3	3	(D)	9	9	3	9	9		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
ľ	It	9	9	9	9	9	9	9	9	9	(C)	Ω	<u>(C</u>	Ω	Ω	<u>(C</u>	9	(C)	Ω	Ω	9	9	(0)	(D)	3		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
·B	it.	<u>(</u>	(2)	9	(C)	3	3	9	9	(D)	<u>(1</u>	(D)	(0)	(U)	(0)	Ω	(U)	(D)	(1)	(D)	(D)	(U)	(0)	Ω	(C)		
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-T-	ı,	(U)	Ω	Ω	Ω	(U)	(U)	Ω	9	Ω	9	3	9	9	E	$\widehat{\mathbb{O}}$	(D)	9	(0)	3	(1)	(U)	9	(D)	$\widehat{\mathbb{O}}$		
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B	+	9	(U)	(U)	(0)	Ω	(D)	(U)	$\widehat{\mathbb{O}}$	9	9	3	3	3	2	9	3	9	9	9	3	<u>(</u>	3	9	9		
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	±.	9	Ð	(J)	9	(D)	Ð	9	(C)	Ð	3	9	9	9	9	9	3	9	3	3	3	9	9	3	9		
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		ng/L	ug/L	μg/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	mg/L	µg/L	µg/L	μg/L	ng/L	µg/L	µg/L	µg/L	.8 µg/L	mg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.8 µg/I	Number > 5 µg/L

µg/L µg/L

		[5	15	[5	3]5	16	36	[5	<u> </u>	15	15	[5]	[5	15][<u> </u>	18	9	19	3	15	18	9	15	1	Г
CH-2-B	Result															1				-							
E	Re	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T	_	9	15	3	9	9	9	3	9	5	5	9	3	9	5	3	3	3	9	9	9	3	3	9	9	-	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
2		5	3	3	3	5	9	3	3	3	3	9	3	9	3	3	9	3	9	9	9	3	3	9	3		
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T		3	9	9	9	9	3	3	9	3	9	9	9	<u>(</u>	3	9	3	<u>(C)</u>	(D)	Ω	9	3	3	(D)	3		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
8	ţ	9	9	9	9	(3)	9	3	9	3	9	Ω	Ω	(U)	(D)	$\widehat{\mathbb{G}}$	(D)	$\widehat{\mathbb{O}}$	(D)	(D)	(0)	(D)	Ω	Ω	9		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ţ	t	(U)	(0)	Ω	(D)	(U)	9	9	<u>(</u>	Ω	<u>(D</u>	<u> </u>	9	(D)	(D)	Ω	(D)	9	3	9	3	Ω	(D)	9	Ω		
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-B		9	(D)	(D)	<u>(</u>	3	(D)	<u>(D</u>	9	<u>(C)</u>	9	3	9	3	9	3	9	3	2	3	3	9	3	3	9		
ES-1-	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
L	<u>_</u>	9	9	9	(D)	9	3	9	9	9	3	5	9	5	9	3	3	5	3	3	3	3	3	5	9		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		µg/L	µg/L	ng/L	ng/L	µg/L	µg/L	ng/L	µg/L	µg/L	ng/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	mg/L	ng/L	µg/L	µg/L	µg/L	µg/L	ng/L	μg/L	8 µg/L	ng/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 0.8 µg/L	Number > 5 µg/L

ug/L ug/L

			1 ⊆	ग ⊂	<u>া</u>	ا	10	गट	ाट	10	1			1	10	ग <i>−</i>	10	10		<u> </u>		1 <u>~</u>	17	<u> </u>	1 =		
B	#	5	5	5	15	15	5	9	5	15	3	5	9	5	3	9	9	9	5	5	5	5	5	5]5		
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.620	0	0
	+	9	3	9	9	9	9	3	9	3	9	9	3	9	9	9	3	9	9	9	3	9	9	9	Ξ		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.580	0	0
~	t	9	3	3	3	5	5	9	9	3	9	9	9	9	3	9	3	3	9	9	9	9	9	9	9		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.610	0	0
	ļ	3	9	9	9	9	9	3	3	3	5	Ω	9	(U)	<u>(</u>	9	9	$\widehat{\mathbb{O}}$	(D)	(U)	(3)	5	9	<u>(</u>	3		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
B	ļ	(D)	9	9	3	9	3	Ω	9	(E)	(U)	9	(C)	Ω	(U)	Ω	\odot	(1)	(1)	Ω	(0)	Ω	(D)	Ω	0		
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.750	0	0
Ľ.		Ω	(D)	(Ω)	(D)	Ω	(0)	$\widehat{\Omega}$	9	$\widehat{\mathbb{O}}$	9	3	9	3	9	(D)	9	9	3	9	(C)	Ω	Ω	(D)	Ω		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B		(D)	(U)	(Ω)	Ω	(D)	(D)	9	(Ω)	<u>(D</u>	9	5	5	3	9	3	9	9	9	9	3	9	3	9			
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.02	0	0
Ţ	+	9	<u> </u>	9	(D)	9	5	9	9	9	3	9	E	9	3	3	3	5	5	9	3	9	9	3	9		
T-1-LM	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		µg/L	ug/L	ng/L	µg/L	µg/L	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	ng/L	mg/L	µg/L	µg/L	µg/L	μg/L	µg/L	mg/L	µg/L	300 µg/L	000 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 6800 µg/L	Number $> 1000 \mu g/L$

µg/L µg/L

44		15	15	15][[5	19]5	15	35][18]5	3	<u>1</u>	15	15	15	3	18	15]5	3	15	<u> </u>		I
CH-7-B	Result	0.500	0.500									0.500	0.500	0.500	0.500	-	0.500	0.500	0.500	0.500	0.500		0.500	0.500	0.910	0	
		9	5	5	3	15	3	15	2	15	3	9	3	9	3	15	<u> </u>	9	9	9	3	15	3	9	5		H
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500		1	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
В		3	3	5	3	3	9	5	5	15	9	3	3	9	3	3	9	9	3	3	3	3	3	3	6	_	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.700	0	
L	ţ.	3	3	9	3	9	3	9	9	3	9	<u>(C</u>	3	9	3	3	5	(D)	(D)	Ω	9	9	3	9	9		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	 -
8	t	(D)	9	(D)	9	9	9	3	9	3	(3)	Ω	(U)	Ω	Ω	(U)	(U)	(U)	(D)	$\widehat{\mathbb{O}}$	(D)	9	(D)	Ω	①		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.810	0	c
Ţ		(U)	(U)	Ω	(0)	Ω	(D)	(0)	<u>(</u>	(D)	9	3	<u>(C)</u>	(D)	9	Ω	<u>(D</u>	9	9	<u>(</u>	(D)	(U)	(D)	(Ω)	(D)		
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	C
Ą	1	9	9	<u>(D</u>	<u>(C</u>	(D)	<u>(2)</u>	9	(D)	(D)	3	5	3	5	3	3	3	3	2	9	3	9	3	3			
ES-1-	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.18	0	0
H	<u></u>	9	9	3	(C)	9	9	9	9	9	3	9	3	9	9	3	9	5	5	3	3	9	3	3	3		
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		ng/L	ng/L	µg/L	µg/L	mg/L	µg/L	µg/L	ng/L	µg/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	ng/L	800 µg/L	000 ug/L							
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 6800 μg/L	Number $> 1000 \text{ ms/I}$

µg/L µg/L

	Τ	15	16	3	15	15	15]5	3	15	<u> </u>	<u> </u>	15	19	15	[5]	15	15	5	15	<u> </u>	15	15	15	15	1	Τ
M-2-B	init					1		-				-	-	-	9			9	5)	9	3	5	_	5	E		
M-	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	_	5	15	3	9	3	9	9	3	3	3	3	3	5	3	9	9	3	9	9	9	9	9	9	3		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
8		9	3	3	3	3	3	3	3	3	9	9	9	9	9	9	3	9	Ω	3	9	3	3	9	3		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	+	3	9	9	9	9	9	3	5	9	(D)	(D)	5	9	9	(0)	(0)	Ω	(Ω)	Ω	Ω	(E)	3	Ω	3		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
ä	4.3	3	3	3	9	3	3	3	3	(0)	(D)	Ω	(U)	(U)	(0)	\mathbb{G}	Ω	(C)	9	(D)	(C)	Ω	Ω	Ω	Ω		
MINT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Ę	1	3	3	(0)	9	Ω	3	Ω	Ω	<u>(D</u>	E	9	<u>(D</u>	(D)	9	3	3	9	3	9	9	9	(D)	Ξ	<u>(D</u>		
MNT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B	t	(D)	(n)	<u>(</u>	(0)	(0)	(U)	(0)	(0)	9	3	3	3	3	3	5	2	9	3	3	2	9	3	5	9		
MINT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T-	ţ	$\widehat{\mathbb{O}}$	(D)	3	9	3	3	9	3	9	2	3	9	9	9	3	3	5	5	5	2	9	9	5	3		
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Traite		ug/L	µg/L	ng/L	µg/L	ηg/L	ng/L	µg/L	ηg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	mg/L	hg/L	hg/L	µg/L	mg/L	µg/L	mg/L	ng/L	7 µg/L	ng/L
Data		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 2.7 μg/L	Number > 5 µg/L

µg/L µg/L 2.7

-B	=	9	15	15	[]	15	[5	[5	9	9	[3	9	15	9	3	15	3	3	9	9	9	15	3	9	3		
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
T	<u></u>	5	2	9	3	9	9	15	5	3	9	3	3	9	3	3	9	3	9	3	9	9	5	9	3		İ
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
Ą	lt	9	3	3	3	9	9	3	3	3	9	3	3	9	3	9	9	9	5	5	3	3	9	9	5		T
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	٥
Ę	lt	9	5	9	9	5	9	3	5	3	(0)	(D)	9	(D)	9	9	9	(0)	(D)	(D)	<u>(</u>	3	9	9	3		
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	
8	±	(D)	5	9	9	9	9	9	9	<u>(</u>	(D)	Ω	Ω	Ω	(U)	Ω	$\widehat{\mathbb{U}}$	(D)	(U)	(0)	(D)	9	(Ω)	9	9		
ES-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	c
_	±	(D)	9	(3)	(3)	(U)	(0)	(U)	Ω	Ω	3	9	(D)	9	9	(D)	9	9	3	9	9	(D)	(U)	Ω	Ω		
ES-2-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	U
<u>۾</u>	<u>+</u>	9	(U)	(U)	(D)	(D)	9	<u>(1</u>	(D)	9	9	9	3	5	3	E	9	9	3	3	9	9	3	9	3		
	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	С
	±	9	3	(U)	(D)	9	9	9	3	3	3	9	3	5	3	3	3	5	5	9	3	9	3	3	3		
ES-1-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		ng/L	µg/L	ng/L	µg/L	µg/L	µg/L	ng/L	ng/L	µg/L	µg/L	µg/L	hg/L	µg/L	µg/L	mg/L	µg/L	mg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	.7 µg/L	LO/I,
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number $> 2.7 \mu g/L$	Number > 5 ug/L

2.7 μg/L5 μg/L

		I	15	15	15	n=		15	15		15	1=	1=	1=	15	1=	1=	1=	1	i 🗀	1 <u>=</u>	1	1	1	1=	1	_
æ	븝	5						15	5	5	9	15	9	9	3	15	5	9	9	9	5]5	5	5	5	1	
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	+	9	3	[9	9	3	3	3	3	3	9	3	3	9	5	3	3	5	9	9	3	9	9	3		
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
~	+	5	5	3	3	3	3	3	3	3	3	9	3	9	3	9	9	9	9	9	9	3	9	9	3		
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
	ţ	9	5	3	3	3	9	3	9	9	9	9	3	9	9	9	9	(U)	(D)	Ω	(D)	3	3	9	9		
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-B	ţ	9	3	3	3	9	3	3	9	9	(0)	Ω	Ω	Ω	(0)	Ω	Ω	\mathfrak{O}	(1)	<u>(1)</u>	(D)	(0)	(0)	Ω	9		
MINT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
T-	t	<u>(</u>	9	9	(0)	(0)	(0)	Ω	9	$\widehat{\mathbb{O}}$	3	9	<u>(C)</u>	9	9	9	9	9	3	9	<u>(C</u>	(D)	(D)	Ω	Ω		
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
-1-B		Ω	$\widehat{\Omega}$	9	Ð	(D)	Ω	(0)	$\widehat{\mathbb{O}}$	(3)	3	3	3	5	3	3	9	9	3	9	3	9	3	9	9		
MNT-1	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
H	.	9	\Box	(0)	(U)	3	3	9	E	9	3	9	9	5	3	5	3	5	3	5	2	9	9	9	9		
MINT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0	0
Units		$\mu \mathrm{g/L}$	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	mg/L	ng/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 2 µg/L	Number > 2 µg/L

2 μg/L 2 μg/L

뷥	0.500 (U)									- - - - - -															
늷	3																								
Kesult	0.500	0.500	0.500																						
븳	(U) 00C.0	1	0.500 (U) 0.500 (U)																						
	9	9	33	555	9999	2222	55555	5555555	55555555	555555555	5555555555	5555555555	55555555555	555555555555	222222222222	55555555555555	222222222222	5555555555555555	5555555555555555	55555555555555555	5555555555555555555	555555555555555555555555555555555555555	202000000000000000000000000000000000000	555555555555555555555555555555555555555	22222222222222222
L	0.500																								
	0.500 (U)	ı	0.500 (U)																						
	0.500 (U)	1	(0) 000.0											222222222	2222222222	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	2222222222222222
	0.500 (U)			<u>(D</u>	99	22	2 222	55555	200000	2000000	2222222	200000000	2020202020	200000000000000000000000000000000000000	200000000000000000000000000000000000000	202020202020	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000	200000000000000000000000000000000000000
0.000	3	0.500 (U)	UD 0050		<u> </u>	255	2 222	2555	25333	555555	5555555	2222222	555555555	22222222	222222222	2222222222	22222222222	222222222222	222222222222	2222222222222	222222222222	22222222222222	22222222222222	222222222222222	222222222222222
\perp	J/Sn				µg/L																			Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L
2100/10/30	07/07/2015	07/20/2015	08/03/2015	08/17/2015		01/2015	01/2015	01/2015 15/2015 29/2015	01/2015 15/2015 29/2015 13/2015	01/2015 15/2015 29/2015 13/2015 03/2015	01/2015 15/2015 29/2015 13/2015 03/2015 09/2015	01/2015 15/2015 29/2015 13/2015 03/2015 17/2015	01/2015 15/2015 29/2015 13/2015 03/2015 17/2015 01/2015	01/2015 15/2015 29/2015 13/2015 09/2015 17/2015 15/2015	01/2015 15/2015 29/2015 13/2015 09/2015 17/2015 15/2015 05/2016	01/2015 15/2015 29/2015 13/2015 03/2015 09/2015 17/2015 05/2016 02/2016	01/2015 15/2015 29/2015 13/2015 03/2015 09/2015 17/2015 05/2016 05/2016	01/2015 15/2015 29/2015 13/2015 03/2015 09/2015 17/2015 15/2016 05/2016 07/2016	01/2015 15/2015 29/2015 13/2015 09/2015 09/2015 15/2015 05/2016 07/2016 07/2016	01/2015 15/2015 29/2015 13/2015 03/2015 09/2015 17/2015 15/2016 02/2016 29/2016 29/2016	701/2015 15/2015 29/2015 13/2015 73/2015 73/2015 73/2016 75/2016 75/2016 75/2016 75/2016 75/2016 75/2016 75/2016 75/2016 75/2016 75/2016	01/2015 15/2015 13/2015 03/2015 09/2015 17/2015 17/2015 05/2016 07/2016 29/2016 29/2016 13/2016	701/2015 15/2015 29/2015 13/2015 13/2015 17/2015 15/2016 05/2016 07/2016 29/2016 13/2016 13/2016 11/2016	01/2015 15/2015 29/2015 13/2015 09/2015 09/2015 15/2016 05/2016 07/2016 13/2016 13/2016 13/2016 13/2016 13/2016 13/2016 13/2016 13/2016	09/01/2015 μg 09/15/2015 μg 10/13/2015 μg 11/03/2015 μg 11/09/2015 μg 11/17/2015 μg 12/01/2015 μg 02/02/2016 μg/ 02/02/2016 μg/ 03/07/2016 μg/ 03/21/2016 μg/ 03/29/2016 μg/ 03/29/2016 μg/ 03/29/2016 μg/ 03/29/2016 μg/ 03/21/2016 μg/ 03/20/2016 μg/ 03/20/2016 μg/ 04/13/2016 μg/

mg/L mg/L 4

Units MNT-1-T	MNT-1-1		MNT-1-B	MNT-2-T	MNT-2-B	M-1-T	M-1-B	M-2-T	M-2-B
Result Result	Resi	Result		Result	Result	Result	Result	Result	Result
1.00 (U) 1.00	(U) 1.00		5	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00	(U) 1.00		$\overline{\sim}$	1.00 (U)	1.00 (U)	1.00 (U)	(U) 00.1	1.00 (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U)	(U) 1.00		-	1.00 (U)	1.00 (U)	1.00 (U)	1.00 $\overline{(U)}$	(U) 00.1	1.00 (U
1.00 (U)	(U) 1.00		_	1.00 (U)	1.00 (U)	1.00 (U)	(0) (0)	(0) 0.1	1.00 (U
μg/L 1.00 (U) 1.00 (U)	(U) 1.00		_	1.00 (U)	1.00 (U)	1.00 (U)	(U) 00.1	1.00 (U)	1.00 (U
1.00 (U)	3	1.00 (U)		1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U)	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	(U) 00.1	1.00 (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00				1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U)	(U) 1.00			(U) (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
+	(U) 1.00 (1.00 (U)	1.00 (U)	1.00 $\overline{(U)}$	1.00 (U)	1.00 (U)	1.00 (U
<u>(</u>	(U) 1.00			(U) (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
9	(U) 1.00		- 1	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U)	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00					1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00				1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00			1	1.00 (U)	1.00 (U)	1.00 (U)	(U) (U)	1.00 (U
1.00 (U) 1.00	(U) 1.00			1.00 (U)		1.00 (U)	1.00 (U)	(U) 00.1	1.00 (U
1.00 (U) 1.00	(U) 1.00			- 1	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	U) 00.1
1.00 (U) 1.00	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
9	(U) 1.00		_	1.00 (U)	1.00 (U)	1.00 (U)	(U) (U)	(U) (U)	1.00 (U
1.00 (U)	(U) 1.00			1.00 (U)	1.00 (U)	(U) (U)	1.00 (U)	1.00 (U)	1.00 (U
1.00 (U)	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	(U) (U)	1.00 (U)	U) 00.1
-1	(U) 1.00			1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U
Number $> 10 \mu \text{g/L}$ 0 0		0		0	0	0	0	0	0
								,	,

10 µg/L

Primary DWS=

(as part of total xylene)

Primary DWS =

(as part of total xylene)

ug/L

10

September 15, 2016

~	t	[5	2	[5	2)5	[5	9]5	3	3	3	3	3	9	3	9	3	3	3	3	9	[5	15	3	1
M-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
	+	9	3	9	9	5	5	3	3	3	9	5	5	3	9	9	3	3	9	3	3	9	3	5	5	1
M-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
8	IT	3	9	3	3	3	5	3	3	9	9	9	9	9	(D)	9	9	9	9	9	9	9	3	9	3	1
M-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
Ŀ	t	3	9	3	3	3	9	3	3	9	3	9	(9	Ω	9	9	9	9	3	3	9	3	5	3	
M-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
-B	t	9	5	9	9	3	3	3	3	Ω	(0)	(0)	(2)	Ω	(U)	(0)	(U)	Ω	Ω	<u>(D</u>	(0)	(U)	3	9	9	l
MNT-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
T-	It	Ω	(D)	<u>(C)</u>	(D)	9	9	9	Ω	(D)	(D)	(0)	(D)	(D)	3	(U)	(Ω)	(D)	(D)	Ω	$\widehat{\Omega}$	(Ω)	9	Ω	(D)	ŀ
MINT-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
-1-B	ult	(U)	(U)	(U)	(U)	(U)	(D)	(U)	$\widehat{\mathbb{O}}$	<u>(D</u>	(D)	Ð	<u>(</u>	<u>(</u>	<u>(C</u>	(U)	<u> </u>	(D)	<u>(</u>	(U)	(D)	<u>(</u>	(U)	(U)	(D)	
MNT-1	Resul	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
Į.	<u>.</u>	9	(C)	9	9	Ω	9	5	9	5	9	3	9	9	9	9	3	3	9	3	9	9	9	5	9	Ī
MNT-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	•
Units		μg/L	µg/L	µg/L	ng/L	µg/L	ng/L	mg/L	µg/L	µg/L	µg/L	ηg/L	µg/L	ng/L	µg/L	mg/L	µg/L	µg/L	µg/L							
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	TI AD THE

10 µg/L (as part of total xylene)

Primary DWS =

_				T -			12	10		1.	1	Le		1.=		LE			T.=	Læ	-		r_		-	
æ	 ±	5	5	9	5	5	3]5	9]5	[5	3]5]5	3	9][[5	3]ව	3	[5	[5	[5]5	
CH-2-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
	_	9	3	9	3	3	5	3	3	3	3	3	3	3	3	9	3	9	9	9	9	3	3	9	9	
CH-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
8	_	3	3	9	5	3	3	3	3	3	9	3	3	9	3	9	3	9	9	3	9	3	9	9	3	
CH-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
ľ		3	9	9	3	9	3	3	9	3	9	9	9	Ð	9	9	9	(D)	(2)	(0)	(U)	9	3	9	3	
CH-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_	4.3	3	9	(D)	3	9	3	3	$\widehat{\Omega}$	3	9	9	(C)	Ω	(U)	Ω	(0)	Ω	(D)	Ω	(U)	(Ω)	Ω	(0)	3	
ES-7-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
_	_	(D)	Ω	Ω	(U)	Ω	9	(0)	$\widehat{\mathbb{O}}$	Ω	Ω	Ω	$\widehat{\Omega}$	(D)	9	(1)	9	(D)	$\widehat{\mathbb{O}}$	<u>(1)</u>	3	(D)	(U)	(D)	(Ω)	
ES-2-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
~	_	(D)	(O)	9	()	(D)	(D)	(D)	3	(0)	9	<u>(1)</u>	(D)	9	9	9	(3)	3	3	9	3	9	3	<u>(D</u>	$\widehat{\mathbb{O}}$	
ES-1-B	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
T	<u>.</u>	9	9	9	<u>(1)</u>	3	<u>(C)</u>	<u>(C</u>	9	9	3	9	3	3	3	5	3	9	3	3	9	9	3	3	3	
ES-1-T	Result	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0
Units		µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	mg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ng/L	µg/L	0 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/17/2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/07/2016	03/21/2016	03/29/2016	04/13/2016	04/20/2016	05/11/2016	06/01/2016	Number > 10 μg/L

 $10 ext{ } \mu \text{g/L}$ (as Γ

Primary DWS =

(as part of totatl xylene)

D-4	TT - 14	MN	Г-С	M-	C	ES-	-C	СН	-C
Date	Units	Res	ult	Res	ult	Res	ult	Res	ult
06/24/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
07/07/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
07/20/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
08/03/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
08/17/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
09/01/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
09/15/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
09/29/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
10/13/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
11/03/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
11/09/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
11/17/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
12/01/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
12/15/2015	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
01/05/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
02/02/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
02/29/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
03/07/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
03/21/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
03/29/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
04/13/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
04/20/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
05/11/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)
06/01/2016	μg/L	2	(U)	2	(U)	2	(U)	2	(U)

Data	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		
Number > 0.000	2 mg/L	0	0	0	0

Primary DWS =

0.0002 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		
Number > 0.000000071	mg/L	0	0	0	0

WV Category A WQS =

0.000000071 mg/L

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
-05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.0000039	mg/L	0	0	0	0

WV Category A WQS =

0.0000039 mg/L

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.6E-05 (U)
07/07/2015	mg/L	0.000026 (U)	2.5E-05 (U)	2.6E-05 (U)	2.8E-05 (U)
07/20/2015	mg/L	0.000026 (U)	2.6E-05 (U)	2.5E-05 (U)	2.6E-05 (U)
08/03/2015	mg/L	0.000025 (U)	2.6E-05 (U)	2.6E-05 (U)	2.6E-05 (U)
08/17/2015	mg/L	0.000026 (U)	2.6E-05 (U)	2.6E-05 (U)	2.5E-05 (U)
09/01/2015	mg/L	0.000029 (U)	2.8E-05 (U)	2.9E-05 (U)	2.8E-05 (U)
09/15/2015	mg/L	0.000029 (U)	2.9E-05 (U)	2.8E-05 (U)	2.9E-05 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	2.9E-05 (U)
10/13/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.6E-05 (U)	2.5E-05 (U)
11/03/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
11/09/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
11/17/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
12/01/2015	mg/L	0.000025 (U)	2.5E-05 (U)	2.6E-05 (U)	2.6E-05 (U)
12/15/2015	mg/L	0.000026 (U)	2.5E-05 (U)	2.5E-05 (U)	2.7E-05 (U)
01/05/2016	mg/L	0.000025 (U)	2.5E-05 (U)	0.000025 (U)	2.5E-05 (U)
02/02/2016	mg/L	0.000030 (U)	2.9E-05 (U)	2.8E-05 (U)	2.9E-05 (U)
02/29/2016	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
03/07/2016	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.6E-05 (U)
03/21/2016	mg/L	0.000025 (U)	2.5E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
03/29/2016	mg/L	0.000025 (U)	2.5E-05 (U)	2.6E-05 (U)	2.5E-05 (U)
04/13/2016	mg/L	0.000025 (U)	2.6E-05 (U)	0.000025 (U)	2.6E-05 (U)
04/20/2016	mg/L	0.000026 (U)	2.6E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
05/11/2016	mg/L	0.000030 (U)	2.8E-05 (U)		2.8E-05 (U)
06/01/2016	mg/L	0.000026 (U)	2.6E-05 (U)	2.5E-05 (U)	2.5E-05 (U)
Number > 0.000014	mg/L	0	0	0	0

WV Category A WQS =

1.4E-05 mg/L

Data	Y Turida	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000248 (U)	0.000254 (U)	0.000254 (U)	0.000258 (U)
07/07/2015	mg/L	0.000257 (U)	0.000252 (U)	0.000265 (U)	0.000284 (U)
07/20/2015	mg/L	0.000255 (U)	0.000260 (U)	0.000252 (U)	0.000256 (U)
08/03/2015	mg/L	0.000251 (U)	0.000256 (U)	0.000264 (U)	0.000258 (U)
08/17/2015	mg/L	0.000257 (U)	0.000258 (U)	0.000255 (U)	0.000254 (U)
09/01/2015	mg/L	0.000286 (U)	0.000282 (U)	0.000285 (U)	0.000284 (U)
09/15/2015	mg/L	0.000289 (U)	0.000292 (U)	0.000285 (U)	0.000288 (U)
09/29/2015	mg/L	0.000292 (U)	0.000298 (U)	0.000299 (U)	0.000291 (U)
10/13/2015	mg/L	0.000250 (U)	0.000249 (U)	0.000258 (U)	0.000253 (U)
11/03/2015	mg/L	0.000252 (U)	0.000250 (U)	0.000249 (U)	0.000252 (U)
11/09/2015	mg/L	0.000253 (U)	0.000255 (U)	0.000250 (U)	0.000249 (U)
11/17/2015	mg/L	0.000250 (U)	0.000250 (U)	0.000250 (U)	0.000250 (U)
12/01/2015	mg/L	0.000250 (U)	0.000253 (U)		0.000256 (U)
12/15/2015	mg/L	0.000261 (U)	0.000250 (U)	0.000253 (U)	0.000267 (U)
01/05/2016	mg/L	0.000250 (U)	0.000250 (U)	0.000250 (U)	0.000250 (U)
02/02/2016	mg/L	0.000298 (U)	0.000292 (U)	0.000285 (U)	0.000292 (U)
02/29/2016	mg/L	0.000255 (U)	0.000253 (U)	0.000251 (U)	0.000250 (U)
03/07/2016	mg/L	0.000251 (U)	0.000251 (U)	0.000252 (U)	0.000262 (U)
03/21/2016	mg/L	0.000249 (U)	0.000253 (U)	0.000254 (U)	0.000254 (U)
03/29/2016	mg/L	0.000255 (U)	0.000254 (U)	0.000256 (U)	0.000253 (U)
04/13/2016	mg/L	0.000250 (U)	0.000256 (U)	0.000253 (U)	0.000261 (U)
04/20/2016	mg/L	0.000258 (U)	0.000256 (U)	0.000253 (U)	0.000250 (U)
05/11/2016	mg/L	0.000296 (U)	0.000281 (U)	0.000282 (U)	0.000284 (U)
06/01/2016	mg/L	0.000261 (U)	0.000255 (U)	0.000253 (U)	
Number > 0.00	000046 mg/L	0	0	0	0
Number > 0.02	mg/L	0	0	0	0

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L		0.000025 (U)		
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L		0.000025 (U)		0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)		
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)		
04/13/2016	mg/L		0.000026 (U)		
04/20/2016	mg/L		0.000026 (U)		0.000025 (U)
05/11/2016	mg/L	0.000030 (U)			0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		
Number > 0.000000024	mg/L	0	0	0	0

WV Category A WQS =

0.000000024 mg/L

Date	Units	MNT-C	М-С	ES-C	CH-C
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.00000071	mg/L	0	0	0	0

WV Category A WQS =

0.000000071 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.0000023	mg/L	0	0	0	0
Number > 0.002 mg/I		0	0	0	0

0.0000023 mg/L 0.002 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
	Ullis	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L		0.000025 (U)		
12/01/2015	mg/L		0.000025 (U)		0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)		
01/05/2016	mg/L		0.000025 (U)		
02/02/2016	mg/L		0.000029 (U)		
02/29/2016	mg/L	0.000025 (U)			
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L				0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		
Number > 0.00000021	mg/L	0	0	0	0
Number > 0.0004 mg/l	L	0	0	0	0

Date	Units	MNT-C	M-C	ES-C	СН-С
	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L			0.000025 (U)	
Number > 0.000019	mg/L	0	0	0	0
Number > 0.0002 m	g/L	0	0	0	0

0.000019 mg/L 0.0002 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000250 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)		0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		
Number > 0.00000003 n	Number > 0.00000003 mg/L		0	0	0
Number > 0.04 mg/L		0	0	0	0

 $\begin{array}{cc} 0.00000003 & mg/L \\ 0.04 & mg/L \end{array}$

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000248 (U)	0.000254 (U)	0.000254 (U)	0.000258 (U)
07/07/2015	mg/L	0.000257 (U)	0.000252 (U)	0.000265 (U)	0.000284 (U)
07/20/2015	mg/L	0.000255 (U)	0.000260 (U)	0.000252 (U)	0.000256 (U)
08/03/2015	mg/L	0.000251 (U)	0.000256 (U)	0.000264 (U)	0.000258 (U)
08/17/2015	mg/L	0.000257 (U)	0.000258 (U)	0.000255 (U)	0.000254 (U)
09/01/2015	mg/L	0.000286 (U)	0.000282 (U)	0.000285 (U)	0.000284 (U)
09/15/2015	mg/L	0.000289 (U)	0.000292 (U)	0.000285 (U)	0.000288 (U)
09/29/2015	mg/L	0.000292 (U)	0.000298 (U)	0.000299 (U)	0.000291 (U)
10/13/2015	mg/L	0.000250 (U)	0.000249 (U)	0.000258 (U)	0.000253 (U)
11/03/2015	mg/L	0.000252 (U)	0.000250 (U)	0.000249 (U)	0.000252 (U)
11/09/2015	mg/L	0.000253 (U)	0.000255 (U)	0.000250 (U)	0.000249 (U)
11/17/2015	mg/L	0.000250 (U)	0.000250 (U)	0.000250 (U)	0.000250 (U)
12/01/2015	mg/L	0.000250 (U)	0.000253 (U)	0.000256 (U)	0.000256 (U)
12/15/2015	mg/L	0.000261 (U)	0.000250 (U)	0.000253 (U)	0.000267 (U)
01/05/2016	mg/L	0.000250 (U)	0.000250 (U)	0.000250 (U)	0.000250 (U)
02/02/2016	mg/L	0.000298 (U)	0.000292 (U)	0.000285 (U)	0.000292 (U)
02/29/2016	mg/L	0.000255 (U)	0.000253 (U)	0.000251 (U)	0.000250 (U)
03/07/2016	mg/L	0.000251 (U)	0.000251 (U)	0.000252 (U)	0.000026 (U)
03/21/2016	mg/L	0.000249 (U)	0.000253 (U)	0.000254 (U)	0.000254 (U)
03/29/2016	mg/L	0.000255 (U)	0.000254 (U)	0.000256 (U)	0.000253 (U)
04/13/2016	mg/L	0.000250 (U)	0.000256 (U)	0.000253 (U)	0.000261 (U)
04/20/2016	mg/L	0.000258 (U)	0.000256 (U)	0.000253 (U)	0.000250 (U)
05/11/2016	mg/L	0.000296 (U)	0.000281 (U)	0.000282 (U)	0.000284 (U)
06/01/2016	mg/L	0.000261 (U)	0.000255 (U)	0.000253 (U)	0.000252 (U)
Number > 0.0000007	3 mg/L	0	0	0	0
$Number > 0.003 \underline{mg/}$	L	0	0	0	0

0.00000073 mg/L 0.003 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)		0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	
11/09/2015	mg/L	0.000025 (U)		0.000025 (U)	
11/17/2015	mg/L	0.000025 (U)		0.000025 (U)	
12/01/2015	mg/L	0.000025 (U)		0.000026 (U)	
12/15/2015	mg/L			0.000025 (U)	
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L			0.000028 (U)	
02/29/2016	mg/L			0.000025 (U)	
03/07/2016	mg/L			0.000025 (U)	
03/21/2016	mg/L			0.000025 (U)	
03/29/2016	mg/L	0.000025 (U)		0.000026 (U)	
04/13/2016	mg/L	0.000025 (U)			0.000026 (U)
04/20/2016	mg/L		0.000026 (U)		
05/11/2016	mg/L	0.000030 (U)			
06/01/2016	mg/L	0.000026 (U)			
Number > 0.00000	0044 mg/L	0	0	0	0
Number > 0.0005	mg/L	0	0	0	0

 $\begin{array}{ccc} 0.000000044 & mg/L \\ 0.0005 & mg/L \end{array}$

Data	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.000000	044 mg/L	0	0	0	0
Number > 0.0005 m	ıg/L	0	0	0	0

0.000000044 mg/L 0.0005 mg/L

Date	Units	MNT-C	М-С	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)		
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L			0.000025 (U)	
Number > 0.0000	000044 mg/L	0	0	0	0
Number > 0.0005	mg/L	0	0	0	0

 $\begin{array}{ccc} 0.000000044 & mg/L \\ 0.0005 & mg/L \end{array}$

Data	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.0000	00044 mg/L	0	0	0	0
Number >0.0005	mg/L	0	0	0	0

0.000000044 mg/L 0.0005 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)			
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)		0.000025 (U)	
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L		0.000026 (U)		/
Number > 0.0000	00044 mg/L	0	0	0	0
Number > 0.0005	mg/L	0	0	0	0

0.000000044 mg/L 0.0005 mg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
12/01/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000026 (U)
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	0.000028 (U)
06/01/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000025 (U)
Number > 0.000000	044 mg/L	0	0	0	0
Number > 0.0005 m	ıg/L	0	0	0	0

 $\begin{array}{ccc} 0.000000044 & mg/L \\ 0.0005 & mg/L \end{array}$

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
07/07/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000026 (U)	0.000028 (U)
07/20/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	0.000026 (U)
08/03/2015	mg/L	0.000025 (U)	0.000026 (U)	0.000026 (U)	0.000026 (U)
08/17/2015	mg/L	0.000026 (U)	0.000026 (U)	0.000026 (U)	0.000025 (U)
09/01/2015	mg/L	0.000029 (U)	0.000028 (U)	0.000029 (U)	0.000028 (U)
09/15/2015	mg/L	0.000029 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
09/29/2015	mg/L	0.000029 (U)	0.000030 (U)	0.000030 (U)	0.000029 (U)
10/13/2015	mg/L	0.000025 (U)		0.000026 (U)	
11/03/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/09/2015	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
11/17/2015	mg/L	0.000025 (U)		0.000025 (U)	
12/01/2015	mg/L	0.000025 (U)		0.000026 (U)	
12/15/2015	mg/L	0.000026 (U)	0.000025 (U)	0.000025 (U)	0.000027 (U)
01/05/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
02/02/2016	mg/L	0.000030 (U)	0.000029 (U)	0.000028 (U)	0.000029 (U)
02/29/2016	mg/L	0.000025 (U)	0.000025 (U)		0.000025 (U)
03/07/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000026 (U)
03/21/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000025 (U)	0.000025 (U)
03/29/2016	mg/L	0.000025 (U)	0.000025 (U)	0.000026 (U)	0.000025 (U)
04/13/2016	mg/L	0.000025 (U)			0.000026 (U)
04/20/2016	mg/L	0.000026 (U)	0.000026 (U)	0.000025 (U)	
05/11/2016	mg/L	0.000030 (U)	0.000028 (U)	0.000028 (U)	
06/01/2016	mg/L	0.000026 (U)		0.000025 (U)	
Number > 0.0000	00044 mg/L	0	0	0	0
Number > 0.0005	mg/L	0	0	0	0

 $\begin{array}{ccc} 0.000000044 & mg/L \\ 0.0005 & mg/L \end{array}$

Date	Units	MNT	`-C	M-(C	ES-	C	СН-	C
Date	Units	Resu	ılt	Resu	ılt	Resu	ılt	Resu	ılt
06/24/2015	pg/L	1.20	(U)	0.94	(U)	1.60	(U)	1.80	(U)
07/07/2015	pg/L	1.50	(U)	1.30	(U)	1.00	(U)	1.10	(U)
07/20/2015	pg/L	3.4	(U)	2.8	(U)	2.20	(U)	6.5	(U)
08/03/2015	pg/L	1.30	(U)	0.86	(U)	1.30	(U)	0.80	(U)
08/17/2015	pg/L	0.57	(U)	1.10	(U)	1.50	(U)	1.40	(U)
09/01/2015	pg/L	1.00	(U)	1.10	(U)	1.30	(U)	1.30	(U)
09/15/2015	pg/L	0.95	(U)	2.3	(U)	1.40	(U)	1.60	(U)
09/29/2015	pg/L	2.8	(U)	3.30	(U)	2.80	(U)	4.1	(U)
10/13/2015	pg/L	0.92	(U)	5.00	(U)	4.00	(U)	1.10	(U)
11/03/2015	pg/L	1.90	(U)	1.50	(U)	2.10	(U)	1.70	(U)
11/09/2015	pg/L	2.50	(U)	2.7	(U)	1.60	(U)	2.40	(U)
11/17/2015	pg/L	1.70	(U)	1.20	(U)	0.72	(U)	1.50	(U)
12/01/2015	pg/L	4.10	(U)	4.7	(U)	6.5	(U)	4.40	(U)
12/15/2015	pg/L	0.59	(U)	0.85	(U)	0.57	(U)	0.60	(U)
01/05/2016	pg/L	0.59	(U)	0.70	(U)	1.5	(U)	0.68	(U)
02/02/2016	pg/L	1.80	(U)	1.50	(U)	1.40	(U)	1.70	(U)
02/29/2016	pg/L	1.40	(U)	1.20	(U)	1.30	(U)	0.98	(U)
03/07/2016	pg/L	1.30	(U)	3.70	(U)	3.60	(U)	3.40	(U)
03/21/2016	pg/L	1.80	(U)	2.10	(U)	1.8	(U)	1.6	(U)
03/29/2016	pg/L	0.81	(U)	1.90	(U)	0.83	(U)	2.10	(U)
04/13/2016	pg/L	4.90	(U)	4.10	(U)	3.60	(U)	2.70	(U)
04/20/2016	pg/L	0.51	(U)	0.50	(U)	0.47	(U)	0.43	(U)
05/11/2016	pg/L	1.70	(U)	2.20	(U)	2.50	(U)	1.90	(U)
06/01/2016	pg/L	1.20	(U)	3.6	(U)	3.6	(U)	2.90	(U)
Number > 0.013	pg/L	0		0		0		0	
Number > 30 pg	/L	0		0		0		0	

Analytical methods providing the lowest MRL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MRL and the applicable standard.

The sensitivity of the minimum reporting limit is dependent upon the daily calibration curve, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the minimum reporting limit throughout the sampling period is anticipated and acceptable.

70-4-	T7-24-	MNT	-C	M-	C	ES-	c T	СН-	C
Date	Units	Resu	lt	Rest	ult	Resu	ılt	Resu	ılt
06/24/2015	pCi/L	2.26	(U)	2.37	(U)	2.39	(U)	1.56	(U)
07/07/2015	pCi/L	1.61	(U)	2.08	(U)	1.60	(U)	2.03	(U)
07/20/2015	pCi/L	2.57	(U)	0.878	(U)	2.51	(U)	1.75	(U)
08/03/2015	pCi/L	1.94	(U)	2.51	(U)	2.06	(U)	2.10	(U)
08/17/2015	pCi/L	1.86	(U)	1.85	(U)	2.77	(U)	2.02	(U)
09/01/2015	pCi/L	2.09	(U)	2.17	(U)	2.23	(U)	2.32	(U)
09/15/2015	pCi/L	2.40	(U)	1.91	(U)	2.13	(U)	2.64	(U)
09/29/2015	pCi/L	1.70	(U)	2.91	(U)	2.40	(U)	2.27	(U)
10/13/2015	pCi/L	1.57	(U)	4.05	(U)	5.40	(U)	2.71	(U)
11/03/2015	pCi/L	1.49	(U)	1.94	(U)	2.56	(U)	2.61	(U)
11/09/2015	pCi/L	2.11	(U)	1.32	(U)	1.75	(U)	2.24	(U)
11/17/2015	pCi/L	1.94	(U)	1.87	(U)	2.01	(U)	2.38	(U)
12/01/2015	pCi/L	2.38	(U)	2.01	(U)	2.38	(U)	2.17	(U)
12/15/2015	pCi/L	1.65	(U)	2.26	(U)	1.48	(U)	1.91	(U)
01/05/2016	pCi/L	1.14	(U)	1.34	(U)	2.23	(U)	2.05	(U)
02/02/2016	pCi/L	2.09	(U)	1.94	(U)	2.02	(U)	1.79	(U)
02/29/2016	pCi/L	1.97	(U)	1.13	(U)	1.03	(U)	1.44	(U)
03/07/2016	pCi/L	1.24	(U)	1.61	(U)	1.58	(U)	2.23	(U)
03/21/2016	pCi/L	1.26	(U)	2.67	(U)	1.56	(U)	1.86	(U)
03/29/2016	pCi/L	1.57	(U)	2.22	(U)	1.54	(U)	1.94	(U)
04/13/2016	pCi/L	1.47	(U)	1.80	(U)	1.86	(U)	2.09	(U)
04/20/2016	pCi/L	1.37	(U)	1.83	(U)	2.18	(U)	2.09	(U)
05/11/2016	pCi/L	0.991	(U)	2.60	(U)	2.12	(U)	1.64	(U)
06/01/2016	pCi/L	1.77	(U)	1.46	(U)	1.40	(U)	1.31	(U)
Number > 3 p	Ci/L	0		0		0		0	

WV Category A WQS =

3 pCi/L

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot achieve a reporting level lower than the CAWQS. Values reported as an exceedence are both above the MDL and the applicable standard.

Date	Units	MNT	-C	M-	C	ES-C	C	СН-	C
Date	Units	Resu	ılt	Resi	ult	Resu	lt	Resu	lt
06/24/2015	pCi/L	2.27	(U)	2.03	(U)	2.44	(U)	1.51	(U)
07/07/2015	pCi/L	1.43	(U)	1.97	(U)	1.94	(U)	1.98	(U)
07/20/2015	pCi/L	2.12	(U)	0.842	(U)	0.826	(U)	1.94	(U)
08/03/2015	pCi/L	2.09	(U)	2.55	(U)	2.24	(U)	2.09	(U)
08/17/2015	pCi/L	1.88	(U)	2.67	(U)	2.71	(U)	2.74	(U)
09/01/2015	pCi/L	2.17	(U)	1.95	(U)	13.00	(U)	1.77	(U)
09/15/2015	pCi/L	1.99	(U)	2.18	(U)	2.48	(U)	2.41	(U)
09/29/2015	pCi/L	1.31	(U)	2.60	(U)	2.20	(U)	1.87	(U)
10/13/2015	pCi/L	1.59	(U)	3.56	(U)	2.98	(U)	2.86	(U)
11/03/2015	pCi/L	1.47	(U)	1.63	(U)	1.84	(U)	1.91	(U)
11/09/2015	pCi/L	1.51	(U)	1.64	(U)	1.31	(U)	2.08	(U)
11/17/2015	pCi/L	1.51	(U)	1.98	(U)	2.33	(U)	2.25	(U)
12/01/2015	pCi/L	2.16	(U)	2.82	(U)	1.88	(U)	2.27	(U)
12/15/2015	pCi/L	2.43	(U)	1.70	(U)	2.47	(U)	1.94	(U)
01/05/2016	pCi/L	1.15	(U)	1.61	(U)	1.83	(U)	1.67	(U)
02/02/2016	pCi/L	1.19	(U)	1.70	(U)	2.37	(U)	1.70	(U)
02/29/2016	pCi/L	2.83	(U)	1.18	(U)	1.08	(U)	1.26	(U)
03/07/2016	pCi/L	1.11	(U)	2.50	(U)	2.11	(U)	1.87	(U)
03/21/2016	pCi/L	2.81	(U)	2.92	(U)	1.07	(U)	1.70	(U)
03/29/2016	pCi/L	1.60	(U)	2.12	(U)	2.58	(U)	1.44	(U)
04/13/2016	pCi/L	1.42	(U)	1.52	(U)	2.14	(U)	1.80	(U)
04/20/2016	pCi/L	2.54	(U)	2.19	(U)	2.72	(U)	1.74	(U)
05/11/2016	pCi/L	1.18	(U)	1.42	(U)	1.70	(U)	1.95	(U)
06/01/2016	pCi/L	1.76	(U)	1.27	(U)	1.49		1.28	(U)
Number > 1		0		0		0		0	
Number > 1	5 pCi/L	0		0		0		0	

WV Category A WQS = 15 pCi/L Primary DWS= 15 pCi/L

Doto	Units	MNT	-C	M-	C	ES-	C	СН-	C
Date	Units	Resu	lt	Res	ult	Resu	ılt	Resu	ılt
06/24/2015	pCi/L	1.72		2.40	(U)	3.16	(U)	2.42	(U)
07/07/2015	pCi/L	1.68	(U)	2.47	(U)	1.95	(U)	1.81	(U)
07/20/2015	pCi/L	2.03		1.36		1.62		1.87	(U)
08/03/2015	pCi/L	2.08		2.39	(U)	2.15		2.10	(U)
08/17/2015	pCi/L	2.17	(U)	2.17	(U)	1.74	(U)	2.50	(U)
09/01/2015	pCi/L	1.80	(U)	1.70		1.98		1.83	(U)
09/15/2015	pCi/L	1.82	(U)	1.89		2.00	(U)	1.86	(U)
09/29/2015	pCi/L	1.54	(U)	3.67	(U)	2.47	(U)	2.21	(U)
10/13/2015	pCi/L	1.14		3.29	(U)	3.20	(U)	2.35	(U)
11/03/2015	pCi/L	2.76		2.12	(U)	2.33	(U)	2.78	
11/09/2015	pCi/L	1.78	(U)	2.27		1.71	(U)	1.69	(U)
11/17/2015	pCi/L	1.51	(U)	1.52	(U)	2.03		1.84	(U)
12/01/2015	pCi/L	1.84	(U)	2.35	(U)	1.72	(U)	2.89	
12/15/2015	pCi/L	1.97	(U)	1.82	(U)	1.81	(U)	2.66	
01/05/2016	pCi/L	1.69	(U)	2.60	(U)	2.26	(U)	2.31	(U)
02/02/2016	pCi/L	1.40	(U)	2.18		1.78	(U)	1.76	(U)
02/29/2016	pCi/L	3.01	(U)	1.13	(U)	1.15	(U)	1.12	(U)
03/07/2016	pCi/L	1.98	(U)	1.78	(U)	2.26	(U)	1.69	(U)
03/21/2016	pCi/L	3.36	(U)	2.79	(U)	1.35		1.49	(U)
03/29/2016	pCi/L	1.83	(U)	1.77	(U)	1.76	(U)	2.01	(U)
04/13/2016	pCi/L	2.44	(U)	2.06	(U)	2.34	(U)	2.29	(U)
04/20/2016	pCi/L	1.86	(U)	2.32	(U)	1.90	(U)	1.94	(U)
05/11/2016	pCi/L	1.70	(U)	1.72	(U)	1.89	(U)	2.26	(U)
06/01/2016	pCi/L	1.83	(U)	2.01		3.17	· · · ·	1.89	(U)
Number >1000	pCi/L	0		0		0		0	

WV Category A WQS =

1,000 pCi/L

Date	Units	MNT	-C	M-(С	ES-	C	CH-	C
Date	Ollits	Resu	lt	Rest	ılt	Resu	lt	Resu	lt
06/24/2015	pCi/L	0.537	(U)	0.628	(U)	0.745	(U)	0.435	(U)
07/07/2015	pCi/L	0.758	(U)	0.728	(U)	1.15		0.887	(U)
07/20/2015	pCi/L	0.301		0.617	(U)	0.825	(U)	0.713	(U)
08/03/2015	pCi/L	0.978	(U)	0.425	(U)	0.997	(U)	0.202	
08/17/2015	pCi/L	0.334		0.871	(U)	0.837	(U)	0.327	
09/01/2015	pCi/L	0.888	(U)	0.928	(U)	0.961	(U)	0.848	(U)
09/15/2015	pCi/L	0.999	(U)	0.944	(U)	8.21	(U)	5.50	(U)
09/29/2015	pCi/L	1.13	(U)	0.794	(U)	0.979	(U)	0.986	(U)
10/13/2015	pCi/L	0.972	(U)	0.709	(U)	0.857	(U)	0.653	(U)
11/03/2015	pCi/L	0.865	(U)	0.16	(U)	0.591	(U)	0.656	(U)
11/09/2015	pCi/L	0.568	(U)	0.494	(U)	0.412	(U)	0.881	(U)
11/17/2015	pCi/L	0.653	(U)	0.421	(U)	0.810	(U)	0.409	(U)
12/01/2015	pCi/L	0.409	(U)	0.602	(U)	0.734		0.368	Ü
12/15/2015	pCi/L	0.765	(U)	0.322		0.793	(U)	0.807	(U)
01/05/2016	pCi/L	0.833	(U)	0.784	(U)	0.669	(U)	0.502	(U)
02/02/2016	pCi/L	0.843	(U)	0.244		0.620	(U)	0.811	(U)
02/29/2016	pCi/L	0.745	(U)	0.949	(U)	0.698	(U)	0.680	(U)
03/07/2016	pCi/L	0.223		0.799	(U)	0.620	(U)	0.801	(U)
03/21/2016	pCi/L	0.731	(U)	0.850	(U)	0.792	(U)	0.788	(U)
03/29/2016	pCi/L	0.611	(U)	0.977	(U)	0.255	(U)	0.820	(U)
04/13/2016	pCi/L	0.707	(U)	0.948	(U)	0.703	(U)	0.716	(U)
04/20/2016	pCi/L	0.674	(U)	0.660	(U)	0.991	(U)	0.488	(U)
05/11/2016	pCi/L	0.794	(U)	0.687	(U)	0.598	(U)	0.991	(U)
06/01/2016	pCi/L	0.825	(U)	0.446	(U)	0.498	(U)	0.827	(U)
Number $> 5 pC$		0		0		0	->	0	
Number > 5 pC	Ci/L	0		0	1	0		0	

WV Category A WQS = 5 pCi/L Primary DWS = 5 pCi/L

Analytical methods providing the lowest MRL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot consistently achieve a reporting level lower than the CAWQS and PDWS. Values reported as an exceedence are both above the MRL and the applicable standard.

Date	Units	MNT	-C	M-	C	ES-0	C	СН-	C
Date	Units	Resu	ılt	Resi	ılt	Resu	lt	Resu	lt
06/24/2015	pCi/L	0.933	(U)	0.898	(U)	0.911	(U)	0.761	(U)
07/07/2015	pCi/L	0.892	(U)	0.820	(U)	0.903	(U)	0.702	(U)
07/20/2015	pCi/L	0.968	(U)	0.738	(U)	0.832	(U)	0.912	(U)
08/03/2015	pCi/L	0.871	(U)	0.729	(U)	0.823	(U)	0.762	(U)
08/17/2015	pCi/L	0.946	(U)	0.693	(U)	0.732	(U)	0.698	(U)
09/01/2015	pCi/L	0.809	(U)	0.887	(U)	0.823	(U)	0.881	(U)
09/15/2015	pCi/L	3.06		0.858	(U)	6.72	(U)	7.77	(U)
09/29/2015	pCi/L	0.714	(U)	0.726	(U)	0.699	(U)	0.838	(U)
10/13/2015	pCi/L	0.913	(U)	0.887	(U)	0.938	(U)	0.977	
11/03/2015	pCi/L	1.13		0.650	(U)	0.702	(U)	0.702	(U)
11/09/2015	pCi/L	0.849	(U)	0.659	(U)	0.611	(U)	0.920	
11/17/2015	pCi/L	0.601	(U)	0.862		0.737	(U)	0.597	(U)
12/01/2015	pCi/L	0.767	(U)	0.765	(U)	0.692	(U)	0.749	(U)
12/15/2015	pCi/L	0.747	(U)	0.811	(U)	0.769		0.736	(U)
01/05/2016	pCi/L	0.855	(U)	0.750	(U)	0.640	(U)	0.711	(U)
02/02/2016	pCi/L	0.657	(U)	0.709	(U)	0.634	(U)	0.676	(U)
02/29/2016	pCi/L	0.901	(U)	0.842	(U)	0.783	(U)	0.917	(U)
03/07/2016	pCi/L	0.820	(U)	0.925	(U)	0.782	(U)	0.836	(U)
03/21/2016	pCi/L	0.674	(U)	0.782	(U)	0.928	(U)	0.854	(U)
03/29/2016	pCi/L	0.883	(U)	0.994	(U)	1.13	(U)	0.995	(U)
04/13/2016	pCi/L	0.845		0.682	(U)	0.768	(U)	0.754	(U)
04/20/2016	pCi/L	0.696	(U)	0.757	(U)	0.679	(U)	0.781	(U)
05/11/2016	pCi/L	0.735	(U)	0.753	(U)	0.839	(U)	0.752	(U)
06/01/2016	pCi/L	0.711	(U)	0.818		0.574	(U)	0.738	
Number > 5 p	Ci/L	0		0		0	` '	0	
Number > 5 p	Ci/L	0		0		0		0	

WV Category A WQS = 5 Primary DWS = 5

Analytical methods providing the lowest MRL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot consistently achieve a reporting level lower than the CAWQS and PDWS. Values reported as an exceedence are both above the MRL and the applicable standard.

pCi/L

pCi/L

Doto	T7-24-	MNT	-C	M-C	C	ES-C	C	СН-	C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	pCi/L	1.500	(U)	1.53	(U)	1.39	(U)	1.68	(U)
07/07/2015	pCi/L	0.934	(U)	1.02	(U)	0.832	(U)	0.997	(U)
07/20/2015	pCi/L	1.34	(U)	1.94	(U)	1.37	(U)	1.37	(U)
08/03/2015	pCi/L	0.858	(U)	0.855	(U)	0.937	(U)	0.722	(U)
08/17/2015	pCi/L	0.806	(U)	0.751	(U)	0.743	(U)	0.788	(U)
09/01/2015	pCi/L	1.05	(U)	1.14	(U)	1.26	(U)	0.798	(U)
09/15/2015	pCi/L	0.494	(U)	0.522	(U)	0.523	(U)	0.511	(U)
09/29/2015	pCi/L	1.52	(U)	1.44	(U)	1.60	(U)	1.40	(U)
10/13/2015	pCi/L	0.579	(U)	0.416	(U)	0.527	(U)	0.451	(U)
11/03/2015	pCi/L	0.383	(U)	0.356	(U)	0.429	(U)	0.355	(U)
11/09/2015	pCi/L	3.97	(U)	2.750	(U)	2.29	(U)	2.56	(U)
11/17/2015	pCi/L	1.84	(U)	1.85	(U)	1.81	(U)	1.61	(U)
12/01/2015	pCi/L	1.53	(U)	1.61	(U)	1.51	(U)	1.51	(U)
12/15/2015	pCi/L	0.792	(U)	0.896	(U)	0.827	(U)	0.751	(U)
01/05/2016	pCi/L	1.300	(U)	1.61	(U)	1.14	(U)	1.10	(U)
02/02/2016	pCi/L	1.14	(U)	1.22	(U)	1.18	(U)	1.21	(U)
02/29/2016	pCi/L	1.11	(U)	1.19	(U)	1.27	(U)	1.06	(U)
03/07/2016	pCi/L	1.06	(U)	1.16	(U)	1.17	(U)	1.06	(U)
03/21/2016	pCi/L	0.439	(U)	1.04	(U)	0.982	(U)	1.35	(U)
03/29/2016	pCi/L	0.882	(U)	0.888	(U)	0.798	(U)	0.817	(U)
04/13/2016	pCi/L	0.894	(U)	0.889	(U)	0.905	(U)	0.925	(U)
04/20/2016	pCi/L	1.08	(U)	1.20	(U)	1.08	(U)	1.47	(U)
05/11/2016	pCi/L	1.11	(U)	1.32	(U)	1.11	(U)	0.992	(U)
06/01/2016	pCi/L	0.961	(U)	0.948	(U)	1.38	(U)	0.991	(U)
Number > 10	pCi/L	0		0		0		0	

WV Category A WQS =

10 pCi/L

Date	Units	MNT	-C	M-C	C	ES-	Ċ	СН-	C
Date	Units	Resu	ılt	Resu	ılt	Resu	ılt	Resu	lt
06/24/2015	pCi/L	246	(U)	258	(U)	228	(U)	254	(U)
07/07/2015	pCi/L	239	(U)	239	(U)	258	(U)	249	(U)
07/20/2015	pCi/L	275	(U)	254	(U)	239	(U)	255	(U)
08/03/2015	pCi/L	228	(U)	242	(U)	243	(U)	254	(U)
08/17/2015	pCi/L	285	(U)	285	(U)	256	(U)	277	(U)
09/01/2015	pCi/L	253	(U)	262	(U)	273	(U)	267	(U)
09/15/2015	pCi/L	246	(U)	232	(U)	251	(U)	252	(U)
09/29/2015	pCi/L	256	(U)	236	(U)	231	(U)	904	
10/13/2015	pCi/L	241	(U)	242	(U)	243	(U)	240	(U)
11/03/2015	pCi/L	247	(U)	246	(U)	249	(U)	249	(U)
11/09/2015	pCi/L	257	(U)	256	(U)	254	(U)	255	(U)
11/17/2015	pCi/L	243	(U)	279	(U)	281	(U)	280	(U)
12/01/2015	pCi/L	285	(U)	285	(U)	286	(U)	285	(U)
12/15/2015	pCi/L	239	(U)	238	(U)	237	(U)	239	(U)
01/05/2016	pCi/L	244	(U)	587		244	(U)	244	(U)
02/02/2016	pCi/L	246	(U)	244	(U)	246	(U)	242	(U)
02/29/2016	pCi/L	256	(U)	247	(U)	245	(U)	246	(U)
03/07/2016	pCi/L	246	(U)	262	(U)	257	(U)	261	(U)
03/21/2016	pCi/L	265	(U)	264	(U)	268	(U)	267	(U)
03/29/2016	pCi/L	247	(U)	1,750		1,151		246	(U)
04/13/2016	pCi/L	273	(U)	273	(U)	269	(U)	272	(U)
04/20/2016	pCi/L	227	(U)	226	(U)	224	(U)	242	(U)
05/11/2016	pCi/L	249	(U)	249	(U)	245	(U)	250	(U)
06/01/2016	pCi/L	249	(U)	272	(U)	249	(U)	255	(U)
Number > 2000	0 pCi/L	0		0		0		0	

Primary DWS =

20,000 pCi/L

Date	Units	MNT	-C	M-0		ES-C	C	СН-	C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.202	
07/07/2015	pCi/L	0.194		0.193	(U)	0.193	(U)	0.193	(U)
07/20/2015	pCi/L	0.193	(U)	0.271		0.294		0.193	(U)
08/03/2015	pCi/L	0.193	(U)	0.215		0.408		0.233	
08/17/2015	pCi/L	0.201		0.385	(U)	0.212		0.216	
09/01/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
09/15/2015	pCi/L	1.927	(U)	0.224		0.197		0.193	(U)
09/29/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	10.9	
10/13/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
11/03/2015	pCi/L	0.257		0.231		0.200	` (0.193	(U)
11/09/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
11/17/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
12/01/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
12/15/2015	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
01/05/2016	pCi/L	0.233		0.235		0.193	(U)	0.193	(U)
02/02/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.196	
02/29/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
03/07/2016	pCi/L	0.197		0.266		0.248		0.287	
03/21/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
03/29/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
04/13/2016	pCi/L	0.207		0.195		0.204		0.198	
04/20/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
05/11/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
06/01/2016	pCi/L	0.193	(U)	0.193	(U)	0.193	(U)	0.193	(U)
Number >20 pCi/L		0		0		0		0	

Primary DWS =

20 pCi/L

The sensitivity of the minimum detectable concentration is dependent upon the daily instrument calibration, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the minimum detectable concentration throughout the sampling period is anticipated and acceptable.

Testing for the presence of uranium in drinking water can be done using several methods approved by USEPA. Depending on the analytical method, uranium can be measured either as the activity of the radionuclide where the results are reported in units of picocuries per liter (pCi/l), or uranium can be measured as the mass of the isotope and the results are reported in mg/l or ug/l. Uranium was reported by the laboratory in pCi/L. The PDWS is presented as ug/L. For review of this data, the PDWS was converted from ug/L to pCi/L using a conservative activity to mass ratio of 0.67 pCi/ug.

Date	Units	MNT	-C	M-C	C	ES-C	C	СН-	C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	ilt
06/24/2015	MFL	0.20	(U)	0.20	(U)	0.51	(U)	0.51	(U)
07/07/2015	MFL	1.00	(U)	0.51	(U)	1.00	(U)	1.00	(U)
07/20/2015	MFL	0.19	(U)	0.51	(U)	0.51	(U)	0.51	(U)
08/03/2015	MFL	0.20	(U)	0.51	(U)	0.51	(U)	0.51	(U)
08/17/2015	MFL	0.20	(U)	0.52	(U)	0.52	(U)	0.52	(U)
09/01/2015	MFL	0.49	(U)	0.49	(U)	0.19	(U)	0.49	(U)
09/15/2015	MFL	1.00	(U)	1.00	(U)	1.00	(U)	1.00	(U)
09/29/2015	MFL	0.51	(U)	0.51	(U)	0.51	(U)	0.51	(U)
10/13/2015	MFL	0.49	(U)	0.20	(U)	0.20	(U)	0.52	(U)
11/03/2015	MFL	0.52	(U)	0.52	(U)	1.00	(U)	0.52	(U)
11/09/2015	MFL	10.00	(U)	5.10	(U)	10.00	(U)	10.00	(U)
11/17/2015	MFL	1.00	(U)	1.00	(U)	0.52	(U)	0.52	(U)
12/01/2015	MFL	0.53	(U)	0.53	(U)	0.53	(U)	0.20	(U)
12/15/2015	MFL	0.53	(U)	0.52	(U)	0.52	(U)	0.52	(U)
01/05/2016	MFL	0.20	(U)	0.20	(U)	0.20	(U)	0.20	(U)
02/02/2016	MFL	0.53	(U)	0.53	(U)	0.53	(U)	0.53	(U)
02/29/2016	MFL	0.51	(U)	0.20	(U)	0.51	(U)	0.51	(U)
03/07/2016	MFL	0.20	(U)	0.50	(U)	0.50	(U)	0.50	(U)
03/21/2016	MFL	0.20	(U)	0.53	(U)	0.53	(U)	0.53	(U)
03/29/2016	MFL	1.10	(U)	1.10	(U)	1.00	(U)	1.00	(U)
04/13/2016	MFL	0.52	(U)	0.19	(U)	0.19	(U)	0.19	(U)
04/20/2016	MFL	0.20	(U)	1.10	(U)	0.20	(U)	0.20	(U)
05/11/2016	MFL	0.50	(U)	18.00	(U)	18.00	(U)	18.00	(U)
06/01/2016	MFL	0.54	(U)	0.54	(U)	0.54	(U)	0.54	(U)
Number $> 7 M$	IFL	0		0		0		0	

PrimaryDWS =

7 MFL

Analytical methods providing the lowest MDL available from a WVDEP-certified lab for raw water were used for the analysis. However, the available analytical method cannot consistently achieve a reporting level lower than the PDWS. Values reported as an exceedence are both above the MDL and the applicable standard.

The sensitivity of the MDL is dependent upon the daily instrument calibration, the level of interference within the matrix and/or the complexity of the matrix. Therefore, variation of the MDL throughout the sampling period is anticipated and acceptable.

MNT-1-T	-	MINT-2-T	MNT-2-B	M-1-T		M-1-B	M-2-T	Ţ	M-2-B	8
Result	Result	Result	Result	Result		Result	Result	=	Result	1
(U) 0.015	15 (U)	0.015 (U)	0.015 $\overline{\text{(U)}}$	0:030	9	0.015 (U	0	5	0.015	3
(U) 0.015		0.015 (U)		0:030	3	0.030 (U)		3	0.030	[5
	\neg	0.015 (U)	(U) 0.015	0.015	<u>(1)</u>	0.015 (U)		9	0.015	5
			0.015		(D)	0.015 (U)		9	0.015	3
	I			0.015	(C)	0.015 (U)		9	0.015	9
	\subseteq				(U)	0.015 (U)		9	0.015	9
	\mathcal{I}		0.015	0.015	<u>(1</u>	0.015 (U)	J) 0.015	9	0.015	3
_	5				3	0.015 (U)	7) 0.015	(3)	0.015	9
	9		1		3	0.015 (U)		Ω	0.015	9
	3				9	0.015 (U)	0.015	Ω	0.015	9
	5		0.015 (U)	0.015	5	(U) 210.0		9	0.015	9
	5		0.015 (U)		(U)	0.015 (U)	0.015	3	0.015	3
	E		0.015 (U)	0.015	Ω	0.015 (U)	0.015	9	0.015	3
	a				9	(U) 210.0		3	0.015	9
	5		٦	_	9	0.015 (U)	0.015	9	0.015	9
	3		0.015 (U)		9	0.015 (U)	0.015	(D)	0.015	Ð
\rightarrow	5				9	0.015 (U)		9	0.015	3
	9				9	0.015 (U)	0.015	(U)	0.015	9
	9	- 1	1	_	a	0.015 (U)		(D)	0.015	(D)
	3			_	5	0.015 (U)	0.015	9	0.015	Ω
	9	П	0.015 (U)	0.015	9	0.015 (U)	0.015	(D)	0.015	9
				0.015	<u>(D</u>	0.015 (U)	0.015	3	0.015	2
\perp		0.015 (U)	0.015 (U)	0.015	(Ω)	0.015 (U)	0.015	9	0.015	9
(U) 0.015	9	0.015 (U)	0.015 (U)	0.015	9	0.015 (U)	0.015	3	0.015	3
0		0	0	0		0	0		0	
0		0	0	0		0	0		0	
0		0	0	0		0	0		0	

UCMR3 MRL = $0.03 \mu g/L$ UCMR3 RC = $6.14 \text{ to } 614 \mu g/L$ 157 of 240

ES-1-T ES-1-B ES-2-T ES-2-B CH Result Result Result D	ES-2-T ES-2-B	ES-2-B				CH-1-T		CH-1-B		CH-2-T	+	CH-2-B
The pols and pols and pols and pols	The cost of the cost of the cost	ATD 0015 ATD 0	Mesunt 0 015 (TD)	U.D.		Kesuit		Ħ	1	품	_	Result
(U) 0.030 (U) 0.030 (U) 0.030 (U)	(U) 0.030 (U) 0.030 (U)	(1) 0.013 (1)	0.013 (U)			0.013	5 5	0.015	5 5	0.015		0.015
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	3			9		3		36	0.015
(U) 0.015 (U) 0.015 (U)	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9		0.015	(0)		3			0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9		0.015	<u>(C</u>	0.015	(U)	-		
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	3			Ð		(n)		(E)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	3	_	0.015	<u>(</u>	0.015	(U)	_	_	
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9	-		<u>(i)</u>		(D)	0.015 (<u>(</u>	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9			<u>(1)</u>		(D)		<u>(</u>	_
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	2			<u>(C</u>	0.015	(D)	0.015 ((E)	0.015 (U
(U) 0.015 (U) 0.015 (U)	(U) 0.015 (U) 0.015	(U) 0.015	0.015	티	$\overline{}$		<u>(D</u>		(0)			
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9			<u>(i)</u>	0.015 ((0)	0.015 ((E)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	믹	ᅱ		9		(D)		(U)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	9	$\overline{}$		3	0.015	(U)	0.015 ((D)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	딕			9		(V,S)			0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	리			9	0.015 ((U)	0.015	0 (D)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	2			9		(U)	0.015	(U) 0	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	익			3	0.015 ((D)	0.015 ((Ω)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	ᅴ			9	0.015 ((D)	0.015 ((0)	0.015 (U
(U) 0.015 (U) 0.015 (U) 0.015	(U) 0.015 (U) 0.015	(U) 0.015	0.015	리	\rightarrow		9	0.015 ((D)	0.015	(U) 0	0.015 (U
(U) 0.015 (U) 0.015 (U)	(U) 0.015 (U) 0.015	(U) 0.015	0.015	밍	$\overline{}$	0.015 ((3)	0.015 ((n)	0.015	0 (D)	0.015 (U
(U) 0.015 (U) 0.015 (U)	(U) 0.015 (U) 0.015	(U) 0.015	0.015	5	ᆜ	0.015 ((Ω)	0.015 (9	0.015	(D)	0.015 (U
0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U)	(U) 0.015 (U) 0.015	(U) 0.015	0.015	(0)		0.015 (\mathbb{Q}	0.015 (9	-	9] -
(U) 0.	(U) 0.015 (U) 0.015	(U) 0.015	0.015	(E)		0.015 ((2)	0.015 (10) (E)	
0 0 0 0			0			0		0	-	0	_	0
0 0 0 0			0		-	0		0		0		0
0 0 0 0			0			0	\vdash	0	Г	0		0

0.03 μg/L 6.14 to 614 μg/L UCMR3 MRL = UCMR3 RC =

Healt Result Re	Date	Inite	MNT-1-T	T-	MNT-1-B	<u>~</u>	MNT-2-T	T-	MNT-2-B	2-B	M-1-T	I	M-1-B	8	M-2-T	<u></u>	M-2-R	~
0.015 (U) 0.015			Resul	t l	Result		Resul		Resu	II.	Result	#	Result	<u>+</u>	Result	_	Recult	T_
0.015 (U) 0.015	- 1	µg/L	0.015	Ω		9	0.015	9	0.015	3	0.030	9	0.015	9	0.015	18	0.015	1
0.015 (U) 0.015		ug/L	0.015	9		Ω	0.015	9	0.015	9	0.030	9	0.030	3	0.030	3	0.030	E
0.015 (U) 0.015	- 1	µg/L	0.015	3		9	0.015	(D)	0.015	3	0.015	3	0.015	3	0.015	5	0.015	3
0.015 (U) 0.015		ng/L	0.015	9	- }	5	0.015	(U)	0.015	9	0.015	9	0.015	3	0.015	5	0.015	5
0.015 (U) 0.015	- 1	ng/L	0.015	5		5	0.015	(U)	0.015	(0.015	9	0.015	5	0.015	5	0.015)[
0.015 (U)		µg/L	0.015	9		<u>(</u>	0.015	9	0.015	(2)	0.015	9	0.015	3	0.015	5	0.015	9
0.015 (U) 0.015	- 1	ng/L	0.015	5		Ω	0.015	$\widehat{\mathbb{U}}$	0.015	(D)	0.015	3	0.015	3	0.015	5	0.015	15
0.015 (U) 0.015		µg/L	0.015	3		E)	0.015	(C)	0.015	9	0.015	3	0.015	3	0.015	5	0.015) [
0.015 (U) 0.015		ηg/L	0.015	5	1	9	0.015	9	0.015	$\widehat{\mathbb{O}}$	0.015	<u>(D</u>	0.015	3	0.015	3	0.015	3
0.015 (U) 0.015		ug/L	0.015	5		5	0.015	3	0.015	(D)	0.015	3	0.015	3	0.015	3	0.015	3
0.015 (U) 0.015		ng/L	0.015	3		5	0.015	9	0.015	(U)	0.015	9	0.015	9	0.015	3	0.015	2
0.015 (U) 0.015		µg/L	0.015	5		5	0.015	Ω	0.015	(D)	0.015	9	0.015	9	0.015	3	0.015	15
0.015 (U) 0.015		ng/L	0.015	5		2	0.015	Ω	0.015	(0)	0.015	9	0.015	9	0.015	3	0.015	3
0.015 (U) 0.015		ng/L	0.015	5		5	0.015	5	0.015	(U)	0.015	9	0.015	3	0.015	9	0.015	3
0.015 (U) 0.015	- 1	ηg/L	0.015	e	ı	5	0.015	3	0.015	(U,S)	0.015	9	0.015	9	0.015	3	0.015	15
0.015 (U) 0.015		ng/L	0.015	9		5	0.015	3	0.015	(U)	0.015	(D)	0.015	9	0.015	9	0.015	2
0.015 (U) 0.015		ng/L	0.015	a		5	0.015	3	0.015	Ω	0.015	$\widehat{\Omega}$	0.015	9	0.015	3	0.015	15
0.015 (U) 0.015		ng/L	0.015	9			0.015	3	0.015	Ω	0.015	<u>(1)</u>	0.015	5	0.015	3	0.015	3
0.015 (U) 0.015		µg/L	0.015	e			0.015	3	0.015	(0)	0.015	(0)	0.015	9	0.015	9	0.015	3
0.015 (U) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		µg/L	0.015	9			0.015	3	0.015	(D)	0.015	(D)	0.015	9	0.015	3	0.015	3
0.015 (U) 0.015	1	ng/L	0.015	5			0.015	<u>(C</u>	0.015	9	0.015	(D)	0.015	9	0.015	5	0.015	[5
0.015 (U) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		µg/L	0.015	3				Ω	0.015	3	0.015	3	0.015	9	0.015	15	0.015	3
0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ng/L	0.015	<u>e</u>			0.015	(D)	0.015	9	0.015	5	0.015	5	0.015	5	0.015	Έ
0 0 0 0 0		ng/L	0.015	3			0.015	9	0.015	9	0.015	9	0.015	3	0.015	5	0.015	[5
0 0 0 0	2	ng/L	0		0		0	-	0		0		0		0		C	
0 0 0	질	14 µg/L	0		0		0		0		0		0		0	\dagger		T
	4	mg/L	0		0		0		0		0		0	T	0		0	

UCMR3 MRL = $0.03 \mu g/L$ UCMR3 RC = $0.0004 \text{ to } 0.04 \mu g/L$ The EPA UCMR3-approved analytical method was used for the analysis. However, the analytical method cannot achieve a reporting level as low as the lower end of the RC range. Values reported as an exceedence are both above the MRL and the RC.

Sesult Result R	1	ES-1-T		ES-1-B	ES-2-T	-	ES-2-B		CH-1-T	i.	CH-1-B	4	CH-2-T		CH-2.R	~
(U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) 0.030 (U) 0.015 (U) 0.		Result	-	Result	Resul	=	Result		Resu	۳	Result	<u> </u>	Result		Reenlt	٠.
(U) 0.030 (U) 0.030 (U) 0.030 (U) 0.030 (U) (U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U)	0			015	0.015	3		15	0.015	5	0.015	E	0.015	E	0.015][
(U) 0.015 (U) 0.	0			030	0.030	3		3	0.030	3	0.030	9	0.030	E	0.010	\mathbb{E}
(U) 0.015 (U) 0.)15	0.015	9		3	0.015	9	0.015	3	0.015	15	0.015	3 5
(U) 0.015 (U) 0.				015	0.015	(D)	0.015	3	0.015	3	0.015	9	0.015	5	0.015	3 (5
(U) 0.015 (U) 0.	_			015	0.015	Ω	0.015	3	0.015	9	0.015	9	0.015	3	0.015	15
(U) 0.015 (U) 0.					0.015	9		9	0.015	3	0.015	3	0.015	15	0.015	1
(U) 0.015 (U) 0.					0.015	9		9	0.015	3	0.015	9	0.015	3	0.015)[
(U) 6.015 (U) 6.					0.015	(0)		3	0.015	3	0.015	3	0.015	15	0.015	5
(U) 0.015 (U) 0.	_				0.015	9		5	0.015	(D)	0.015	9	0.015	3	0.015	3
(U) 0.015 (U) 0.					0.015	3		\mathfrak{Q}	0.015	9	0.015	3	0.015	3	0.015	$\hat{\mathbf{G}}$
(U) 0.015 (U) 0.		- 1			0.015	9		Ω	0.015	9	0.015	9	0.015	9	0.015)5
(U) 0.015 (U) 0.	_		_		0.015	3		\mathfrak{L}	0.015	9	0.015	9	0.015	3	0.015)[2
(U) 0.015 (U) 0.	\perp			- 1	0.015	9		<u>(U</u>	0.015	9	0.015	9	0.015	9	0.015	<u>(</u>
(U) 0.015 (U) 0.	_				0.015	5		(n	0.015	(C)	0.015	Ð	0.015	3	0.015	3
(U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) (U) 0.015 (U	_	j	_	l	0.015	9		<u>(1</u>	0.015	(3)	0.015	(C,S)	0.015	3	0.015	3
(U) 0.015 (U) 0.		- 1			0.015	3		2	0.015	(U)	0.015	(D)	0.015	9	0.015	3
(U) 6.015 (U) 6.			_	ı	0.015	9		(n	0.015	(D)	0.015	9	0.015	5	0.015	3
(U) 0.015 (U) 0.				15	0.015	9		(n	0.015	3	0.015	(2)		3	0.015	3
(U) 0.015 (U,S) 0.015 (U) 0.015 (U) 0.015 (U) (U) 0.015		- 1	_	15	0.015	5		Ω	0.015	(D)	0.015	9	0.015	9	0.015	3
(U) 0.015 (U) 0.				15	0.015	5		n)	0.015	(D)	0.015	9	0.015	5	0.015	<u>(5</u>
(U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) (U) 0.015 (U				15	0.015	<u>(C</u>		<u>C</u>	0.015	(1)	0.015	9	0.015	15	0.015	15
(U) 0.015 (U) 0.015 (U) 0.015 (U) 0.015 (U) (U) 0.015 (U				15	0.015	(Ω)		2	0.015	3	0.015	3		3	0.015	3
(U) 0.015 (U) 0.				15	0.015	(n)		5	0.015	3	0.015	<u> </u>		15	0.015	E
				15	0.015	3		5	0.015	3	0.015	5		15	0.015)[
0 0 0 0		0		0	0	-	0		0	1	0				0	
0 0		0		0	0		0	-	0		0			H	, -	
	_	0		0	0		0	H	0	T	0		0	\dagger	c	

 $\begin{array}{lll} UCMR3~MRL = & 0.03 & \mu g/L \\ UCMR3~RC = & 0.0004~to~0.04~\mu g/L \\ \end{array}$

The EPA UCMR3-approved analytical method was used for the analysis. However, the analytical method cannot achieve a reporting level as low as the lower end of the RC range. Values reported as an exceedence are both above the MRL and the RC.

Project No. 0101-15-0018

Result Result Result 06/24/2015 μg/L 0.050 (U) 0.050 (U) 07/20/2015 μg/L 0.050 (U) 0.050 (U) 07/20/2015 μg/L 0.050 (U) 0.050 (U) 08/03/2015 μg/L 0.050 (U) 0.050 (U) 08/17/2015 μg/L 0.050 (U) 0.050 (U) 09/15/2015 μg/L 0.050 (U) 0.050 (U) 10/13/2015 μg/L 0.050 (U) 0.050 (U) 11/03/2015 μg/L 0.050 (U) 0.050 (U) 11/03/2015 μg/L 0.050 (U) 0.050 (U) 11/17/2015 μg/L 0.050 (U) 0.050 (U) 11/05/2015 μg/L 0.050 (U) 0.050 (U) 11/13/2016 μg/L 0.050 (U) 0.050 (U) 03/29/2016 μg/L <	1-7-T ATTAT	9-7-INIM	M-I-I	LV	-7-14	M_2_B
0.050 (U) 0.050	Result	Result	Result	Result	Result	Rosult
0.050 (U) 0.050 0.050 (U) 0.050	0.0	0	(U) (U)	0	0.050	(U) 0.050
0.050 (U) 0.050 0.050 (U) 0.050	0.050	0.050	0.10 (U)	0.10	0.10	
0.050 (U) 0.050 0.050 (U) 0.050				0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050	(U) 0.050 (U)	(U) 0.050		0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050	(U) 0.050 (U)	0.050 (U)		0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050	(U) 0.050 (U)	0.050 (U)		0.050	0.050	L
0.050 (U) 0.050 0.050 (U) 0.050	(U) 0:050 (U)			0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050	0.050 (U)	0.050 (U)		0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	0.050 (U)	0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	0.050 (U)	-	0.050	(U) 0.050
0.050 (U) 0.050 0.050 (U) 0.050	_	0.050 (U)	0.050	0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	0.050 (U)	0.050	0.050	L
0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	0.050 (U)	0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	(U) 050.0		0.050	
0.050 (U) 0.050 0.050 (U) 0.050	0.050	0.050 (U,S)	0.050 (U)	0.050	0.050	
0.050 (U) 0.050 0.050 (U) 0.050	0.050	0.050 (U)	0.050 (U)		0.050	(U) 0.050 (U
0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050		0.050 (U)	0.050 (U)	0.050	0.050	0.050
0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0 0 0 0		0.050 (U)	0.050 (U)	(U) 0.050 (U)	0.050	(U) 0.050 (U)
0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0 0 0 7L 0 0 0	0.050	0.050 (U)		0.050	0.050	0.050
0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0 0 0 0 0 0 0	0.050 (U)	0.050 (U)	0.050 (U)	(U) 0.050 (U)	0.050	(U) 0.050 (U
0.050 (U) 0.050 0.050 (U) 0.050 0.050 (U) 0.050 0 0 0 7L 0 0	0.050 (U)	0.050 (U)		0.050	0.050	0.050
0.050 (U) 0.050 0.050 (U) 0.050 0 0 7L 0 0	0.050 (U)	0.050 (U)		0.050	0.050	0.050
0.050 (U) 0.050 0 0 7L 0 0	0.050 (U)	(U) 0500		0.050	0.050	0.050
0 /T 0	0.050 (U)	0.050 (U)	0.050 (U)	0.050	0.050	0.050
0 T/c	0	0	0	0	c	C
	0	0	0	0		
Number > 1.03 µg/L 0 0	0	0	0	0	0) O

The EPA UCMR3-approved analytical method was used for the analysis. However, the analytical method cannot achieve a reporting level as low as the lower end of the RC range. Values reported as an exceedence are both above the MRL and the RC.

Project No. 0101-15-0018

CH-2-B Result	0.050 GD																										
2-T	5		(I)	99	999	5555	55555	555555	222222	2222222	200000000000000000000000000000000000000	255555555	2555555555	25555555555	255555555555	2555555555555	25555555555555	255555555555555	2555555555555555	2555555555555555	255555555555555555	200000000000000000000000000000000000000	25555555555555555555	255555555555555555555555555555555555555	255555555555555555555555555555555555555	255555555555555555555	2555555555555555555
Result	0.050	ı																									
CH-1-B Result	050															131313131313131313131											
Result i R	(S)	1	_	(U) 0.050																							
	0.050	0.10		0.050	0.050	0.050 0.050 0.050	0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050	0.050 0.050
Kesult	0.050 (U)	0.10 (U)	l	0.050 (U)																							
Result	0.050 (U)	0.10 (U)		0.050 (U)						555555	2222222	2222222	29293935	252525555	2222222222	202020202020	202020202020	222222222222	222222222222	222222222222	2222222222222	2020202020202020	222222222222222	222222222222222	202020202020202020	222222222222222	2222222222222222
Kesult	0.050 (U)	0.10 (U)	1	9	.050 (U) .050 (U)	(U) 050 (U) 050 (D) 050	050 (U) 050 050 (U) 050	(U) 050 (U) 050 (U) 050 (U) 050	55555	555555	55555555	55555555	555555555	5555555555	5555555555	555555555555	555555555555	55555555555555	55555555555555	555555555555555	55555555555555555	222222222222222	2222222222222222	22222222222222222	22222222222222222	2222222222222222	22222222222222222
ALE CONTRACT	0.050 (U)	0.10 (U)	1	3	35	355	222	25252	22222	222222	2555555	255555555	255555555	2555555555	25555555555	200000000000000000000000000000000000000	200000000000000000000000000000000000000	25555555555555	22222222222222	22222222222222	22222222222222	22222222222222	2222222222222222	222222222222222	255555555555555555555555555555555555555	222222222222222	222222222222222
	_	µg/L		ng/L										T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn T/Sn	Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh	Tygu Tygu Tygu Tygu Tygu Tygu Tygu Tygu	Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh	Tight	Tight	Tigh Tigh Tigh Tigh Tigh Tigh Tigh Tigh	Tight	Tight	Tight	Tight			
Date	06/24/2015	07/07/2015		07/20/2015	08/03/2015	07/20/2015 08/03/2015 08/17/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/29/2015 10/13/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/29/2015 11/03/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/09/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/17/2015	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/29/2015 10/13/2015 11/03/2015 11/09/2015 12/01/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/15/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/29/2015 10/13/2015 11/09/2015 11/17/2015 12/11/2015 12/11/2015 12/11/2015 12/11/2015	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/17/2015 12/01/2015 12/01/2015 12/01/2016 02/02/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/29/2015 10/13/2015 11/03/2015 11/09/2015 12/01/2015 12/01/2015 12/01/2016 02/02/2016	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/09/2015 11/17/2015 11/17/2015 11/17/2015 12/11/2015 12/15/2016 02/02/2016 03/07/2016	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/17/2015 12/01/2015 12/01/2016 02/02/2016 02/02/2016 03/07/2016	03/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/17/2015 12/01/2015 12/01/2016 02/02/2016 03/07/2016 03/07/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/03/2015 12/01/2015 12/01/2016 02/02/2016 03/07/2016 03/07/2016 03/07/2016 04/13/2016	07/20/2015 08/03/2015 08/17/2015 09/15/2015 09/15/2015 10/13/2015 11/09/2015 11/09/2015 11/17/2015 12/15/2016 02/02/2016 03/07/2016 03/21/2016 04/13/2016 04/13/2016	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/03/2015 11/03/2016 02/02/2016 02/29/2016 03/29/2016 03/29/2016 03/29/2016 03/29/2016 03/29/2016 03/29/2016 03/20/2016 04/20/2016	07/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/03/2015 11/03/2016 02/02/2016 02/02/2016 03/29/2016 03/29/2016 04/13/2016 04/20/2016 06/01/2016	09/01/20/2015 08/03/2015 08/17/2015 09/01/2015 09/15/2015 10/13/2015 11/03/2015 11/03/2015 11/17/2015 12/01/2015 12/01/2015 12/01/2016 02/02/2016 03/07/2016 04/20/2016 04/20/2016 06/01/2016	09/120/2015 μg/L 08/03/2015 μg/L 09/01/2015 μg/L 09/01/2015 μg/L 09/15/2015 μg/L 10/13/2015 μg/L 11/03/2015 μg/L 11/03/2015 μg/L 11/03/2015 μg/L 12/01/2015 μg/L 12/01/2015 μg/L 02/02/2016 μg/L 02/02/2016 μg/L 03/07/2016 μg/L 04/13/2016 μg/L

The EPA UCMR3-approved analytical method was used for the analysis. However, the analytical method cannot achieve a reporting level as low as the lower end of the RC range. Values reported as an exceedence are both above the MRL and the RC.

MNT-1-T MNT-1-B MNT-2-T Mr Result Result Result R		M	MNT-2-B Result	M-1-T Result	M-1-B Result	M-2-T Result	M-2-B
(U) 0.	0.030 (U)	0.030 (U)	0.030 (U)	(U) 090.0	0.030	0	C
0.030	<u>(C</u>	0.030 (U)	0.030 (U)	0.060		090.0	090.0
0.030	_	0.030 (U)	0.030 (U)			0.030	0.030
0.030	_		0.030 (U)	0.030 (U)	0.030 (U)) 0.030 (U)	0.030 (U
0.030	\dashv		0.030 (U)	0.030 (U)	0.030 (U)	0.030	0.030
0.030	+		0.030 (U)	0.030 (U)	0.030 (U)	0.030	0.030
0.030	-+			0.030 (U)	0.030 (U)	0.030	0.030 (U
0.030					0.030 (U)) 0.030 (U)	0.030 (U
0.030	-				0.030 (U)	(U) 0:030 (U)	
0.030	-			0.030 (U)	0.030 (U)	(0.030)	O.030 (U
0.030	4	- 1		0.030 (U)	0.030 (U)	(U) 0:030 (U)	U) 0000
0.030				0.030 (U)	0.030 (U)	(U) 0.030 (U)	U) 060.0
0.030		- [0.030 (U)	0.030 (U)	(U) 0:030 (U)	0.030 (U
0.030				0.030 (U)	0.030 (U)	(U) 0:030	0.030 (U
0.030		- 1	\subseteq		0.030 (U)	(U) 0:030	0.030 (U)
0.030	-	ı			0.030 (U)	(U) 0:030	0.030 (U)
0.030	-				0.030 (U)	(U) 0:030	0.030 (U)
0.030	4	- 1					0.030 (U)
0.030	+			0.030 (U)	0.030 (U)	(U) 0:030 (U)	$(\Omega) 0000$
0.030	-			0.030 (U)	0.030 (U)	(U) 0:030	0.030 (U)
0.030	4		0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)
0.030			0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)
0.030		0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)
(U) 0.030 (U)	-	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)	0.030 (U)
0	-	0	0	0	0	0	0
0	_	0	0	0	0	0	0

UCMR3 MRL = UCMR# RC =

0.06 μg/L 90 μg/L

ES-1-B		ES-2-T		ES-2-B	CH-1-T		CH-1-B	CH-2-T	CH-2-B	4
ult Result	Result	-	븳		Result	H	Result	Result	Result	#
(U) 0.030 (U)	0.030 (U)		- 1	0.030	0.030	(U) 0.030	(U) 0	0.030	(U) 0.030	9
(U) 0.060 (U)	0.060			_	090.0	(0) 0.060	(U) 0	090.0	(U) 0.060	9
(U) 0.030 (U)	0.030 (U)		H	0.030	0.030	(U) 0.030	(U) 0	0.030	(U) 0.030	9
(U) 0.030	0.030	ᅴ		_	0.030	(U) 0.030	0 (U)	0.030	(U) 0.030	9
(U) 0.030	0.030			0.030	0.030	(U) 0.030	(Ω)	0.030	(U) 0.030	5
(U) 0.030	0.030				0.030	(U) 0.030	(U)	0.030	(U) 0.030	3
(U) 0.030 (0.030	_		_	0.030	(U) 0.030	(Ω) 0	0:030	(U) 0.030	9
(U) 0.030 (U)	0.030 (U)			0.030	0.030	(U) 0.030	(U) 0	0.030	(U) 0.030	9
(U) 0.030 (0.030	ᅱ	_ [0.030	0.030	(U) 0.030	(Ω) 0	0.030		9
(U) 0.030 (0.030			0.030	0.030	(U) 0.030	0 (U)	0.030	(U) 0.030	9
(U) 0.030 (U)	0.030 (U)		ı	0.030	0.030	(U) 0.030	(Ω)		(U) 0.030	3
(U) 0.030 (U)	0.030 (U)			0.030	0.030	(U) 0.030	(Ω) 0	0.030	(U) 0.030	<u> </u>
(U) 0.030 (U)	0.030 (U)			0.030	0.030	(U) 0.030	(U) 0	0.030	(U) 0.030	9
(U) 0.030 (U)	0.030 (U)				0.030	(U) 0.030	(U) 0	0.030		3
(U) 0.030 (U)	0.030 (U)		_]	0.030	0.030	(U) 0.030	0 (U,S)	0.030	(U) 0.030	3
(U) 0.030 (0.030			0.030	0.030	(U) 0.030	(U)	0.030	(U) 0.030	9
(U) 0.030 (0.030	_	-	_	0.030	(U) 0.030	(U)	0.030	(U) 0.030	5
(U) 0.030 (U)	0.030 (U)			0.030	0.030	(U) 0.030	0 (U)	0.030	(U) 0.030	9
(U) 0.030 (0.030	_	0.030 (U)		0.030	(U) 0.030	(U)	0.030 (I	(U) 0.030	5
(U) 0.030 (0.030		0.030 (U)		0.030	(U) 0.030	(U)	0.030		9
(U) 0.030 (U)	0.030 (U)		0.030 (U)	n 0.030 (U)	0.030	(U) 0.030	(E)	0.030	L	9
(U) 0.030 (U)	0.030 (U)		0.030 (U)	0.030 (U)	0.030	(U) 0.030	(D)	0.030 (U		5
(U) 0.030 (I	0.030		0.030 (U)	D) 0.030 (U)	0.030	(U) 0.030	9	0.030	L	9
30 (U) 0.	0.030		0.030 (U)	n 0.030 (U)	0.030	(U) 0.030	(D)		_	3
	0	Ш	0	0	0	0		0	0	,
0 0	0	╝	0	0	0	0		0	0	

90.0 UCMR3 MRL = UCMR# RC =

ug/L µg/L

Date	Thite	MNT-1-T	T-	MNT-1-B	2	MNT-2-T	Ļ	MNT-2-B	2-B	M-1-T	I	M-1-B	~	M-2-T	-	M-2-R	~
Date	CIIIIC	Result	t	Result		Result	-	Result	It	Result	#	Result	-	Result	+	Result	1
06/24/2015	µg/L	0.10	(0)	0.10	(E)	0.10	9	0.10	9	0.20	9	0.10	9	0.10	5	0.10	(I)
07/07/2015	µg/L	0.10	9	0.10	(D)	0.10	9	0.10	9	0.20	5	0.20	3	0.20	15	0.20	
07/20/2015	µg/L	0.10	9	0.10	(U)	0.10	9	0.10	9	0.10	3	0.10	9	0.10	5	0.10	3
08/03/2015	µg/L	0.10	9	0.10	(D)	0.10	(3)	0.10	9	0.10	9	0.10	5	0.10	9	0.10	9
08/17/2015	µg/L	0.10	5	0.10	(D)	0.10	Ω	0.10	<u>e</u>	0.10	9	0.10	9	0.10	5	0.10	[5
09/01/2015	µg/L	0.10	3	0.10	(U)	0.10	9	0.10	3	0.10	9	0.10	5	0.10	5	0.10	9
09/15/2015	ng/L	0.10	3	0.10	(U)	0.10	(D)	0.10	9	0.10	3	0.10	5	0.12		0.10	15
09/29/2015	µg/L	0.10	E	0.10	(U)	0.10	9	0.10	9	0.10	3	0.10	3	0.10	5	0.10)5
10/13/2015	µg/L	0.10	9	0.10	(U)	0.10	(0)	0.10	3	0.10	15	0.10	15	0.10	15	0.10)[
1/03/2015	µg/L	0.10	3	0.10	(3)	0.10	(D)	0.10	$\widehat{\mathbb{O}}$	0.10	3	0.10	3	0.10	3	0.10	9
1/09/2015	ug/L	0.10	5		5	0.10	3	0.10	(D)	0.10	(D)	0.10	9	0.10	9	0.10	15
11/17/2015	µg/L	0.10	9		9	0.10	9	0.10	(U)	0.10	9	0.10	5	0.10	5	0.10	15
2/01/2015	µg/L		5		3	0.10	9	0.10	(U)	0.10	(Ω)	0.10	9	0.10	9	0.10	9
12/15/2015	µg/L		3		9	0.10	9	0.10	(U)	0.10	3	0.10	3	0.10	3	0.10	3
01/05/2016	µg/L	0.10	5		E	0.10	3	0.10	(O,S)	0.10	(U)	0.10	9	0.10	9	0.10	3
02/02/2016	µg/L	0.10	5		9	0.10	3	0.10	(U)	0.10	(D)	0.10	5	0.10	9	0.10	3
02/29/2016	µg/L		5	0.10	3	0.10	9	0.10	(U)	0.10	<u>(D)</u>	0.10	3	0.10	9	0.10	[5
03/07/2016	µg/L		5		3	0.10	9	0.10	(U)	0.10	(D)	0.10	9	0.10	()	0.10	9
03/21/2016	µg/L		5		E	0.10	9	0.10	(U)	0.10	(D)	0.10	9	0.10	9	0.10	[5
03/29/2016	ng/L		5		3	0.10	3	0.10	(C)	0.10	(D)	0.10	(D)	0.10	9	0.10	9
04/13/2016	µg/L	0.10	9		(D)	0.10	<u>(D</u>	0.10	(U)	0.10	(E)	0.10	<u>e</u>	0.10	9	0.10	<u> </u>
04/20/2016	mg/L		E	0.10	(C)	0.10	(D)	0.10	(U)	0.10	9	0.10	9	0.10	9	0.10	15
05/11/2016	µg/L	0.10	3	0.10	9	0.10	<u>(D)</u>	0.10	(U)	0.10	9	0.10	9	0.10	9	0.10	[5
06/01/2016	µg/L	0.10	3	0.10	(D)	0.10	(U)	0.10	9	0.10	3	0.10	9	0.10	9	0.10) [
Number > 0.2 μg/L	2 µg/L	0		0		0		0		0		0		0		0	
Number > 140 μg/L	40 µg/L	0		0		0		0		0		0		0	-	0	Ī
													1		1	,	7

0.2 UCMR3 MRL = UCMR3 RC =

µg/L µg/L

	Т	T-		J					T	T		T		_				_		1		_	Т				_
2-B	=											3	9	[2	9	15	9	E	(U.S	9	9	9	3	9	5		
CH-2-B	Result	0.10	0.20	0.10	0.10	0 10	0.10	010	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
Ę	土	9	15	5	9	1	9	18	3	15	3	9	9	3	3	3	9	9	9	9	9	9	9	9	3		
CH-2-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
E,	_=	5	5	5	5	9	9	3	9	3	(E)	(D)	(E)	(D)	(D)	(U,S)	()	9	9	5	9	9	(E)	(0)	9		
CH-1-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
E.	<u>+</u>	3	9	9	3	3	5	9	3	3	(D)	Ω	9	9	9	Ω	<u>(D</u>	Ω	(D)	$\widehat{\mathbb{O}}$	(U)	(D)	(D)	(0)	(D)		
CH-1-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
B	It	9	5	9	9	9	3	3	3	9	(D)	3	(0)	Ω	(D)	(C)	(D)	<u>(D</u>	9	9	9	<u>(D</u>	3	3	9		
ES-2-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
Ŀ	lt	9	9	9	9	<u>(</u>	2	<u>(</u>	9	(U)	<u>(2)</u>	9	9	3	9	9	3	3	3	9	9	9	9	5	9		
ES-2-T	Result	0.10	0.20	0.10	0.10	01.0	0.10	01.0	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
-B	II.	(0)	(U)	Ω	(U)	(U)	(D)	Ω	(U)	(D)	3	9	5	9	9	5	3	3	3	3	5	9	3		9		
ES-1-B	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0	0
T-	=	(E)	3	(3)	(0)	$(\overline{\mathbf{U}})$	(0)	(D)	9	3	9	9	9	3	3		9		9	5	5	3		3	5		
ES-1-T	Result	0.10	0.20	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	٥	0
Units		ng/L	µg/L	ηg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	.2 µg/L	40 µg/L
Date		06/24/2015	07/07/2015	07/20/2015	08/03/2015	08/17/2015	09/01/2015	09/15/2015	09/29/2015	10/13/2015	11/03/2015	11/09/2015	11/1//2015	12/01/2015	12/15/2015	01/05/2016	02/02/2016	02/29/2016	03/0//2016	03/22/2016	03/29/2016	04/13/2016	04/20/2016	02/11/2010	06/01/2016	Number > 0.2 μg/L	Number > 140 μg/L

µg/L µg/L 0.2 UCMR3 MRL = UCMR3 RC =

Date	Units	MNT-1-T	Ţ-	MNT-1	-B	MNT-2-T	Ţ	MINT-2-B	2-B	M-1-T	T	M-1-B	B	M-2-T	L	M-2-B	
		Result	,	Resu	lt	Result	ţ	Result	III	Result)I	Result	#	Result	<u>+</u>	Result	
06/24/2015	µg/L	0.040	9	0.040	(D)	0.040	(D)	0.040	<u>(C</u>	0.080	3	0.040	9	0.040	9	0.040	3
07/07/2015	µg/L	0.040	2	0.040	9	0.040	(0)	0.040	(U)	0.080	<u> </u>	0.080	9	0.080	9	0.080	3
07/20/2015	µg/L	0.040		0.040	9	0.040	(0)	0.040	(U)	0.040	9	0.040	9	0.040	3	0.040	3
08/03/2015	µg/L	0.040	3	0.040	3	0.040	9	0.040	ധ	0.040	(D)	0.040	9	0.040	9	0.040	3
08/17/2015	µg/L	0.040	3	0.040	9	0.040	(0)	0.040	(U)	0.040	9	0.040	9	0.040	9	0.040	3
09/01/2015	µg/L	0.040	9	0.040	(D)	0.040	$\widehat{\mathbb{O}}$	0.040	(D)	0.040	9	0.040	Ð	0.040	9	0.040	3
09/15/2015	ηg/L	0.040	9	0.040	(D)	0.040	Ω	0.040	<u>(</u>	0.040	9	0.040	9	0.040	3	0.040	[]
09/29/2015	µg/L	0.040	3	0.040	(D)	0.040	(D)	0.040	(D)	0.040	9	0.040	9	0.040	3	0.040	3
10/13/2015	ng/L	0.040	3	0.040	<u>(D</u>	0.040	(0)	0.040	Ω	0.040	9	0.040	9	0.040	3	0.040	[5
1/03/2015	µg/L	0.040	3	0.040	9	0.040	(D)	0.040	(U)	0.040	(3)	0.040	5	0.040	9	0.040	3
11/09/2015	ng/L	0.040	9	0.040	(D)	0.040	Ω	0.040	(1)	0.040	3	0.040	9	0.040	5	0.040	3
11/17/2015	µg/L	0.040	3	0.040	(D)	0.040	<u>(D</u>	0.040	(D)	0.040	3	0.040	9	0.040	9	0.040	3
12/01/2015	µg/L	0.040	3	0.040	9	0.040	(0)	0.040	(0)	0.040	9	0.040	9	0.040	3	0.040	3
12/15/2015	µg/L	0.040	a	0.040	3	0.040	9	0.040	(U)	0.040	(D)	0.040	9	0.040	9	0.040	<u>(</u>
01/05/2016	μg/L	0.040	9	0.040	9	0.040	Ω	0.040	(C,S)	0.040	9	0.040	9	0.040	3	0.040	19
02/02/2016	µg/L	0.040	3	0.040	(0)	0.040	(Ω)	0.040	(D)	0.040	9	0.040	9	0.040	3	0.040	3
02/29/2016	µg/L	0.040	3	0.040	9	0.040	9	0.040	(D)	0.040	(3)	0.040	9	0.040	9	0.040	18
03/07/2016	µg/L	0.040	3	0.040	3	0.040	9	0.040	(U)	0.040	(D)	0.040	3	0.040	9	0.040	9
03/21/2016	mg/L	0.040	9	0.040	9	0.040	9	0.040	(U)	0.040	(D)	0.040	9	0.040	9	0.040	3
03/29/2016	µg/L	0.040	3	0.040	9	0.040	(1)	0.040	(U)	0.040	(D)	0.040	3	0.040	9	0.040	<u> </u>
04/13/2016	µg/L	0.040	3	0.040	9	0.040	(D)	0.040	(U)	0.040	9	0.040	5	0.040	9	0.040	19
04/20/2016	µg/L	0.040	3	0.040	9	0.040	(D)	0.040	(D)	0.040	9	0.040	9	0.040	3	0.040	[9
05/11/2016	ng/L	0.040	9	0.040	(D)	0.040	(U)	0.040	(0)	0.040	9	0.040	9	0.040	9	0.040	15
06/01/2016	µg/L	0.040	3	0.040	3	0.040	9	0.040	(D)	0.040	$\widehat{\mathbb{O}}$	0.040	(1)	0.040	9	0.040	3
ber > 0.	Number > 0.08 μg/L	0		0		0		0		0		0		0		0	,

0.08 μg/L Not applicable

 $\begin{array}{ll} UCMR3\ MRL = & 0.08 \quad \mu g/L \\ UCMR3\ RC = & Not\ applicable \end{array}$

Date	Unite	MNT-1-T	1-T	MNT-1-B	[-B	MINT-2-T	T	MINT-2-B	2-B	M-1-T	Ţ	M-1-B	8	M-2-T	Fee	M-2-B	~
		Result	=	Result	lt	Result	1	Result	ılt	Result	ilt	Result	<u>=</u>	Result	<u>+</u>	Result	1
06/24/2015	µg/L	0.10	9	0.10	(D)	0.10	9	0.10	(D)	0.20	3	0.10	3	0.10	9	0.10	[5
07/07/2015	µg/L	0.10	3	0.10	9	0.10	(0)	0.10	(U)	0.20	(D)	0.20	3	0.20	3	0.20	3
07/20/2015	µg/L	0.10	3	0.10	3	0.10	5	0.10	(D)	0.10	(U)	0.10	9	0.10	3	0.10	3
08/03/2015	hg/L	0.10	9	0.10	9	0.10	3	0.10	(n)	0.10	(D)	0.10	9	0.10	3	0.10	3
08/17/2015	µg/L	0.10	5	0.10	9	0.10	3	0.10	(U)	0.10	(D)	0.10	9	0.10	9	0.10	[5
09/01/2015	µg/L	0.10	9	0.10	3	0.10	(0)	0.10	Ω	0.10	3	0.10	9	0.10	9	0.10	9
09/15/2015	µg/L	0.10	3	0.10	9	0.10	$\widehat{\mathbb{O}}$	0.10	(0)	0.10	3	0.10	3	0.14		0.10	[5
09/29/2015	µg/L	0.10	9	0.10	Ð	0.10	(0)	0.10	(n)	0.10	9	0.10	3	0.10	5	0.10	3
10/13/2015	ng/L	0.10	9	0.10	9	0.10	(D)	01.0	(0)	0.10	9	0.10	3	0.10	9	0.10	3
11/03/2015	ng/L	0.10	5	0.10	3	0.10	3	0.10	Ð	0.10	(0)	01.0	9	0.10	9	0.10	3
11/09/2015	ng/L	0.10	9	0.10	9	0.10	3	0.10	(D)	0.10	Ω	0.10	5	0.10	9	0.10	3
11/17/2015	ug/L	0.10	5	0.10	9	0.10	3	0.10	(U)	0.10	9	0.10	9	0.10	3	0.10	3
12/01/2015	μg/L	0.10	5	0.10	9	0.10	3	0.10	(U)	0.10	(D)	0.10	9	0.10	5	0.10	3
12/15/2015	µg/L	0.10	9	0.10	9	0.10	3	0.10	9	0.10	(Ω)	0.10	5	0.10	9	0.10	3
01/05/2016	ng/L	0.10		0.10	9	0.10	9	0.10	(U,S)	0.10	Ω	0.10	9	0.10	3	0.10	9
02/02/2016	µg/L	0.10	9	0.10	9	0.10	3	0.10	<u>(</u>	0.10	(Ω)	0.10	9	0.10	9	0.10	3
02/29/2016	µg/L	0.10	5	0.10	3	0.10	9	0.10	(D)	0.10	(U)	0.10	9	0.10	5	0.10	<u> </u>
03/0//2016	µg/L	0.10		0.10	3	0.10	3	0.10	9	0.10	(D)	0.10	(U)	0.10	9	0.10	3
03/21/2016	µg/L	0.10	3	0.10	5	0.10	5	0.10	Ð	0.10	9	0.10	(D)	0.10	<u>(D</u>	0.10	3
03/29/2016	µg/L	0.10	3	0.10	9	0.10	3	0.10	(0.10	9	0.10	(D)	0.10	9	0.10	9
04/13/2016	µg/L	0.10	9	0.10	3	0.10	9	0.10	(D)	0.10	Ω	0.10	9	0.10	9	0.10	3
04/20/2016	µg/L	0.10	3	0.10	3	0.10	9	0.10	(U)	0.10	9	0.10	9	0.10	3	0.10	3
05/11/2016	ng/L	0.10	5	0.10	9	0.10	9	0.10	(0)	0.10	(0.10	9	0.10	9	0.10	3
06/01/2016	µg/L	0.10	5	0.10	9	0.10	9	0.10	(U)	0.10	(D)	0.10	9	0.10	3	0.10	<u> </u>
Number > 0.2 µg/L	Z µg/L		1	0		0		0		0		0		0		0	
Number > 2.69 μg/L	T/gm 69.	0	7	0		0		0		0		0		0		0	Γ
Number > 269 µg/L	69 μg/L	0		0	\neg	0		0		0		0		0		0	

UCMR3 MRL = $0.2 \mu g/L$ UCMR3 RC = $2.69 \text{ to } 269 \mu g/L$

169 of 240

Doto	Tinite	ES-1-T	T	ES-1-B	~	ES-2-T	-	ES-2-B	B	CH-1-T	T	CH-1-B	e e	CH-2-T	F	CH-2-B	2
2007	CHILES	Result	11	Result		Result		Result	1	Result	+	Result	Ħ	Result	=	Result	Ħ
06/24/2015	µg/L	0.10	9	0.10	(D)	0.10	Ω	0.10	(01.0	9	0.10	Ð	0.10	9	0.10	9
07/07/2015	ng/L	0.20	3	0.20	Ð	0.20	(D)	0.20	(U)	0.20	3	0.20	(E)	0.20	3	0.20	9
07/20/2015	mg/L	0.10	3	0.10	9		<u> </u>	0.10	(D)	0.10	(D)	0.10	(D)	0.10	9	0.10	9
08/03/2015	µg/L	0.10	3	0.10	9	0.10	(E)	0.10	(D)	0.10	(D)	0.10	<u>(2)</u>	0.10	9	0.10	(E)
08/17/2015	µg/L	0.10	9	0.10	9	0.10	(0)	0.10	Ω	0.10	(0)	0.10	(C,S)	0.10	9	0.10	9
09/01/2015	µg/L	0.10	3	0.10	<u>E</u>	0.10	(Ω)	0.10	$\widehat{\Omega}$	0.10	9	0.10	Ð	0.10	9	0.10	<u>(</u>
09/15/2015	µg/L	0.10	9	0.10	9	0.10	Ω	0.10	(Ω)	0.10	9	0.10	3	0.10	3	0.10	3
09/29/2015	µg/L	0.10	2	0.10	9	0.10	9	0.10	9	0.10	<u>(</u>	0.10	(U)	0.10	(2)	0.10	9
10/13/2015	µg/L	0.10	3		9		9	0.10	9	0.10	$\widehat{\mathbb{O}}$	0.10	(U)	0.10	5	0.10	9
11/03/2015	µg/L	0.10	3		3		3	0.10	9	0.10	(D)	0.10	(U)	0.10	5	0.10	9
11/09/2015	µg/L	0.10	5				5	0.10	<u>(D</u>	0.10	Ω	0.10	<u>(</u>	0.10	(0.10	9
11/17/2015	µg/L	0.10	3	0.10	9	0.10	9	0.10	Ω	0.10	9	0.10	9	0.10	2	0.10	9
12/01/2015	µg/L	0.10	9		9		(D)	0.10	$\widehat{\Omega}$	0.10	Ω	0.10	9	0.10	9	0.10	9
12/15/2015	µg/L	0.10	3	0.10	<u>(C)</u>	0.10	(C)	0.10	(D)	0.10	(U)	0.10	9	0.10	9	0.10	9
01/05/2016	µg/L	0.10			3		3	0.10	Ω	0.10	Ω	0.10	(C,S)	0.10	9	0.10	5
02/02/2016	µg/L	0.10	2		9	0.10		0.10	(D)	01.0	(Ω)	0.10	<u>(</u>	0.10	9	0.10	9
02/29/2016	µg/L	0.10	9		5		<u>(C</u>	0.10	(D)	0.10	Ω	0.10	(D)	0.10	9	0.10	9
03/07/2016	µg/L	0.10	9	0.10	9	0.10	3	0.10	(D)	0.10	(U)	0.10	Ω	0.10	9	0.10	(C,S)
03/21/2016	µg/L	0.10	5	- 1	E		9	0.10	9	0.10	(D)	0.10	(U)	0.10	9	0.10	9
03/29/2016	µg/L	0.10	2		3		3	0.10	9	0.10	(D)	0.10	(U)	0.10	9	0.10	9
04/13/2016	µg/L	0.10	3		3	0.10	5	0.10	(D)	0.10	(U)	0.10	(U)	0.10	9	0.10	9
04/20/2016	µg/L	0.10	3		9		3	0.10	9	0.10	(U)	0.10	(U)	0.10	9	0.10	9
05/11/2016	μg/L	0.10	5	0.10	5	0.10	9	0.10	(U)	0.10	Ω	0.10	(U)	0.10	9	0.10	5
06/01/2016	µg/L	0.10	9	0.10	3	0.10	9	0.10	<u>(D</u>	0.10	Ω	0.10	(n)	0.10	9	0.10	9
Number > 0.2 μg/L	.2 µg/L	0		0		0		0		0		0		0		0	
Number > 2.69 µg/L	7/gn 69.	0		0		0	H	0		0		0		0		0	
Number > 269 µg/L	7/8n 69	0		0		0		0		0		0		0		0	

UCMR3 MRL = $0.2 \mu g/L$ UCMR3 RC = $2.69 \text{ to } 269 \mu g/L$

Date	Units	MNT	-C	M-	C	ES-	C	СН-	C
Date	Units	Resu	lt	Res	ult	Resu	lt	Resu	lt
06/24/2015	μg/L	0.014	(U)	0.18	(S)	0.17		0.19	
07/07/2015	μg/L	0.014	(U)	0.27		0.29		0.28	
07/20/2015	μg/L	0.014	(U)	0.24		0.23		0.19	
08/03/2015	μg/L	0.014	(U)	0.063		0.061		0.097	
08/17/2015	μg/L	0.014	(U)	0.054		0.05		0.054	
09/01/2015	μg/L	0.074	(U)	0.014	(U)	40.00		0.036	
09/15/2015	μg/L	0.014	_(U)	0.014	(U)	0.014	(U)	0.014	(U)
09/29/2015	μg/L	0.014	(U)	0.71		0.79		0.70	
10/13/2015	μg/L	0.043		0.53		0.44		0.43	
11/03/2015	μg/L	0.014	(U)	0.36		0.37		0.37	
11/09/2015	μg/L	0.014	(U)	0.075		0.070		0.079	
11/17/2015	μg/L	0.014	(U)	0.20		0.18		0.18	
12/01/2015	μg/L	0.014	(U)	0.014	(U)	0.014	(U)	0.014	(U)
12/15/2015	μg/L	0.014	(U)	0.014	(U)	0.014	(U)	0.014	(U)
01/05/2016	μg/L	0.014	(U)	0.019		0.034		0.018	
02/02/2016	μg/L	0.014	(U)	0.014	(U)	0.014	(U)	0.014	(U)
02/29/2016	μg/L	0.014	(U)	0.036		0.26		0.25	
03/07/2016	μg/L	0.014	(U)	0.32		0.26		0.23	
03/21/2016	μg/L	0.099		0.38		0.46		0.36	
03/29/2016	μg/L	0.018		0.14		0.14		0.11	
04/13/2016	μg/L	0.014	(U)	0.14		0.26		0.090	
04/20/2016	μg/L	0.032		0.28		0.23		0.23	
05/11/2016	μg/L	0.036		0.030		0.028		0.039	
06/01/2016	μg/L	0.014	(U)	0.014	(U)	0.14		0.014	(U)
Number ≥ 0.0		1		13		15		15	
Number > 0.3		0		4		4		4	$\neg \uparrow$
Number > 35	μg/L	0		0		0		0	

0.07 $\mu g/L$ 0.35 to 35 $\mu g/L$

07/20/2015 - $0.048\,$ $\mu g/L$ detected in field blank.

09/01/2015 - $0.064~\mu g/L$ detected in field blank.

02/29/2016 - $0.23\,$ µg/L detected in field blank.

05/11/2016 - $0.063~\mu g/L$ detected in field blank.

Data are not available for ES-C on 9/1/2015 because the sample was broken at the laboratory.

Date	Units	MNT-C		M-C		ES-C		СН-С	
Date	Units	Result		Resu	lt	Resu	t	Resul	t
06/24/2015	μg/L	0.024		0.035		0.030		0.030	
07/07/2015	μg/L	0.028		0.033		0.039		0.038	
07/20/2015	μg/L	0.062		0.073		0.072		0.068	
08/03/2015	μg/L	0.0060 (U)	0.0060	(U)	0.0060	(U)	0.0060	(U)
08/17/2015	μg/L	0.049		0.038		0.044		0.038	
09/01/2015	μg/L	0.038		0.044		0.046		0.041	
09/15/2015	μg/L	0.029		0.035		0.037		0.032	
09/29/2015	μg/L	0.036		0.043		0.047		0.034	
10/13/2015	μg/L	0.038		0.047		0.049		0.029	
11/03/2015	μg/L	0.011		0.045		0.037		0.032	
11/09/2015	μg/L	0.025		0.027		0.0060	(U)	0.017	
11/17/2015	μg/L	0.0060 (1	U)	0.0060	(U)	0.0060	(U)	0.0060	(U)
12/01/2015	μg/L	0.039		0.028		0.044		0.055	
12/15/2015	μg/L	0.046		0.026		0.030		0.025	
01/05/2016	μg/L	0.023		0.021		0.026		0.025	
02/02/2016	μg/L	0.050		0.053		0.063		0.058	
02/29/2016	μg/L	0.072		0.061		0.047		0.060	
03/07/2016	μg/L	0.060		0.043		0.035		0.066	
03/21/2016	μg/L	0.038		0.034		0.033		0.037	
03/29/2016	μg/L	0.016		0.025		0.015		0.021	
04/13/2016	μg/L	0.028		0.041		0.025		0.029	
04/20/2016	μg/L	0.041		0.029		0.033		0.025	
05/11/2016	μg/L	0.037		0.035		0.058		0.055	
06/01/2016	μg/L	0.044		0.032		0.037		0.027	
Number > 0	.03 μg/L	14		16		18		14	

 $\begin{array}{cc} 0.03 & \mu g/L \\ Not \ applicable \end{array}$

06/01/2016 - MNT-C field duplicate exceeded 30 percent RPD.

Data	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	μg/L	0.35	0.25	0.30	0.29
07/07/2015	μg/L	0.33	0.34	0.31	0.32
07/20/2015	μg/L	0.25	0.39	0.26	0.24
08/03/2015	μg/L	0.39	0.36	0.36	0.39
08/17/2015	μg/L	0.33	0.31	0.31	0.34
09/01/2015	μg/L	0.44	0.37	0.42	0.44
09/15/2015	μg/L	0.35	0.33	0.34	0.32
09/29/2015	μg/L	0.31	0.30	0.34	0.33
10/13/2015	μg/L	0.47	0.45	0.45	0.48
11/03/2015	μg/L	0.21	0.35	0.24	0.23
11/09/2015	μg/L	0.48	0.23	0.23	0.22
11/17/2015	μg/L	0.28	0.16	0.19	0.23
12/01/2015	μg/L	0.31	0.31	0.50	0.30
12/15/2015	μg/L	0.22	0.31	0.36	0.19
01/05/2016	μg/L	0.21	0.28	0.47	0.48
02/02/2016	μg/L	0.40	0.50	0.60	0.26
02/29/2016	μg/L	0.46	0.53	0.65	0.58
03/07/2016	μg/L	0.48	0.46	0.46	0.50
03/21/2016	μg/L	3.3	4.0	0.49	0.47
03/29/2016	μg/L	0.47	0.43	0.45	0.40
04/13/2016	μg/L	0.46	0.32	0.43	0.44
04/20/2016	μg/L	0.40	0.40	0.40	0.51
05/11/2016	μg/L	0.7	0.8	0.6	0.7
06/01/2016	μg/L	0.7	0.7	0.7	0.7
Number > 0.0		24	24	24	24
Number > 10	0 μg/L	0	0	0	0

09/01/2015 - $0.012~\mu\text{g/L}$ detected in field blank.

11/19/2015 - MNT-C field duplicate exceeded 30 percent RPD.

 $02/29/2016 - 0.22 \mu g/L$ detected in field blank.

 $5/11/2016 = 0.4 \mu g/L$ detected in field blank.

A different laboratory performed the analysis for 5/11/2016 and 6/01/2016.

Date	Units	MNT	r-C	M	-C	ES-	C	СН	-C
Date	Units	Rest	ult	Res	sult	Res	ult	Res	ult
06/24/2015	μg/L	0.33	(U)	0.33	(U)	0.37		0.33	(U)
07/07/2015	μg/L	0.48		1.0	(U)	1.0	(U)	1.0	(U)
07/20/2015	μg/L	0.33	(U)	0.38		0.39		0.37	
08/03/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
08/17/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
09/01/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
09/15/2015	μg/L	0.33	(U)	0.35	· ·	0.35		0.33	(U)
09/29/2015	μg/L	0.33	(U)	0.41		0.46		0.35	
10/13/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/03/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/09/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/17/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
12/01/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
12/15/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
01/05/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
02/02/2016	μg/L	0.52		0.71		0.82		0.67	
02/29/2016	μg/L	0.33	(U)	0.40		0.44		0.38	
03/07/2016	μg/L	0.33	(U)	0.52		0.51		0.51	
03/21/2016	μg/L	0.33	(U)	0.49		0.38		0.36	
03/29/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
04/13/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
04/20/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
05/11/2016	μg/L	1.0	(U)	1.0	(U)	1.0	(U)	1.0	(U)
06/01/2016	μg/L	1.0	(U)	1.0	(U)	1.0	(U)	1.0	(U)
Number > 1 μg/I		0		0		0		0	(-)
Number > 70 μg/	/L	0		0		0		0	

A different laboratory performed the analysis for 5/11/2016 and 6/01/2016, using an MDL of 1.0 $\mu g/L$.

Date	Units	MN	T-C	М	-C	ES-	C	СН	-C
Date	Units	Res	sult	Re	sult	Resi	ult	Res	ult
06/24/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
07/07/2015	μg/L	0.33	(U)	1.0	(U)	1.0	(U)	1.0	(U)
07/20/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
08/03/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
08/17/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
09/01/2015	μg/L	0.34		0.33	(U)	0.33	(U)	0.33	(U)
09/15/2015	μg/L	0.33	(U)	0.33		0.33	(U)	0.33	(U)
09/29/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
10/13/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/03/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/09/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
11/17/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
12/01/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
12/15/2015	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
01/05/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
02/02/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
02/29/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
03/07/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
03/21/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
03/29/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
04/13/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
04/20/2016	μg/L	0.33	(U)	0.33	(U)	0.33	(U)	0.33	(U)
05/11/2016	μg/L	1.0	(U)	1.0	(U)	1.0	(U)	1.0	(U)
06/01/2016	μg/L	1.0	(U)	1.0	(U)	1.0	(U)	1.0	(U)
Number > 1		0		0		0		0	
Number > 40	μg/L	0		0		0		0	

1 μg/L 40 μg/L

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	μg/L	79.8	151	142	136
07/07/2015	μg/L	89.4	102	102	101
07/20/2015	μg/L	77.2	107	107	108
08/03/2015	μg/L	104	157	150	149
08/17/2015	μg/L	130	165	165	324
09/01/2015	μg/L	148	177	187	192
09/15/2015	μg/L	104	197	197	193
09/29/2015	μg/L	108	165	163	153
10/13/2015	μg/L	75.9	100	98.8	98.8
11/03/2015	μg/L	95.8	98.9	101	99.7
11/09/2015	μg/L	90.6	107	102	99.5
11/17/2015	μg/L	74.0	86.4	85.6	84.7
12/01/2015	μg/L	71.8	88.4	87.1	83.5
12/15/2015	μg/L	75.0	102	91.9	95.9
01/05/2016	μg/L	73.2	83.8	85.5	88.9
02/02/2016	μg/L	72.4	89.4	92.1	88.6
02/29/2016	μg/L	61.9	71.2	66.3	70.9
03/07/2016	μg/L	111	89.3	89.9	81.8
03/21/2016	μg/L	78.2	101	97.6	92.1
03/29/2016	μg/L	87.9	121	120	114
04/13/2016	μg/L	93.9	128	127	130
04/20/2016	μg/L	88.6	130	123	122
05/11/2016	μg/L	80	94	92	90
06/01/2016	μg/L	- 83	120	120	120
Number ≥ 0.3		24	24	24	24
Number $> 1,5$	500 μg/L	0	0	0	0

UCMR3 MRL =

0.3 $\mu g/L$

Date	Units	MNT-C	M-C	ES-C	СН-С
Date	Units	Result	Result	Result	Result
06/24/2015	μg/L	0.44	0.45	0.51	0.46
07/07/2015	μg/L	0.57	0.39	0.40	0.39
07/20/2015	μg/L	0.41	0.38	0.39	0.35
08/03/2015	μg/L	0.48	0.38	0.38	0.38
08/17/2015	μg/L	0.59	0.47	0.47	0.47
09/01/2015	μg/L	0.61	0.45	0.43	0.50
09/15/2015	μg/L	0.41	0.44	0.44	0.42
09/29/2015	μg/L	0.47	0.40	0.46	0.40
10/13/2015	μg/L	0.79	0.75	0.68	0.76
11/03/2015	μg/L	0.63	0.61	0.62	0.62
11/09/2015	μg/L	0.53	0.51	0.52	0.47
11/17/2015	μg/L	0.48	0.47	0.49	0.49
12/01/2015	μg/L	0.40	0.38	0.40	0.37
12/15/2015	μg/L	0.42	0.39	0.38	0.39
01/05/2016	μg/L	0.47	0.48	0.48	0.44
02/02/2016	μg/L	0.46	0.38	0.43	0.30
02/29/2016	μg/L	0.45	0.46	0.47	0.55
03/07/2016	μg/L	0.48	0.37	0.40	0.43
03/21/2016	μg/L	0.45	0.49	0.46	0.43
03/29/2016	μg/L	0.38	0.30	0.35	0.32
04/13/2016	μg/L	0.37	0.39	0.33	0.34
04/20/2016	μg/L	0.31	0.27	0.25	0.32
05/11/2016	μg/L	0.3	0.4	0.3	0.4
06/01/2016	μg/L	0.4	0.4	0.4	0.4
Number > 0.2	L μg/L	24	24	24	24
Number > 21	μg/L	0	0	0	0

 $\begin{array}{cc} 0.2 & \mu g/L \\ 21 & \mu g/L \end{array}$

Date	II-ni4a	MN	Г- С	M-	C	ES-	C	СН-	C
Date	Units	Resi	ult	Res	ult	Resu	ılt	Resu	ılt
06/24/2015	μg/L	6.9		3.4	(U)	3.4	(U)	3.4	(U)
07/07/2015	μg/L	3.4	(U)	20.0	(U)	20.0	(U)	20.0	(U)
07/20/2015	μg/L	3.4	(U)	3.6		3.4	(U)	3.4	(U)
08/03/2015	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
08/17/2015	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
09/01/2015	μg/L	4.5		6.7		10.5		10.7	
09/15/2015	μg/L	3.4	(U)	39.4		7.0		8.5	
09/29/2015	μg/L	3.4	(U)	7.4		7.1		7.2	
10/13/2015	μg/L	3.4	(U)	5.6		3.9		4.5	
11/03/2015	μg/L	3.4	(U)	3.4	(U)	5.4		3.4	(U)
11/09/2015	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
11/17/2015	μg/L	3.4	(U)	6.8		5.6		4.7	
12/01/2015	μg/L	3.4	(U)	5.7		5.3		3.4	(U)
12/15/2015	μg/L	3.4	(U)	3.4	(U)	3.8		7.0	
01/05/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
02/02/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
02/29/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
03/07/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
03/21/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
03/29/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
04/13/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
04/20/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
05/11/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
06/01/2016	μg/L	3.4	(U)	3.4	(U)	3.4	(U)	3.4	(U)
Number > 20		0		_ 1		0		0	
Number > 21	0 μg/L	0		0		0		0	

20 μg/L 210 μg/L

Doto	Units	MNT	-C	M-(C	ES-C		СН-0	C
Date	Units	Resi	ılt	Resi	ult	Resu	lt	Resu	lt
06/24/2015	μg/L	0.0804	(U)	0.0804	(Ü)	0.0776	(U)	0.0804	(U)
07/07/2015	μg/L	0.0865	(U)	0.0833	(U)	0.0833	(U)	0.0833	(U)
07/20/2015	μg/L	0.0804	(U)	0.0900	(U)	0.0900	(U)	0.0833	(U)
08/03/2015	μg/L	0.0833	(U)	0.0900	(U)	0.0865	(U)	0.0900	(U)
08/17/2015	μg/L	0.0865	(U)	0.0900	(U)	0.0804	(U)	0.0833	(U)
09/01/2015	μg/L	0.0833	(U)	0.0833	(U)	0.0865	(U)	0.0804	(U)
09/15/2015	μg/L	0.0804	(U)	0.0804	(U)	0.0833	(U)	0.0776	(U)
09/29/2015	μg/L	0.0833	(U)	0.0865	(U)	0.0900	(U)	0.0804	(U)
10/13/2015	μg/L	0.0804	(U)	0.0776	(U)	0.0833	(U)	0.0804	(U)
11/03/2015	μg/L	0.0833	(U)	0.0804	(U)	0.0804	(U)	0.0804	(U)
11/09/2015	μg/L	0.090	(U,S)	0.090	(U,S)	0.090	(U)	0.090	(U)
11/17/2015	μg/L	0.0833	(U)	0.0833	(U)	0.0833	(U)	0.0804	(U)
12/01/2015	μg/L	0.0833	(U)	0.0865	(U)	0.0804	(U)	0.0804	(U)
12/15/2015	μg/L	0.090	(U)	0.090	(U)	0.090	(U)	0.090	(U)
01/05/2016	μg/L	0.0804	(U)	0.0804	(U)	0.0804	(U)	0.0804	(U)
02/02/2016	μg/L	0.0776	(U)	0.0776	(U)	0.0804	(U)	0.0776	(U)
02/29/2016	μg/L	0.0804	(U)	0.0776	(U)	0.0804	(U)	0.0804	(U)
03/07/2016	μg/L								
03/21/2016	μg/L	0.0818	(U)	0.0763	(U)	0.0776	(U)	0.0833	(U)
03/29/2016	μg/L	0.0833	(U)	0.0804	(U)	0.0804	(U)	0.0804	(U)
04/13/2016	μg/L	0.0804	(U)	0.0776	(U)	0.0776	(U)	0.0776	(U)
04/20/2016	μg/L	0.0804	(U)	0.0278	(U)	0.0804	(U)	0.0833	(U)
05/11/2016	μg/L	0.0045	(U)	0.0046	(U)	0.0045	(U)	0.0045	(U)
06/01/2016	μg/L	0.0776	(U)	0.0776	(U)	0.0750	(U)	0.0804	(U)
Number > 0.0)9 μg/L	0		0		0		0	

0.09 μg/L Not applicable

Data for the 3/7/2016 samples were not reported because there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

TD - 4 -	WT \$4	MNT	-C	M-(ES-C		CH-C	
Date	Units	Resu	lt	Resu	lt	Resul	t	Resul	t
06/24/2015	μg/L	0.00893	(U)	0.00893	(U)	0.00862	(U)	0.00893	(U)
07/07/2015	μg/L	0.00962	(U)	0.00926	(U)	0.00926	(U)	0.00926	(U)
07/20/2015	μg/L	0.00893	(U)	0.0100	(U)	0.0100	(U)	0.00926	(U)
08/03/2015	μg/L	0.00926	(U)	0.0100	(U)	0.00962	(U)	0.0100	(U)
08/17/2015	μg/L	0.00962	(U)	0.0100	(U)	0.00893	(U)	0.00926	(U)
09/01/2015	μg/L	0.00926	(U)	0.00926	(U)	0.00962	(U)	0.00893	(U)
09/15/2015	μg/L	0.00893	(U)	0.00893	(U)	0.00926	(U)	0.00862	(U)
09/29/2015	μg/L	0.00926	(U)	0.00962	(U)	0.0100	(U)	0.00893	(U)
10/13/2015	μg/L	0.00893	(U)	0.00862	(U)	0.00926	(U)	0.00893	(U)
11/03/2015	μg/L	0.00926	(U)	0.00893	(U)	0.00893	(U)	0.00893	(U)
11/09/2015	μg/L	0.010	(U,S)	0.010	(U,S)	0.010	(U)	0.010	(U)
11/17/2015	μg/L	0.00926	(U)	0.00926	(U)	0.00926	(U)	0.00893	(U)
12/01/2015	μg/L	0.00926	(U)	0.00962	(U)	0.00893	(U)	0.00893	(U)
12/15/2015	μg/L	0.010	(U)	0.010	(U)	0.010	(U)	0.010	(U)
01/05/2016	μg/L	0.00893	(U)	0.00893	(U)	0.00893	(U)	0.00893	(U)
02/02/2016	μg/L	0.00862	(U)	0.00862	(U)	0.00893	(U)	0.00862	(U)
02/29/2016	μg/L	0.00893	(U)	0.00862	(U)	0.00893	(U)	0.00893	(U)
03/07/2016	μg/L			_			-		
03/21/2016	μg/L	0.00909	(U)	0.00847	(U)	0.00862	(U)	0.00926	(U)
03/29/2016	μg/L	0.00926	(U)	0.00893	(U)	0.00893	(U)	0.00893	(U)
04/13/2016	μg/L	0.00893	(U)	0.00862	(U)	0.00862	(U)	0.00862	(U)
04/20/2016	μg/L	0.00893	(U)	0.00926	(U)	0.00893	(U)	0.00926	(U)
05/11/2016	μg/L	0.0045	(U)	0.0046	(U)	0.0045	(U)	0.0045	(U)
06/01/2016	μg/L	0.00862	(U)	0.00862	(U)	0.00833	(U)	0.00893	(U)
Number > 0.0)1 μg/L	0		0		0		0	

0.01 μg/L Not applicable

Data for the 3///2016 samples were not reported becuase there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

Date	Units	MNT	r-C	M-	C	ES-C	C	СН-	C
Date	Units	Resi	ult	Res	ult	Resu	lt	Resu	lt
06/24/2015	μg/L	0.0268	(U)	0.0268	(U)	0.0259	(U)	0.0268	(U)
07/07/2015	μg/L	0.0288	(U)	0.0278	(U)	0.0278	(U)	0.0278	(U)
07/20/2015	μg/L	0.0268	(U)	0.0300	(U)	0.0300	(U)	0.0278	(U)
08/03/2015	μg/L	0.0278	(U)	0.0300	(U)	0.0288	(U)	0.0300	(U)
08/17/2015	μg/L	0.0288	(U)	0.0300	(U)	0.0268	(U)	0.0278	(U)
09/01/2015	μg/L	0.0278	(U)	0.0278	(U)	0.0288	(U)	0.0268	(U)
09/15/2015	μg/L	0.0268	(U)	0.0268	(U)	0.0278	(U)	0.0259	(U)
09/29/2015	μg/L	0.0278	(U)	0.0288	(U)	0.0300	(U)	0.0268	(U)
10/13/2015	μg/L	0.0268	(U)	0.0259	(U)	0.0278	(U)	0.0268	(U)
11/03/2015	μg/L	0.0278	(U)	0.0268	(U)	0.0268	(U)	0.0268	(U)
11/09/2015	μg/L	0.030	(U,S)	0.030	(U,S)	0.030	(U)	0.030	(Ū)
11/17/2015	μg/L	0.0278	(U)	0.0278	(U)	0.0278	(U)	0.0268	(U)
12/01/2015	μg/L	0.0278	(U)	0.0288	(U)	0.0268	(U)	0.0268	(U)
12/15/2015	μg/L	0.030	(U)	0.030	(U)	0.030	(U)	0.030	(U)
01/05/2016	μg/L	0.0268	(U)	0.0268	(U)	0.0268	(U)	0.0268	(U)
02/02/2016	μg/L	0.0259	(U)	0.0259	(U)	0.0268	(U)	0.0259	(U)
02/29/2016	μg/L	0.0268	(U)	0.0259	(U)	0.0268	(U)	0.0268	(U)
03/07/2016	μg/L								
03/21/2016	μg/L	0.0273	(U)	0.0254	(U)	0.0259	(U)	0.0278	(U)
03/29/2016	μg/L	0.0278	(U)	0.0268	(U)	0.0268	(U)	0.0268	(U)
04/13/2016	μg/L	0.0268	(U)	0.0259	(U)	0.0259	(U)	0.0259	(U)
04/20/2016	μg/L	0.0268	(U)	0.0278	(U)	0.0268	(U)	0.0278	(U)
05/11/2016	μg/L	0.0045	(U)	0.0046	(U)	0.0045	(U)	0.0045	(U)
06/01/2016	μg/L	0.0259	(U)	0.0259	(U)	0.0250	(U)	0.0268	(U)
Number > 0.0	3 μg/L	0		0		0		0	

0.03 μg/L Not applicable

Data for the 3/7/2016 samples were not reported becuase there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

Date	Units	MNT	-C	M-(C	ES-C		СН-0	C
Date	Units	Rest	ılt	Resi	ult	Resu	lt	Resu	lt
06/24/2015	μg/L	0.0179	(U)	0.0179	(U)	0.0172	(U)	0.0179	(U)
07/07/2015	μg/L	0.0192	(U)	0.0185	(U)	0.0185	(U)	0.0185	(U)
07/20/2015	μg/L	0.0179	(U)	0.0200	(U)	0.0200	(U)	0.0185	(U)
08/03/2015	μg/L	0.0185	(U)	0.0200	(U)	0.0192	(U)	0.0200	(U)
08/17/2015	μg/L	0.0192	(U)	0.0200	(U)	0.0179	(U)	0.0185	(U)
09/01/2015	μg/L	0.0185	(U)	0.0185	(U)	0.0192	(U)	0.0179	(U)
09/15/2015	μg/L	0.0179	(U)	0.0179	(U)	0.0185	(U)	0.0172	(U)
09/29/2015	μg/L	0.0185	(U)	0.0192	(U)	0.0200	(U)	0.0179	(U)
10/13/2015	μg/L	0.0179	(U)	0.0172	(U)	0.0185	(U)	0.0179	(U)
11/03/2015	μg/L	0.0185	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
11/09/2015	μg/L	0.020	(U,S)	0.020	(U,S)	0.020	(U)	0.020	(U)
11/17/2015	μg/L	0.0185	(U)	0.0185	(U)	0.0185	(U)	0.0179	(U)
12/01/2015	μg/L	0.0185	(U)	0.0192	(U)	0.0179	(U)	0.0179	(U)
12/15/2015	μg/L	0.020	(U)	0.020	(U)	0.020	(U)	0.020	(U)
01/05/2016	μg/L	0.0179	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
02/02/2016	μg/L	0.0172	(U)	0.0172	(U)	0.0179	(U)	0.0172	(U)
02/29/2016	μg/L	0.0179	(U)	0.0172	(U)	0.0179	(U)	0.0179	(U)
03/07/2016	μg/L								
03/21/2016	μg/L	0.0182	(U)	0.0169	(U)	0.0172	(U)	0.0185	(U)
03/29/2016	μg/L	0.0185	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
04/13/2016	μg/L	0.0179	(U)	0.0172	(U)	0.0172	(U)	0.0172	(U)
04/20/2016	μg/L	0.0179	(U)	0.0185	(U)	0.0179	(U)	0.0185	(U)
05/11/2016	μg/L	0.0045	(U)	0.0046	(U)	0.0045	(U)	0.0045	(U)
06/01/2016	μg/L	0.0172	(U)	0.0172	(U)	0.0167	(U)	0.0179	(U)
Number > 0.0)2 μg/L	0		0		0		0	

0.02 μg/L Not applicable

Data for the 3/7/2016 samples were not reported because there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

Date	Units	MNT	r- C	M-	C	ES-C	C	CH-	C
Date	Units	Resi	ult	Res	ult	Resu	lt	Resu	lt
06/24/2015	μg/L	0.0179	(U)	0.0179	(U)	0.0172	(U)	0.0179	(U)
07/07/2015	μg/L	0.0192	(U)	0.0185	(U)	0.0185	(U)	0.0185	(U)
07/20/2015	μg/L	0.0179	(U)	0.0200	(U)	0.0200	(U)	0.0185	(U)
08/03/2015	μg/L	0.0185	(U)	0.0200	(U)	0.0192	(U)	0.0200	(U)
08/17/2015	μg/L	0.0192	(U)	0.0200	(U)	0.0179	(U)	0.0185	(U)
09/01/2015	μg/L	0.0185	(U)	0.0185	(U)	0.0192	(U)	0.0179	(U)
09/15/2015	μg/L	0.0179	(U)	0.0179	(U)	0.0185	(U)	0.0172	(U)
09/29/2015	μg/L	0.0185	(U)	0.0192	(U)	0.0200	(U)	0.0179	(U)
10/13/2015	μg/L	0.0179	(U)	0.0172	(U)	0.0185	(U)	0.0179	(U)
11/03/2015	μg/L	0.0185	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
11/09/2015	μg/L	0.020	(U,S)	0.020	(U,S)	0.020	(U)	0.020	(U)
11/17/2015	μg/L	0.0185	(U)	0.0185	(U)	0.0185	(U)	0.0179	(U)
12/01/2015	μg/L	0.0185	(U)	0.0192	(U)	0.0179	(Ū)	0.0179	(U)
12/15/2015	μg/L	0.020	(U)	0.020	(U)	0.020	(U)	0.020	(U)
01/05/2016	μg/L	0.0179	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
02/02/2016	μg/L	0.0172	(U)	0.0172	(U)	0.0179	(U)	0.0172	(U)
02/29/2016	μg/L	0.0179	(U)	0.0172	(U)	0.0179	(U)	0.0179	(U)
03/07/2016	μg/L								
03/21/2016	μg/L	0.0182	(U)	0.0169	(U)	0.0172	(U)	0.0185	(U)
03/29/2016	μg/L	0.0185	(U)	0.0179	(U)	0.0179	(U)	0.0179	(U)
04/13/2016	μg/L	0.0179	(U)	0.0172	(U)	0.0172	(U)	0.0172	(U)
04/20/2016	μg/L	0.0179	(U)	0.0185	(U)	0.0179	(U)	0.0185	(U)
05/11/2016	μg/L	0.0036		0.0019	(U)	0.0018	(U)	0.0018	(U)
06/01/2016	μg/L	0.0172	(U)	0.0172	(U)	0.0167	(U)	0.0179	(U)
Number > 0.0		0		0		0	<u>`</u>	0	
Number > 0.0)7 μg/L	0		0		0		0	

Data for the 3/7/2016 samples were not reported becuase there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

Date	Units	MNT-C		M-(C	ES-C	C	CH-	C
Date	Onits	Result		Resi	ılt	Resu	lt	Resu	lt
06/24/2015	μg/L	0.0357 (J)	0.0357	(U)	0.0345	(U)	0.0357	(U)
07/07/2015	μg/L	0.0385 (1	J)	0.0370	(U)	0.0370	(U)	0.0370	(U)
07/20/2015	μg/L	0.0357 (J)	0.0400	(U)	0.0400	(U)	0.0370	(U)
08/03/2015	μg/L	0.0370 (1	J)	0.0400	(U)	0.0385	(U)	0.0400	(U)
08/17/2015	μg/L	0.0385 (1	J)	0.0400	(U)	0.0357	(U)	0.0370	(U)
09/01/2015	μg/L	0.0370 (1	J)	0.0370	(U)	0.0385	(U)	0.0357	(U)
09/15/2015	μg/L	0.0357 (I	J)	0.0357	(U)	0.0370	(U)	0.0345	(U)
09/29/2015	μg/L	0.0370 (1	J)	0.0385	(U)	0.0400	(U)	0.0357	(U)
10/13/2015	μg/L	0.0357 (U	J)	0.0345	(U)	0.0370	(U)	0.0357	(U)
11/03/2015	μg/L	0.0370 (1	J)	0.0357	(U)	0.0357	(U)	0.0357	(U)
11/09/2015	μg/L	0.040 (U	,S)	0.040	(U,S)	0.040	(U)	0.040	(U)
11/17/2015	μg/L	0.0370 (U	Ù)	0.0370	(U)	0.0370	(U)	0.0357	(U)
12/01/2015	μg/L	0.0370 (1	J)	0.0385	(U)	0.0357	(U)	0.0357	(U)
12/15/2015	μg/L	0.040 (U	J)	0.040	(U)	0.040	(U)	0.040	(U)
01/05/2016	μg/L	0.0357 (U	D)	0.0357	(U)	0.0357	(U)	0.0357	(U)
02/02/2016	μg/L	0.0345 (1	J)	0.0345	(U)	0.0357	(U)	0.0345	(U)
02/29/2016	μg/L	0.0357 (U	J)]	0.0345	(U)	0.0357	(U)	0.0357	(U)
03/07/2016	μg/L								
03/21/2016	μg/L	0.0364 (U	J) T	0.0339	(U)	0.0345	(U)	0.0370	(U)
03/29/2016	μg/L	0.0370 (L	J)	0.0357	(U)	0.0357	(U)	0.0357	(U)
04/13/2016	μg/L	0.0357 (L	J)	0.0345	(U)	0.0345	(U)	0.0345	(U)
04/20/2016	μg/L	0.0357 (L	J)	0.0370	(U)	0.0357	(U)	0.0370	(U)
05/11/2016	μg/L	0.0045 (L	J)	0.0046	(U)	0.0045	(U)	0.0045	(U)
06/01/2016	μg/L	0.0345 (U	J)	0.0345	(U)	0.0333	(U)	0.0357	(U)
Number > 0.0	4 μg/L	0		0		0		0	`/

0.04 μg/L Not applicable

Data for the 3/7/2016 samples were not reported becuase there was a laboratory spiking error with the first extraction which invalidated the data. By the time the error was noted the hold time had expired. Additionally, part of the MNT-C sample was used for quality control purposes and there was no sample left for re-analysis. The laboratory was instructed not to proceed with re-analysis of the other samples.

Date	Units	MNT	-C	M-(C	ES-	C	СН-	C
Date	Onics	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	μg/L								
07/07/2015	μg/L								
07/20/2015	μg/L								
08/03/2015	μg/L	0.000800	(U,S)	0.000800	(U,S)	0.000800	(U,S)	0.000800	(U)
08/17/2015	μg/L	0.000800	(U)	0.000800	(U,S)	0.000800	(U,S)	0.000800	(U,S)
09/01/2015	μg/L							0.0008	(U)
09/15/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
09/29/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
10/13/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
11/03/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
11/09/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
11/17/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
12/01/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
12/15/2015	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
01/05/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
02/02/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
02/29/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
03/07/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
03/21/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
03/29/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
04/13/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
04/20/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
05/11/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
06/01/2016	μg/L	0.00080	(U)	0.00080	(U)	0.00080	(U)	0.00080	(U)
Number > 0.0		0		0		0		0	
Number > 0.3	5 μg/L	0		0		0		0	

0.0008 μg/L 0.35 μg/L

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CH-C and 20 sampling events at the other three sampling locations.

Date	Units	MNT	-C	M-(3	ES-	C	СН-	C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	μg/L								
07/07/2015	μg/L								
07/20/2015	μg/L								
08/03/2015	μg/L	0.000900	(U,S)	0.000900	(U,S)	0.000900	(U,S)	0.000900	(U)
08/17/2015	μg/L	0.000900	(U)	0.000900	(U,S)	0.000900			(\dot{U},\dot{S})
09/01/2015	μg/L							0.0009	(U)
09/15/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
09/29/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
10/13/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
11/03/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
11/09/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
11/17/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
12/01/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
12/15/2015	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
01/05/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
02/02/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
02/29/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
03/07/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
03/21/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
03/29/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
04/13/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
04/20/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
05/11/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
06/01/2016	μg/L	0.00090	(U)	0.00090	(U)	0.00090	(U)	0.00090	(U)
Number > 0.0		0		0		0		0	
Number > 0.0	35 μg/L	0		0		0		0	

0.0009 μg/L 0.035 μg/L

02/29/2016 - $0.0012~\mu g/l$ detected in field blank.

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CHC and 20 sampling events at the other three sampling locations.

Date	Units	MNT	-C	M-C		ES-	C	CH-	C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	
06/24/2015	μg/L	1							
07/07/2015	μg/L	1						~-	
07/20/2015	μg/L								
08/03/2015	μg/L	0.000400	(U,S)	0.000400	(U,S)	0.000400	(U.S)	0.000400	(U)
08/17/2015	μg/L	0.000400	(U)	0.000400		0.000400			(U,S)
09/01/2015	μg/L						() -)	0.0004	(U)
09/15/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
09/29/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
10/13/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
11/03/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
11/09/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
11/17/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
12/01/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
12/15/2015	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
01/05/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
02/02/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
02/29/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
03/07/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
03/21/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
03/29/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
04/13/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
04/20/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
05/11/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
06/01/2016	μg/L	0.00040	(U)	0.00040	(U)	0.00040	(U)	0.00040	(U)
Number > 0.0		0		0		0		0	37
Number > 0.0		0		0		0		0	$\neg \neg$
Number > 0.0	9 μg/L	0		0		0		0	$\overline{}$

 $\begin{array}{cc} 0.0004 & \mu g/L \\ 0.0009 \ to \ 0.09 & \mu g/L \end{array}$

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CH-C and 20 sampling events at the other three sampling locations.

D.4	TT-14-	MNT-	-C	M-C		ES-C		СН-(C
Date	Units	Resu	lt	Resu	lt	Resu	lt	Resu	lt
06/24/2015	μg/L								
07/07/2015	μg/L								
07/20/2015	μg/L								
08/03/2015	μg/L	0.000300	(U,S)	0.000300	(U,S)	0.000300	(U,S)	0.000300	(U)
08/17/2015	μg/L	0.00030	(U)	0.000300	(U,S)	0.000300	(U,S)	0.000300	(U,S)
09/01/2015	μg/L	<u> </u>						0.0003	(U)
09/15/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
09/29/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
10/13/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
11/03/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
11/09/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
11/17/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
12/01/2015	μg/L	0.00030	(U,S)	0.00030	(U,S)	0.00054		0.00053	
12/15/2015	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
01/05/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
02/02/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
02/29/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
03/07/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
03/21/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
03/29/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
04/13/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
04/20/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
05/11/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
06/01/2016	μg/L	0.00030	(U)	0.00030	(U)	0.00030	(U)	0.00030	(U)
Number > 0.00)0 <mark>3 μg/L</mark>	0		0		1		1	

0.0003 μg/L Not applicable

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CHC and 20 sampling events at the other three sampling locations.

Date	Units	MNT	-C	M-(C	ES-	C	СН-	C
Date	Units	Resu	ılt	Resu	ılt	Resu	ılt	Resu	lt
06/24/2015	μg/L								
07/07/2015	μg/L								
07/20/2015	μg/L								
08/03/2015	μg/L	0.00400	(U,S)	0.00400	(U,S)	0.00400	(U,S)	0.00400	(U)
08/17/2015	μg/L	0.00400	(U)	0.00400	(U,S)	0.00400	(U,S)	0.00400	(U,S)
09/01/2015	μg/L							0.004	(U)
09/15/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
09/29/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
10/13/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
11/03/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
11/09/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
11/17/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
12/01/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
12/15/2015	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
01/05/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
02/02/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
02/29/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
03/07/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
03/21/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
03/29/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
04/13/2016	μg/L	0.00400	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
04/20/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
05/11/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
06/01/2016	μg/L	0.0040	(U)	0.0040	(U)	0.0040	(U)	0.0040	(U)
Number > 0.000		0		0		0		0	
Number > 0.35	μg/L	0		0		0		0	

0.0004 μg/L 0.35 μg/L

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CHC and 20 sampling events at the other three sampling locations.

Date	Units	MNT	-C	M-(C	ES-	C	СН-	C
	Units	Resu	lt	Resu	ılt	Resu	ılt	Resu	llt
06/24/2015	μg/L								
07/07/2015	μg/L			-					
07/20/2015	μg/L								
08/03/2015	μg/L	0.00200	(U,S)	0.00200	(U,S)	0.00200	(U,S)	0.00200	(U)
08/17/2015	μg/L	0.00200	(U)	0.00200	(U,S)	0.00200	(U,S)	0.00200	(U,S)
09/01/2015	μg/L	4-						0.002	(U)
09/15/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
09/29/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
10/13/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
11/03/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
11/09/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
11/17/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
12/01/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
12/15/2015	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
01/05/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
02/02/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
02/29/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
03/07/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
03/21/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
03/29/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
04/13/2016	μg/L	0.00200	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
04/20/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
05/11/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
06/01/2016	μg/L	0.0020	(U)	0.0020	(U)	0.0020	(U)	0.0020	(U)
Number > 0.0		0		0		0		0	
Number > 0.3	5 μg/L	0		0		0		0	

UCMR3 MRL = 0.002 UCMR3 RC = 0.35

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CHC and 20 sampling events at the other three sampling locations.

μg/L

μg/L

Date	Units	MNT	-C	M-C	C	ES-	C	СН-	C
Date	Оция	Resu	lt	Rest	ılt	Resu	lt	Resu	lt
06/24/2015	μg/L								
07/07/2015	μg/L								
07/20/2015	μg/L								-
08/03/2015	μg/L	0.000100	(U,S)	0.000100	(U,S)	0.000100	(U,S)	0.000100	(U,S)
08/17/2015	μg/L	0.000100	(U,S)	0.000100	(U,S)	0.000100			
09/01/2015	μg/L	-					, , , ,	0.0001	(U)
09/15/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
09/29/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
10/13/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
11/03/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
11/09/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
11/17/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
12/01/2015	μg/L	0.00010	(U,S)	0.00010	(U,S)	0.00014		0.00016	`
12/15/2015	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
01/05/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
02/02/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
02/29/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
03/07/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
03/21/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
03/29/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
04/13/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
04/20/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
05/11/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
06/01/2016	μg/L	0.00010	(U)	0.00010	(U)	0.00010	(U)	0.00010	(U)
Number > 0.0	001 μg/L	0		0		1		1	

0.0001 µg/L Not applicable

Due to difficulties associated with laboratory coordination and instrumentation at the beginning of the study, hormones were only analyzed for 21 events at sampling location CHC and 20 sampling events at the other three sampling locations.

Notes							as estimated											unple.																						
							Result is qualified as estimated	The second second										> 30% of lowest sample.									:													
Qualifier	D	U	U	Ū	U	n	ì	U	U	Ω	Ū	U	U	Ū	n	n	U		1	:	;	:	Ω	Ω	U	Ω	U	Ú	U	÷	f	ם	Ω	Ω	Ω	Ω	Ω	n	U	n
Result	0.005	0.0002	0.0010	0.0010	0.0002	0.0002	0.0013	0.010	0.0002	0.0020	1.80	0.0020	0.0010	0.0010	0.0002	1.00	0.003	0,048	-	+			0.17	3.4	0.067	0.33	0.00	6.1	1.68			0.00	1.75	2.33	0900.0	0.33	0.0900	0.0100	0.0300	0.0200
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	T/Zn	ng/L	ug/L	ng/L	ng/L	MFL	ng/L	ug/L	ug/L	(Oo) cysts/L	pg/L	pCi/L	ug/L	ug/L	(Oo) cysts/L	pCi/L	pCi/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L
Method	EPA 200.7 Rev. 4.4 (1994)	EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.7 Rev. 4.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 200.7 Rev. 4.4 (1994)	EPA 245.7	REIC EPA 200.8 Rev. 5.4 (1994)	SM2540 D-1997	EPA 200.8 Rev. 5.4 (1994)	E522	E539	E539	E539	E539	E600/R-94/134	E300.1	E200.8	E200.8	E1623.1	1613B	E900	E539	E539	E1623.1	E900	E900	E218.7	E200.8	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1			
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC]	REIC	REIC			REIC	ALS	ALS	ALS	ALS	ALS	REIC	ALS	ALS	AL.S	ALS	REIC	REIC	ALS	ALS	AL.S	REIC	REIC	ALS	ALS	ALS	ALS	ALS	ALS
Parameter	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Thallium	Total Suspended Solids	Zinc	1,4-Dioxane	16-α-Hydroxyestradiol (estriol)	17-α-Ethynylestradiol	17-β-Estradiol	4-Androstene-3,17-dione	Asbestos (fiber > 10 micrometers)	Chlorate	Chromium (total)	Cobalt		Dioxin (2,3,7,8-TCDD)	Dissolved Alpha Emitters	Equilin	Estrone	Giardia lamblia	Gross Alpha	Gross Beta	Hexavalent chromium (dissolved)	Molybdenum	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexylsulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)
Date	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	06/24/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015
Sample ID	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	KUB	202	rc-c	LC-C	rc-c	rc-c	rc-c	rc-c	LC-C	rc-c	TC-C	rcc	CCC	CCC	rc-c	LC-C	IC-C	rc-c	rc-c	IC-C	rc-c	CCC	2 2 2 1	rc-c

Notes				5 5 5 5 5 5																									5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	< 30% of lowest sample		Result is qualified as estimated.							5 5 9 9 9 9 9	
ier								+	 -		 																			< 30% of 1		Result is q								
Qualifier	L	=	n	n			!	=		=		n	Þ	Ω	Ω	Ω	n	Ω	Ω	Ω	n	Ω	Þ	D	Ω	Ω	Þ	n	Ω		n	J	Ω	Ω	U	n	þ	D	D	Ū
Result	0.0200	0.0400	0.434	0.939	0.10	1.25		241	0.193	0.067	0.015	0.015	0.050	0.030	0.040	0.10	0.10	0.0004	0.0004	0.0004	0.0002	0.0021	0.0021	0.0003	0.000025	0.0021	2	0.0001	0.000025	1.00	0.000025	0.018	0.0003	0.0002	0.000025	0.000025	0.000025	0.000025	0.000025	0.000025
Units	1/611	ug/I.	pCi/L	pCi/L	ng/L	pCi/L	L/gn	PCi/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	T/dn	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	E537 Rev 1.1	E537 Rev 1.1	E903	E904	E200.8	ASTMD5174	E539	E906	ASTMD5174	E200.8	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	EPA 604	EPA 604	EPA 604	EPA 604	EPA 625 (1982)	EPA 625 (1982)	EPA 604	EPA 608	EPA 625 (1982)	SW8015C (2000)	EPA 610	EPA 608	SM2320 B-1997	EPA 608	EPA 200.7 Rev. 4.4 (1994)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608
Lab	ALS	ALS	REIC	REIC	ALS	REIC	ALS	REIC	REIC	ALS	ALS	ALS	ALS	ALS	ALS	AL.S	ALS	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC		1	REIC		REIC	REIC	REIC	REIC	REIC	REIC
Parameter	Perfluorooctanoic acid (PFOA)	Perfluorooctylsulfonic acid (PFOS)	Radium-226	Radium-228	Strontium	Strontium-90 (dissolved)	Testosterone	Tritium	Uranium	Vanadium	1,1-Dichloroethane	1,2,3-Trichloropropane	1,3-Butadiene	Bromochloromethane (Halon 1011)	Chlorodifluoromethane (HCFC-22)	Chloromethane (methyl chloride)	Methyl bromide (bromomethane)	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	4,4'-DDT	4,6-Dinitro-2-methylphenol	4-MCHM	Acenaphthene	Aldrin	Alkalınıty, Total (As CaCO3)	appa-BHC	Aluminum	Anthracene	Antimony	Aroclor 1016	Aroclor 1221	Aroclor 1232			Aroclor 1254
Date	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07//20/2015	07//20/2015	07//20/2015	07/07/12	07/20/2015	07/20/2015	07//20/2015	07//20/2015	07/20/2015	07/20/2015	01/20/2015	07/20/2015	07/20/2015	07/20/2015	07//20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	\$107/07/10	\$107/07//0	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015
Sample ID	TC-C	rc-c	rcc	ر ادار	rc-c	rc-c	LC-C	rc-c	LC-C	rc-c	LC-G	LC-G	בין בין בין	٥ ادار	ָבְי בַּי	יייי	ָרָרָרָ טְּרֶרָרָרָ	١٥		2-27) 	ט ני	١٠٠٢	၃၂ (၂))))) 	7 0)) - -		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 2	ייי	7		ا د د) 		1-77

Field Blanks

September 15, 2016

Notes																Result is qualified as estimated																								
Qualifier	11		+) =) =			î	n n	n	n	n	U			l n	U	n	þ	n	n	D	n	n	n	Ū	U	U	U	n	n	Ū	Ω	n	Ω	U	U	Ü
Result	0.00005	0.0010	0.0010	0.0006	0.0001	0.0001	0.000	0.0002	0.000025	0.0052	0.05	0.0002	0.000253	0.20	90000	0.0012	0.005	0.005	0.0001	0.000025	0.000025	0.0001	0.000	0.05	0.000025	1.00	0.000025	0.000025	0.0021	0.0001	0.010	0.0002	0.0020	0.0250	1.80	0.000025	0.0020	0.02	0.05	0.0004
Units	mø/ľ.	mo/I	mø/L	mg/I.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	EPA 608	REIC EPA 200 8 Rev. 5 4 (1994)	EPA 200.8 Rev. 5.4 (1994)	EPA 610	EPA 610	EPA 610	EPA 610	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 625 (1982)	EPA 300.0, Rev.2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 300.0, Rev.2.1 (1993)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	SM4500-CN I-1997	EPA 335.4, Rev. 1 (1993)	EPA 610	EPA 608	EPA 608	EPA 610	EPA 610	EPA 300.0, Rev.2.1 (1993)	EPA 608	SM2340 B-1997	EPA 608	EPA 608	EPA 625 (1982)	EPA 610	REIC EPA 200.7 Rev. 4.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.7 Rev. 4.4 (1994)	SM5540 C-2000	EPA 245.7	EPA 608	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 300.0, Rev.2.1 (1993)	REIC EPA 300.0, Rev. 2.1 (1993)	EPA 604
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC		REIC	REIC 1			L. I	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	KEIC	REICI	REIC	REIC	REIC	REIC	REICE	REICE	REIC	REIC
Parameter	Aroclor 1260	Arsenic	Barium	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Beryllium	beta-BHC	Bis(2-ethylhexyl)phthalate		Cadmium			Chrysene	Copper			hracene	Dieldrin	Endrin	ne				CaCO3)				ed)pyrene			┪	4W340 LAS)		ılor				Pentachlorophenol
Date	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	5107/07//0	07/20/2015	0//20/2015	07/20/2015	07/20/2015	07//20/2015	07/20/2015
Sample ID	TC-C	TC-C	rc-c	rc-c	rc-c	D-DT	rc-c	rc-c	TC-C	rc-c	I.C.C	2-27	CC	2-27 ,	277	CC	CC-C	227) 	CC	rc-c	CCC	၃၂ [၂၂	rc-c	CCC	2-2-7-7-7-1 	TC-C) () () ()) [] [] [] [] [] [] [] [] [] [] [] [] []	2 2 1	ָרְיָרָ בְּיִרְיִרָּ	7 2 2		ر د د د د	200	2 2 2			7-7-7

September 15, 2016

Notee	S AUTON A							Result is qualified as estimated	Section of Commence.	> 30% of lowest commis	or or rower souther.	Result is analified as estimated	court is quantied as countaied.																										< 30% of lowest sample		
Oualifier	,		U	Ū	Ω	n	ח				11	Ī		n	Ŋ	n	U	D	n	n	þ	þ	l D	D	n	n	D	D	n	n	n	n	n	n	Ω	D	D	ĵ	Т	n	U
Result		0.0004	0.0001	0.0010	0.0010	1.00	0.0002	5	0.20	8.5	0.000253	0.00	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	7.50	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	2	1	
Units	Į.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	mg/L	ug/L	ug/L	µg/L	µg/L	ng/L	µg/L	ug/L	ug/L	ng/L	µg/L	µg/L	T/dn	ng/L	ng/L	µg/L	ug/L	ng/L	ng/L	µg/L	µg/L	µg/L	µg/L	ug/L	ng/L	µg/L	ng/L	MPN/mL	MPN/100mL	col/100mL
Method	EBA COA	EFA 004	EFA 610	EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 300.0, Rev.2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)	SM2540 C-1997	SM5310 C-2000	SM2540 D-1997	EPA 608	EPA 200.8 Rev. 5.4 (1994)	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 603	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	SM9215 B SIMPLATE		SM9222 D-1997
Lab	DETC			N N	NEIC C	REIC		REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC
Parameter	Phenol	Demonstr	ryicile	Selenum	Silver	Sulfate	Thallium	Total Dissolved Solids	Total Organic Carbon	Total Suspended Solids	Toxaphene	Zinc	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acrylonitrile		thane		de	9		hane	0		oride		Tetrachloroethene		0		ic Plate Count		Fecal Coliform
Date	07/20/2015	07/20/2015	07/00/16	07/20/2015	07/20/02/10	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07//20/2015	07/20/2015	07//20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07//20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015	07/20/2015
Sample	7-27 TC-C	10.01	ر ا	2 2 2	200	ب ا	၃၂, ၁၂,)))	227	CCC)-C-C	CCC	LC-G	5-21	τρ (-) (-) (-)	5 0	ט פ	ָבְירָנְי בריקי	בָּיַבְי	5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ָבָרָרָ בְּרָבָרָרָ	5-27	rc-G	rc-G	D-C-G))))	5-37 1-0-1	LC-G	D-C-G	557	5-5-7-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5 5	ָבָי נְינָ בילילי	5-51	5,01	- TC-G	5-5-1 10-6-	5-5-7 10-6	rc-s	S-57	rcs

Notes		> 200% of tweeter manual	Social comest sample,						> 30% of lowest answels	John of the sample.																														
Qualifier	1.1		-	ŧ	1	1	[])=		12			Ì)	1	D	þ	ם	n	n	Ď	ח	Þ	Ω	n	n	n	n	Ω	n	1	P	Þ	n	Ŋ	þ	n		n	Ü
Result	-	0 064	-	ł	;		0.17	3.4	0.12	0.33	000	8	1.52	1	ı	0.00	1 69	1.67	09000	0.33	0.0833	0.00926	0.0278	0.0185	0.0185	0.0370	0960	0.858	0.10	1.13	1	790	0.193	290 0	0.015	0.015	0.050	0 030	0.040	0.10
Units	MPN/100mI	us/I.	ug/L	T/an	T/an	ug/L	MFL	ug/L	ug/L	ug/L	(Oo) cysts/L	Dg/L	DCI/L	ug/L	ug/L	(Oo) cysts/L	pCi/L	pC ₁ /L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	pCi/L	pCi/L	ng/L	pCi/L.	ng/L	pCi/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Method	SM9223B-OT	E522	E539	E539	E539	E539	E600/R-94/134	E300.1	E200.8	E200.8	E1623.1	1613B	E900	E539	E539	E1623.1	E900	E900	E218 7	E200.8	E537 Rev 1.1	E537 Rev 1 1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1 1	E903	E904	E200.8	ASTM D5811	E539	E906	ASTMD5174	E200.8	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3
Lab	REIC	ALS	ALS	ALS	ALS	ALS	REIC	ALS	ALS	ALS	ALS	REIC	REIC	ALS	ALS	ALS	REIC	REIC	ALS	ALS	ALS	ALS	AL.S	ALS	ALS	ALS	REIC	REIC	ALS	REIC	ALS	REIC	REIC	ALS	AI.S	ALS	AI.S	ALS	AL.S	ALS
Parameter	Total Coliform	1,4-Dioxane	16-a-Hydroxyestradiol (estriol)	17-a-Ethynylestradiol	17-B-Estradiol	4-Androstene-3,17-dione	Asbestos (fiber > 10 micrometers)	Chlorate	Chromium (total)	Cobalt	Cryptosporidium	Dioxin (2,3,7,8-TCDD)	Dissolved Alpha Emitters	Equilin	Estrone	Giardia lamblia	1	Gross Beta	Hexavalent chromium (dissolved)	Molybdenum	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexylsulfonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctanoic acid (PFOA)	cid (PFOS)		\$		olved)	ie				1,1-Dichloroethane	pane				Chloromethane (methyl chloride)
Date	07/20/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015
Sample ID	rc-s	707) 	2	TC-C	CCC	I.C.C	ICC	200	ICC	CCC	I,C.C	CCC	2-27)) ()) (၂)	၃၃ ၂၃၃ ၂) ()		7 7 7)) (1)	ب د د	ب ک ک) () () ()		700	ر د د	200	3 5) - -	700	7 0 0	70)) , ,	5-5-7	LC-G	1.C-G	DOJ.	TC-G

Notes														< 30% of lowest sample																										
Qualifier				; =	2		D	Þ		D		n	n	V	n	n	n	n	n	D	n	n	n	Ŋ	n	n	n	þ	D	n	ח	n	n	n	n	U	n	U	U	U
Result	0.10	2000	0.0005	0.0004	0.0002	0.0023	0.0023	0 0004	0.000028	0 0023	2	10000	0.000028	1.6	0.000028	0.005	0.0003	0.0002	0.000028	0.000028	0.000028	0.000028	0.000028	0.000028	0.000028	0.0010	0 0010	0.0007	0.0001	0.0001	0 0001	0.0002	0 000028	0.0058	0.05	0.0002	0.000284	0.20	0.0007	0.0010
Units	T/ott	I/om	mg/L	me/I,	mg/L	mg/L	mg/l.	mg/L	mg/L	mg/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/I.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	E524.3	EPA 604	EPA 604	EPA 604	EPA 604	EPA 625 (1982)	EPA 625 (1982)	EPA 604	EPA 608	EPA 625 (1982)	SW8015C (2000)	EPA 610	EPA 608	SM2320 B-1997	EPA 608	EPA 200.7 Rev. 4 4 (1994)	EPA 610	EPA 200.8 Rev. 5 4 (1994)	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	200	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 610	EPA 610	EPA 610	EPA 610	EPA 200.8 Rev 5 4 (1994)	EPA 608	EPA 625 (1982)	REIC EPA 300.0, Rev 2 1 (1993)	REIC EPA 200.8 Rev. 5 4 (1994)	EPA 608	EPA 300.0, Rev.2.1 (1993)	EPA 610	REIC EPA 200 8 Rev. 5 4 (1994)
Lab	ALS	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC EPA	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REICE	REICH	REIC		REIC	REICE
Parameter	Methyl bromide (bromomethane)	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	4,4'-DDT	4,6-Dinitro-2-methylphenol	4-MCHM	Acenaphthene	Aldrin	Alkalınıty, Total (As CaCO3)	alpha-BHC	Aluminum	Anthracene	Antimony	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Arsenic	Barium	2			thene			ohthalate			42			Copper
Date	09/01/2015	\$102/10/60	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	5107/10/60	09/01/2015
Sample ID	LC-G	TC-C	rc-c	ro-c	rc-c	CC	777	2-27	1,0,0	LC-C	rcc	CC))]	2-2-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	၁ ၁	7.C.C	J J J J	27	2-27 ,	2-2-7 	၃၃၃ (၂)))) ,) () ()	၃၂ (၂) (၂)	27	CC.	ÇÇÇ,))))) () ()) () () ()))))	ب اد))) ()	2 0	၃၂ (၁))) 	2 2 3) (၁) (၁)	ر د د د د	7

Notes																																< 30% of lowest sample								
Qualifier	=		n	=	n	n	n	D	n	n	D	n	n	Ŋ	Ω	n	D	n	n	D	n	n	n	n	n	n	n	n	n	n	n	× 3	n	Ω	n	n	n	n	Ü	U
Result	0.005	0.005	0 0001	0.000028	0.000028	0.0001	0.0001	0.05	0.000028	1.00	0.000028	0.000028	0.0023	0.0001	0.010	0 0002	0 002	0.0250	1.80	0.000028	0.0020	0.02	50'0	0.0004	0.0004	0.0001	0 0010	0.0010	1.00	0.0002	5	0.46	1.0	0.000284	0.0030	0.500	0.500	0.500	0.500	0.500
Units	me/L	me/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l,	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	mp/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	μg/L.	ng/L	ng/L	ng/L
Method	SM4500-CN I-1997	田田	EPA 610	EPA 608	EPA 608	EPA 610		EPA 300.0, Rev 2.1 (1993)	EPA 608	SM2340 B-1997	EPA 608	EPA 608	EPA 625 (1982)	EPA 610	REIC EPA 200.7 Rev. 4.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 200.7 Rev. 44 (1994)	SM5540 C-2000	EPA 245.7	EPA 608	EPA 200.8 Rev. 5.4 (1994)	EPA 300.0, Rev.2.1 (1993)	EPA 300.0, Rev. 2.1 (1993)	EPA 604	EPA 604	EPA 610	REIC EPA 200 8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5 4 (1994)	EPA 300 0, Rev 2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)	SM2540 C-1997	SM5310 C-2000	SM2540 D-1997	EPA 608	EPA 200.8 Rev. 5.4 (1994)	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC]	REIC		REIC	REIC	REIC	REIC	REICI	REICI	REIC	REIC	REIC	REICI	REIC I	REICI		REIC	ZEIC C	REIC	REIC		REIC	REIC	REIC	REIC	REIC
Parameter	Cyanide, Free	Cyanide, Total	Dibenzo(a,h)anthracene	Dieldrin	Endrin	Fluoranthene	Fluorene	Fluoride	gamma-BHC	Hardness, Total (As CaCO3)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Indeno(1,2,3-cd)pyrene	Iron	Lead		dW340 LAS)		Methoxychlor				henol			n						Solids	ne			1e	83		1,2,4-Trichlorobenzene
Date	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015
Sample ID	TC-C	IC-C	rc-c	2	rc-ç	rc-c	O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-	2	2-27))))	၃၂ (၂)	၃၂ (၁၁)	2-27 1.))))); ; ;))) ,	2-27	rc-c	D-OT))))	ب ان ا) () ()	သုံ	၁-၃-၂ ,	၃၂ (၁၂) (၂)) 	၃၂ (၁၂ (၁၂)))) (ن د د د د) () () ()) (C) (C)	ب ا	500	ָבָי בְיבָי	D C	2 0	1.C-G

Notes																										30% of lowest sample	ייין אין ייין	>30% of lowest sample					>30% of lowest sample							
Qualifier	Ĭ) =						n n	Û	11		n	þ	D	n	n	n	D	n	n	n	Ω	n	n	٨	D	>3	n	n	n	Þ	>3(n	n	U	n	þ	n	Ū
Result	0.500	0 500	0 500	0.500	0.500	7.50	0.500	0.500	0 500	0.500	0.500	0.500	0.500	0 500	1.00	0.500	0.500	0 500	0 500	0.500	0.500	0 1	1	-	-	0.23	0.00000	0.0012	0.00040	0.00030	0.17	3.4	0.22	0.33	0.00	2.5	1.49	0.0040	0.0020	00.0
Units	ne/I.	119/1.	L/S/L	ug/L	l/an	T/an	ug/L	ug/L	ug/L	ng/L	ug/L	ue/L	ue/L	ug/L	ug/L	µg/L	ng/L	T/an	ug/L	ug/L	ng/L	MPN/mL	MPN/100mL	col/100mL	MPN/100mL	ng/L	ug/L	ug/L	ng/L	ng/L	MFL	ng/L	T/gu	ng/L	(Oo) cysts/L	pg/L	pCi/L	ng/L	ng/L	(Oo) cysts/L
Method	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 603	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	SM9215 B SIMPLATE	SM9223B-QT	SM9222 D-1997	SM9223B-QT	E522	E539	E539	E539	E539	E600/R-94/134	E300.1	E200.8	E200.8	E1623.1	1613B	E900	E539	E539	E1623.1
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	ALS	ALS	ALS	ALS	AL.S	REIC	ALS	ALS	ALS	ALS	REIC	REIC	ALS	ALS	ALS
Parameter	1,2-Dichlorobenzenc	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	I,4-Dichlorobenzene	Acrylonitrile	Benzene	Bromodichloromethane	Bromoform	Carbon tetrachloride	Chlorobenzene	Chloroform	Dibromochloromethane	Ethylbenzene	m,p-Xylene	Methylene chloride	o-Xylene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl chloride	Bacteria, Heterotrophic Plate Count	E-Coli	Fecal Coliform	Total Coliform	1,4-Dioxane	16-α-Hydroxyestradiol (estriol)	17-a-Ethynylestradiol	17-β-Estradiol	4-Androstene-3,17-dione	Asbestos (fiber > 10 micrometers)	Chlorate	Chromium (total)	Cobalt	Cryptosporidium	Dioxin (2,3,7,8-TCDD)	Dissolved Alpha Emitters	Equilin	Estrone	Giardia lamblia
Date	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	09/01/2015	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016
Sample ID	DC-G	P-27	LC-G	LC-G	LC-G	LC-G	LC-G	LC-G	IC-G	5-27	LC-G	LC-G	LC-G	LC-G	LC-G	LC-G	P-O-T	D'C'G	LC-G	LC-G	I.C.G	S-C-S	25.	rc-s	I.C.S	10-0	CCC	222	TC-C	2-27	2-27	223	727) - - - - -	CCC	2-2-7 2-5-7)) ,	277))) ,	2-27

Sate																													5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5											
Qualifier	11		n	Ω) II	n	n	n	n	n	n	n	n	n	n	Ω	n	Ω	n	n	n	n	n	n	n	n	n	Ŋ	n	n	n	n	U
Result	1 40	1.5	09000	0.33	0.0833	0.00926	87.00	0.0270	0.0105	0.0100	0.460	0.874	0.10	1.05	0.00010	261	0.193	0.067	0.015	0.015	0.050	0.030	0.040	0.10	0.10	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	7.50	0.500	0.500	0.500	0.500
Units	Ju	J.J.	T/dn	ng/L	T/ān	J/an	nø/L.	. I/on	I/on	ne/I.	pCi/L	pCi/L	ng/L	pCi/L	ng/L	pCi/L	ηg/L	ng/L	ng/L	ug/L	ug/L	ng/L	ng/L	ng/L	ng/L	µg/L	µg/L	ng/L	ng/L	ng/L	μg/L	ng/L	µg/L	ng/L	µg/L	ng/L	ng/L	µg/L	µg/L	T/8nt
Method	E900	E900	E218.7	E200.8	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E903	E904	E200.8	ASTM D5811	E539	E906	ASTMD5174	E200.8	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 603	EPA 624	EPA 624	EPA 624	EPA 624
Lab	REIC	REIC	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	REIC	REIC	ALS	REIC	ALS	REIC	REIC	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC
Parameter	Gross Alpha	Gross Beta	Hexavalent chromium (dissolved)	Molybdenum	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (PFHpA)	Perfluorohexylsulfonic acid (PFHxS)	Perfluoronomanoic acid (PFNA)	Perfluorooctanoic acid (PFOA)	Perfluorooctylsulfonic acid (PFOS)	Radium-226	Radium-228	Strontium	Strontium-90 (dissolved)	Testosterone	Tritium	Uranium	Vanadium	1,1-Dichloroethane	1,2,3-Trichloropropane	1,3-Butadiene	Bromochloromethane (Halon 1011)	Chlorodifluoromethane (HCFC-22)	Chloromethane (methyl chloride)	Methyl bromide (bromomethane)		je	0)		o					zene	le		thane		Carbon tetrachloride
Date	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	07/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	07/78/7016
Sample ID	TC-C	TC-C	I.C.C	rc-c	C-C	rc-c	rc-c	TC-C	rc-c	rc-c	rc-c	rc-c	rc-c)))-)-j)))) 	ָבָרָנָי בְּיִרְנָי	5-37 ,	D:07	ָבָי בָּיבֶּי	1.5-G	5-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	5-7	LC-G	rc-G	5-51 1.	5 5	בין בין	ביים ב	ָרְרָבְי	5 C.C.C.) () ()	D-07	ָבָרָבָי בָרָבָי	LCG	- C-G	- C	רכים

Date	Parameter	Lab	Method	Units	Result	Qualifier	Notes
⋉	02/29/2016 Chlorobenzene	REIC	C EPA 624	ug/I,	0 500	11	
72		REIC		ug/L	0.500		
ŏ	02/29/2016 Dibromochloromethane	REIC	C EPA 624	ng/L	0.500		
진		REIC		µg/L	0.500	n	
ᆌ		REIC	C EPA 624	µg/L	1.00	D	
ষ∣	02/29/2016 Methylene chloride	REIC	C EPA 624	µg/L	0.500	Ω	
<u>کا ا</u>		REIC	C EPA 624	ng/L	0.500	n	
줘.	Tetra	REIC	C EPA 624	J/gn	0.500	Ω	
02/29/2016		REIC	C EPA 624	ug/L	0.500	þ	
02/29/2016		REIC	EPA 624	ug/L	0.500	n	
02/29/2016		REIC	EPA 624	ng/L	0.500	Ω	
02/29/2016	7	REIC		mg/L	0.0004		
02/29/2016		REIC		mg/L	0.0004		
02/29/2016	16 2,4-Dimethylphenol	REIC		mg/L	0.0004		
02/29/2016		REIC	EPA 604	mg/L	0.0002	5	
02/29/2016	16 2,4-Dinitrotoluene	REIC	EPA 625 (1982)	me/L	0.0021		
02/29/2016	2	REIC		mg/L	0.0021		
02/29/2016	16 2-Chlorophenol	REIC		mg/L	0.0003		
02/29/2016		REIC	EPA 608	mg/L	0.000025	n	
02/29/2016	16 4,6-Dinitro-2-methylphenol	REIC	EPA 625 (1982)	mg/L	0.0021	Ω	
02/29/2016		REIC	SW8015C	ng/L	2	Ω	
02/29/2016	Ace	REIC		mg/L	0.0001	n	
07/53/7016	4	REIC	EPA 608	mg/L	0.000025	D	
02/29/2016	Alkalinit	REIC	SM2320 B-1997	mg/L	1.0		< 30% of lowest sample
02/29/2016	16 alpha-BHC	REIC	EPA 608	mg/L	0.000025	Ω	
02/29/2016	16 Aluminum	REIC	EPA 200	mg/L	0.005	n	
02/29/2016	16 Anthracene	REIC	EPA 610	mg/L	0.0003	D	
02/29/2016		REIC	EPA 200	mg/L	0.0002	þ	
02/29/2016		REIC	EPA 608	mg/L	0.000025	Ω	
02/29/2016		REIC	EPA 608	mg/L	0.000025	Ω	
02/29/2016		REIC	EPA 608	mg/L	0.000025	n	
02/29/2016		REIC	EPA 608	mg/L	0.000025	n	
02/29/2016		REIC	EPA 608	mg/L	0.000025	n	
02/29/2016		REIC	EPA 608	mg/L	0.000025	n	
02/29/2016	Ar	REIC	EPA 608	mg/L	0.000025	Ω	
02/29/2016		REIC	REIC EPA 200.8 Rev. 5.4 (1994)	mg/L	0.0010	n	
02/29/2016		REIC	REIC EPA 200.8 Rev. 5.4 (1994)	mg/L	0.0010	b	
02/29/2016		REIC	EPA 610	mg/L	9000.0	n	
02/29/2016		REIC	EPA 610	mg/L	0.0001	n	
02/29/2016	6 Benzo(b)fluoranthene	REIC	EPA 610	mg/L	0.0001	Ω	

Project No. 0101-15-0018

Notes																																								
Qualifier	E		> =)) 1	> =			n	n	Ŋ	n	D	n	n	n	n	ח	þ	n	n	Ω	n	n	n	U	n	n	n	n	n	n	D	n	n	U
Result	0 0001	0.000	0.0002	0.0002	0.05	0.0002	0.000253	0.20	0.0006	0.0010	0.005	0.005	0.0001	0.000025	0.000025	0.0001	0.0001	0.05	0.000025	1.00	0.000025	0.000025	0.0021	0.0001	0.010	0.0002	0.002	0.0250	3.60	0.000025	0.0020	0.02	0.05	0.0004	0.0004	0.0001	0.0010	0.0010	1.00	0.0002
Units	mø/I.	J.Sm.	mo/I.	J/om	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	me/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	EPA 610	REIC FPA 200 8 Rev 5 4 (1994)	EPA 608	EPA 625 (1982)	REIC EPA 300.0, Rev.2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)	EPA 608	REIC EPA 300.0, Rev. 2.1 (1993)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	SM4500-CN I-1997	EPA 335.4, Rev. 1 (1993)	EPA 610	EPA 608	EPA 608	EPA 610	EPA 610	EPA 300.0, Rev.2.1 (1993)	EPA 608	SM2340 B-1997	EPA 608	EPA 608	EPA 625 (1982)	EPA 610	REIC EPA 200.7 Rev. 4.4 (1994)	EPA 200.8 Rev. 5.4 (1994)	EPA 200.7 Rev. 4.4 (1994)	SM5540 C-2000	EPA 245.7	EPA 608	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 300.0, Rev.2.1 (1993)	EPA 300.0, Rev.2.1 (1993)	EPA 604	EPA 604	EPA 610	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	KEIC EPA 300.0, Rev.2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)
Lab	REIC	RFIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC		REIC	REIC	REIC	REIC 1			REIC	REIC	REIC	REICH	REIC	KEIC	REICH
Parameter	Benzo(k)fluoranthene	Beryllium	beta-BHC	Bis(2-ethylhexyl)phthalate	Bromide	Cadmium	Chlordane	Chloride	Chrysene	Copper	Cyanide, Free	Cyanide, Total	Dibenzo(a,h)anthracene	Dieldrin	Endrin	Fluoranthene	Fluorene	Fluoride	gamma-BHC	Hardness, Total (As CaCO3)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Indeno(1,2,3-cd)pyrene	Iron		П	MW340 LAS)		ılor				henol			n			I hallium
Date	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	91/26/2010	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	01/26/2010	01/27/27/20
Sample ID	TC-C	TC-C	rc-c	rc-c	rc-c	rc-c	rc-c	TC-C	rc-c	rc-c	TC-C	rc-c	O'O'	2-27 1-27	၃၂ (၂)	၁-၁-၂ 	2-27	2-21	273	200))) ,))))	27) - TC-C) 	J-C-C ,	2-2-1 1-1-1	J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-J-	2-27)))) 	2-27	၃၂ (၂)))) () () ()	200	2 5) () () ()	2 2	7

Notes		/ 200/ - 61	SOVE OF TOWEST Sample		Result is analified as estimated	< 30% of lowest sample						< 30% of lowest sample																												
Qualifier	1.1		=				n	D	n	n	n		n	Ω	D	ח	n	D	n	n	n	Ŋ	n	Ω	Ω	D	ם	n	n	Ω	n	Ω	Ω	U	Ω	n	D	Ū	Ω	Ω
Result	4	0.35	1.0	0.000253	0.0044	29.0		_	1	0.014	0.00080	0.00140	0.00040	0.00030	0.18	3.4	0.067	0.33	00.0	0.44	1.71	0.0040	0.0020	0.00	1.39	191	09000	0.33	0.0804	0.00893	0.0268	0.0179	0.0179	0.0357	0.605	0 704	0.10	1.08	0.00010	221
Units	I/om	mo/I	me/L	mg/L	mg/L	MPN/mL	MPN/100mL	col/100mL	MPN/100mL	ng/L	ug/L	ug/L	ng/L	ng/L	MFL	ng/L	ng/L	ng/L	(Oo) cysts/L	pg/L	pCi/L	ng/L	ng/L	(Oo) cysts/L	pCi/L	pC ₁ /L	ng/L	ng/L	ng/L	ug/L	ng/L	ng/L	ng/L	ng/L	pCi/L	pCi/L	ng/L	pCi/L	ng/L	pCi/L
Method	SM2540 C-1997	SM5310 C-2000	SM2540 D-1997	EPA 608	EPA 200.8 Rev. 5.4 (1994)	SM9215 B SIMPLATE	SM9223B-QT	SM9222 D-1997	SM9223B-QT	E522	E539	E539	E539	E539	E600/R-94/134	E300.1	E200.8	E200.8	E1623.1	1613B	E900	E539	E539	E1623.1	E900	E900	E218.7	E200.8	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E537 Rev 1.1	E903	E904	E200.8	ASTM D5811	E539	E906
Lab	REIC	REIC	REIC	REIC	REIC		REIC	REIC	REIC	ALS	ALS	ALS	ALS	ALS	REIC	ALS	ALS	ALS	ALS	REIC	REIC	ALS	ALS	ALS	REIC	REIC	ALS	ALS	ALS	ALS	ALS.	2	ALS:	ALS	REIC	REIC	AL.S	REIC	AI.S	REIC
Parameter	Total Dissolved Solids	Total Organic Carbon	Total Suspended Solids	Toxaphene	Zinc	Bacteria, Heterotrophic Plate Count	E-Coli	Fecal Coliform	Total Coliform	1,4-Dioxane	16-a-Hydroxyestradiol (estriol)	17-a-Ethynylestradiol	17-β-Estradiol	4-Androstene-3,17-dione	Asbestos (fiber > 10 micrometers)	Chlorate	Chromium (total)	Cobalt	Cryptosporidium	Dioxin (2,3,7,8-TCDD)	Dissolved Alpha Emitters	Equilin	Estrone	Giardia lamblia	Gross Alpha	Gross Beta	Hexavalent chromium (dissolved)	Molybdenum	Perfluorobutanesulfonic acid (PFBS)	Perfluoroheptanoic acid (PFHpA)	Perituoronexylsuitonic acid (PFHxS)	Perfluorononanoic acid (PFNA)	Perfluorooctanoic acid (PFOA)	cid (PFOS)		œ		olved)	ne	Tritium
Date	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	02/29/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2010	04/20/2016	04/20/2016	04/20/2010	04/20/2016	04/20/2010	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016
Sample ID	DC-C	TC-C	TC-C	CC-C	rc-c	rc-s	rc-s	rc-s	IC-S	LCC	CC)) ,	J-2-7	2-27	2-2-7	70.	200)))))))))))	2-2-7 	200	ب ادر ادر	227	200))))	201) () ()	7 5	7 7 7	ر د د	2 2 2	יייי	2 2 2	70.5)))) ,	200	700	7

Notes																																								
Qualifier				1=	n	D	Ŋ	n	n	n	n	n	n	n	n	n	n	n	Ω	n	n	n	Ω	n	Ŋ	n	n	Ω	Ω	U	Û	Ω	n	n	Ŋ	n	n	n	n	Ú
Result	0.193	0.067	0.015	0.015	0.050	0.030	0.040	0.10	0.10	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	7.50	0.500	0.500	0 200	0 200	0 200	0.500	0.500	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	0.0004	0.0004	0.0004	0.0002	0.0021
Units	1/611	I/on	J/an	ng/L	ng/L	J/gn	ug/L	ng/L	ug/L	ug/L	ug/L	µg/L	µg/L	ug/L	T/gµ	T/Brl	hg/L	ng/L	µg/L	ng/L	ng/L	ug/L	µg/I.	μg/L	µg/L	ηg/L	µg/L	ng/L	ng/L	Hg/L	µg/L	ng/L	ng/L	ng/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	ASTMD5174	E200.8	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	E524.3	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 603	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 604	EPA 604	EPA 604	EPA 604	EPA 625 (1982)
Lab	REIC	AI.S	ALS	ALS	ALS	ALS	ALS	ALS	ALS	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC
Parameter	Uranium	Vanadium	1,1-Dichloroethane	1,2,3-Trichloropropane	1,3-Butadiene	Bromochloromethane (Halon 1011)	Chlorodifluoromethane (HCFC-22)	Chloromethane (methyl chloride)	Methyl bromide (bromomethane)	1,1,1-Trichloroethane	1,1,2,2-Tetrachioroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acrylonitrile	Benzene	Bromodichloromethane	Вготогогт	Carbon tetrachloride	Chlorobenzene	Chloroform	Dibromochloromethane	Ethylbenzene	m,p-Xylene	Methylene chloride	o-Xylene	l etrachloroethene	Toluene					1		2,4-Dinitrotoluene
Date	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2010	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2010	04/20/2016	04/20/2010	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016
Sample	rc-c	rc-c	LC-G	IC-G	LC-G	TC-G	5-5- 5-5-	P-J-	rc-G	rc-ç	5-57 7-7-6-	ָבָי בְיבָי	5-7-1	5 0	500	ָבָילָבָּי בְּיבָילָבָּי	٥ ١ ١	י בי	5-3-1 -2-1	ָבָרָרָפָּ פַּיּ	ט ט	ָבָּילָבָּי ביינים	501	ت ا ا	יַבְיבָי	9 0 1 0	2 0 0	ט ט	ָבְילָרְ בְּילְרָבְּי	ביים ביים	ָבְיבָ בְּבְיבָ	ָבְיבָי בְּיבָי) ()	557	D-5-1))))) ,	O C	7 9	7

								- - - - - - - - - - - - - - - - - - -																																
Nofe																																		Result is qualified as estimated						
Qualifier		2 ا			0 1)=) =	2 =) =) =		D	Ω	n	n	n	n	D	n	D		12		Þ	n	n	n	n	n	n	Ī	D	n	þ	10	n	Ŋ
Result	10000	0.0021	0.0000	0 0001	7	0 0001	9,00000	10	0.000026	9000	0.0003	0.0002	0.000026	0.000026	0 000026	0.000026	0.000026	0 000026	0.000026	0.0010	0.0010	9000'0	0.0001	0.0001	0.0001	0.0002	0.000026	0.0054	0.05	0.0002	0.000256	0.20	90000	0.0025	0.005	0 005	0.0001	0.000026	0.000026	0.0001
Units	I/wa	IIIB/L	Tuego La	T Day	Ilgili Ilgili	l/om	l/om	me/L	mg/I.	mg/l.	mg/l.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/l.	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	EPA 675 (1982)	FPA 604	FPA 608	FPA 625 (1982)	SW8015C	EPA 610	EPA 608	SM2320 B-1997	EPA 608	EPA 200.7 Rev. 4 4 (1994)	EPA 610	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	EPA 608	REIC EPA 200.8 Rev. 5 4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 610	EPA 610	EPA 610	EPA 610	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 625 (1982)	EPA 300.0, Rev.2.1 (1993)	EPA 200 8 Rev. 5 4 (1994)	EPA 608	EPA 300.0, Rev.2 1 (1993)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	SM4500-CN I-1997	EPA 335 4, Rev. 1 (1993)	EPA 610	EPA 608	EPA 608	EPA 610
Lab	REIC	REIC	REIC	RFIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REJC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC		REIC	REIC	REICE		REIC		REIC	REIC E	REIC		REIC	REIC	REIC	REIC
Parameter .	2-Chloronaphthalene	2-Chlorophenol	4,4'-DDT	4,6-Dinitro-2-methylphenol	4-MCHM	Acenaphthene	Aldrin	Alkalınıty, Total (As CaCO3)	alpha-BHC	Aluminum	Anthracene	Antimony	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Arsenic	Barium	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Beryllium	beta-BHC	Bis(2-ethylhexyl)phthalate	Bromide	Cadmium			Chrysene				hracene			Fluoranthene
Date	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016
Sample ID	TC-C	CCC	C-C	TC-C	CC-C	rc-c	IC-C	ICC	2-27	O O I	227	ro-c	O'C	၁-၁-၂))))) () - - - - - -	200) 	200	7 5	200))) ,	2-2-1	rc-c)))]	200	၃ လ ၁ လ))) 1))) ())) ,)) , ,) 	200	700)))))) ,	202	777

Notes																										Result is qualified as estimated								> 30% of lowest sample.						
Oualifier	,		ء ء	=) [n n	n	n	n	n	Ω	U	n	Ω	Ω	n	Ω	Ū	n	n	þ	=		n	ח	U	n	Þ	p	Ω		U	N_	מ	U	U	Ω
Result	0.0001	10000	900000	100	0.00006	0.000026	0.0021	0.0001	0 0 10	0.0002	0 002	0.0500	1.80	0.000026	0 0020	0.02	0.05	0 0004	0.0010	0.0001	0.0010	0.0010	1.00	0 0002	8	0.24	10	0 000256	0.0030	20.0		-	-	0.063	0.000000	0.00000	0.00040	0.00030	0.50	3.4
Units	Nom	mg/L	mo/l	mø/I.	mg/L	me/L	mg/L	me/L	mg/L	mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	me/L	mg/L	mg/L	mg/L	mg/L	MPN/mL	MPN/100mL	col/100ml	MPN/100mL	ug/L	ng/L	ng/L	ng/L	ng/L	MFL	T/gu
Method	FPA 610	15	EPA 608	SM2340 B-1997	EPA 608	EPA 608	EPA 625 (1982)	EPA 610	REIC EPA 200 7 Rev. 4.4 (1994)	REIC EPA 200 8 Rev 5.4 (1994)	EPA 200.7 Rev. 44 (1994)	SM5540 C-2000	EPA 245.7	EPA 608	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 300.0, Rev 2.1 (1993)	EPA 300.0, Rev 2 1 (1993)	EPA 604	EPA 604	EPA 610	REIC EPA 200 8 Rev. 5 4 (1994)	EPA 200 8 Rev 5 4 (1994)	EPA 300.0, Rev 2.1 (1993)	REIC EPA 200 8 Rev. 5 4 (1994)	SM2540 C-1997	SM5310 C-2000	SM2540 D-1997	EPA 608	EPA 200.8 Rev. 5.4 (1994)	ATE		7	SM9223B-QT	E522	E539	E539	E539	E539	E600/R-94/134	E300.1
Lab	REIC	REIC FPA	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC			S C	Y E		SEIC.	ALS	ALS	ALS	ALS	ALS	REIC	ALS
Parameter	Fluorenc	Fluoride	gamma-BHC	Hardness, Total (As CaCO3)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Indeno(1,2,3-cd)pyrene	Iron	Lead	Manganese	MBAS (calibrated on MW340 LAS)	Mercury	Methoxychlor	Nickei	Nitrogen, Nitrate	Nitrogen, Nitrite	Pentachlorophenol	Phenol	Pyrene	Selentum	Silver	Sulfate	Thallium	Total Dissolved Solids	Total Organic Carbon	Total Suspended Solids	Toxaphene	Zinc	Bacteria, Heterotrophic Plate Count	Event Cattern	recal Conform	10tal Coliform	1,4*Dioxane	16-a-Hydroxyestradiol (Estriol)	I7-a-Ethynylestradiol	17-β-Estradiol	П	nicrometers)	Chlorate
Date	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2016	04/20/2010	05/11/2010	03/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	02/11/2016
Sample	2-27 TC-C	TC-C	2-27	1,C-C	rc-c	rc-c	rc-c	LCC	rc-c	10-01	rc-c)-C-C-)))	2-27	200	၃၂ ၃၂ ၂	ÇÇ,))) ,	2-27 ,) 	CCC.))))	ب ا ا	CCC.	7C-C	CCC	J-C-C	ب الراب) o C	201	2 - J	2 Z Z	200	2001		707	201.		777	777

Project No. 0101-15-0018

Date		Lab	Method	Units	Result	Qualifier	Notes
07/	Chro	ALS	E200.8	ng/L	6.4		> 30% of lowest sample
05/11/2016	16 Cobalt	ALS	E200.8	ng/L	1.0		SALVETTE STORE AND A STORE AND
05/11/2016		ALS	E1623.1	(Oo) cysts/L	0.00	n	
05/11/2016		REIC	1613B	pg/L	2.40	n	
05/11/2016	Dissolve	REIC	E900	pCi/L	1.49	n	
01/11/5016		ALS	E539	T/8n	0.0040	n	
05/11/2016		ALS	E539	ng/L	0.0020	n	
05/11/2016	9	ALS	E1623.1	(Oo) cysts/L	0.00		
05/11/2016	6 Gross Alpha	REIC	E900	pCi/L	1.75		
05/11/2016	6 Gross Beta	REIC	E900	pCi/L	92.1		
05/11/2016	6 Hexavalent chromium (dissolved)	ALS	E218.7	ug/I,	09000) =	
05/11/2016	6 Molybdenum	AL.S	E200.8	ug/L	1.0		
05/11/2016	6 Perfluorobutanesulfonic acid (PFBS)	ALS	E537 Rev 1.1	ug/I,	0.0046) =	
05/11/2016	\dashv	ALS	E537 Rev 1.1	ng/L	0.0046	=	
05/11/2016	_	AL.S	E537 Rev 1.1	10s/T,	0.0046		
05/11/2016	-	ALS	E537 Rev 1.1	1/6/1	0.0046		
05/11/2016	Perfluorooctanoic acid (PFO	ALS	E537 Rev 1.1	ue/L	0.0010	 = 	
05/11/2016	P	ALS	E537 Rev 1.1	no/i.	0.0077		> 200% of Journal or comments
05/11/2016	6 Radium-226	REIC	E903	pCi/L	0.742	11	SOVE OF TOWEST SALISPIE.
05/11/2016	6 Radium-228	REIC	E904	pCi/L	0.735		
05/11/2016	-	ALS	E200.8	J/an	0.3		
05/11/2016	Stron	REIC	ASTM D5811	pCi/L	1.31	þ	
05/11/2016	6 Testosterone	ALS	E539	T/an	0.00010	, =	
05/11/2016	5 Tritium	REIC	E906	pCi/L	249) =	
05/11/2016	6 Uranium	REIC	ASTMD5174	us/T.	0 193	> =	
05/11/2016		ALS	E200.8	ug/I.	0.5		
05/11/2016	5 1,1-Dichloroethane	AI.S	E524.3	J/an	0.015	- -ا	
05/11/2016	1,	ALS	E524.3	T/an	0.015	; =	
05/11/2016	5 1,3-Butadiene	ALS	E524.3	ng/L	0.050	1	
05/11/2016	5 Bromochloromethane (Halon 1011)	ALS	E524.3	J/an	0.030	=	
05/11/2016	5 Chlorodifluoromethane (HCFC-22)	ALS	E524.3	ne/L	2.0		
05/11/2016	Chloromethane (methyl chloride)	ALS	E524.3	ug/I.	105	1	Regult is analitied as anticide of mother anditured
05/11/2016		AI.S	E\$24.3	ue/L	0.73		> 30% of lower comple
05/11/2016		REIC	EPA 624	ug/L	0.500	11	andring towar towar
05/11/2016	1,	REIC	EPA 624	ug/L	0.500		
05/11/2016		REIC	EPA 624	ng/L	0.500		
05/11/2016		REIC	EPA 624	T/am	0.500		
05/11/2016	1,	REIC	EPA 624	ug/L	0.500		
05/11/2016	_	REIC	EPA 624	ng/L	0.500	n	
05/11/2016	1,2-Dichloroethane	REIC	EPA 624	T/an	0.500		
						,	

Notes																																	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							
Qualifier		n	n	n	n	n	n	n	n	n	n	n	n	D	D			Ω	n	n	n	n	Ď	n	n	n	n n	n	n	n	n	n	n	n	Ŋ	n	n	n	n	Ω
Result	0.500	0.500	0.500	7.50	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	1.00	0.500	0.500	0.500	0.500	0.500	0.500	0.0004	0.0004	0.0004	0.0002	0.0021	0.0021	0.0003	0.000029	0.0021	2	0.0001	0.000029	1.0	0.000029	0.005	0.0003	0.0002	0.000029	0.000029	0.000029	0.000029
Units	uo/I.	ng/L	ug/L	ng/L	ug/L	ng/L	ng/L	ug/L	ng/L	ug/L	ng/L	ug/L	ng/L	ug/L	µg/L	ug/L	ng/L	ng/L	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	T/Bri	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Method	EPA 624	EPA 624	EPA 624	EPA 603	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 624	EPA 604	EPA 604	EPA 604	EPA 604	EPA 625 (1982)	EPA 625 (1982)	EPA 604	EPA 608	EPA 625 (1982)	SW8015C	EPA 610	EPA 608	SM2320 B-1997	EPA 608	EPA 200.7 Rev. 4.4 (1994)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 608	EPA 608	EPA 608
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC				REIC	REIC	REIC	REIC
Parameter	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Acrylonitrile	Benzene	Bromodichloromethane	Bromoform	Carbon tetrachloride	Chlorobenzene	Chloroform	Dibromochloromethane	Ethylbenzene	m,p-Xylene	Methylene chloride	o-Xylene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl chloride	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	4,4′-DDT	4,6-Dinitro-2-methylphenol	4-MCHM	Acenaphthene	Aldrin	Alkalinity, Total (As CaCO3)	alpha-BHC	Aluminum	Anthracene	Antimony	Aroclor 1016	Aroclor 1221		Aroclor 1242
Date	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016
Sample ID	LC-G	LC-G	LC-G	FC-G	LC-G	D-O1	1.C-G	TC-G	LC-G	LC-G	LC-G	LC-G	TC-G	LC-G	LC-G	LC-G	LC-G	LC-G	LC-G	rc-c	rc-c	rc-c	7-2-T	O'O'I	rc-c	rcc) 	I.C.C	I.C.C	2-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	rc·c))) ,) - - - - - - - - - - - - - - - - - - -) 	CC) - - - - - - - - - - - - - - - - - - -	rc-c	CCC.)))))	227

Notes										9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9																														
Qualifier	U) D	D	n	n	n	n	b	D	n	n	n	Ŋ	n	n	Ω	n	n	n	n	n	n	n	n	n	n	D	n	n	n .	Ω	ລ	n	Ω	n	D	n	n	U	Ū
Result	0.000029	0.000029	0.000029	0.0010	0.0010	90000	0.0001	0.0001	0.0001	0.0002	0.000029	0.0052	0.05	0.0002	0.000288	0.30	9000.0	0.0010	0.005	0.005	0.0001	0.000029	0.000029	0.0001	0.0001	0.05	0.000029	1.00	0.000029	0.000029	0.0021	0.0001	0.010	0.0002	0.002	0.0500	1.80	0.000029	0.0020	0.02
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	ng/L	mg/L	mg/L	mg/L
Method	EPA 608	EPA 608	EPA 608	EPA 200.8 Rev. 5.4 (1994)	EPA 200.8 Rev. 5.4 (1994)	EPA 610	EPA 610	EPA 610	EPA 610	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 625 (1982)	EPA 300.0, Rev. 2.1 (1993)	EPA 200.8 Rev. 5.4 (1994)	EPA 608	EPA 300.0, Rev. 2.1 (1993)	EPA 610	EPA 200.8 Rev. 5.4 (1994)	SM4500-CN I-1997	EPA 335.4, Rev. 1 (1993)	EPA 610	EPA 608	EPA 608	EPA 610	EPA 610	EPA 300.0, Rev 2.1 (1993)	EPA 608	SM2340 B-1997	EPA 608	EPA 608	EPA 625 (1982)	EPA 610	EPA 200.7 Rev. 4.4 (1994)	REIC EPA 200.8 Rev. 5.4 (1994)	EPA 200.7 Rev. 4.4 (1994)	SM5540 C-2000	EPA 245.7	EPA 608	REIC EPA 200.8 Rev. 5.4 (1994)	REIC EPA 300.0, Rev.2.1 (1993)
Lab	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REIC	REICI	REICI		REIC	REIC	REIC	REICE	REIC
Parameter	Aroclor 1248	Aroclor 1254	Aroclor 1260	Arsenic	Barium	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Beryllium	beta-BHC	Bis(2-ethylhexyl)phthalate	Bromide	Cadmium	Chlordane	Chloride	Chrysene	Copper	Cyanide, Free		hracene	Dieldrin	Endrin	ıe				CaCO3)				Indeno(1,2,3-cd)pyrene	Iron			MW340 LAS)		lor		Nitrogen, Nitrate
Date	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016	05/11/2016
Sample ID	TC-C	TC-C	rc-c	I'C-C	rc-c	rc-c	rc-c	rc-c	IC-C	2-27 TC-C	rc-c) 		rcc	TC-C	CCC	CCC	rc-c	rc-c	CCC	CCC	CCC	rc-c	rcc))) 1	TC-C	2-07 ,	J J J J))))	2-27)) 	2-27) 	J-J-	207	CC	D-O-T))) ,	2-2-7

Date	Parameter	Loh	Mathed				
	T GI WIIIOOM	1		Units	Kesult	Qualifier	Notes
05/11/2016	Nitrogen, Nitrite	REIC	REIC EPA 300.0, Rev. 2.1 (1993)	me/L	0.05	n	
05/11/2016	Pentachlorophenol	REIC	EPA 604	mg/l.	0.0004		
05/11/2016	Phenol	REIC		mg/L	0.0004		
05/11/2016	Pyrene	REIC	EPA 610	me/L	0.0001		
1/2016	Selenium	REIC	EPA 200.8 Rev. 5.4 (1994)		0.0010	n	
1/2016	Silver	REIC	EPA 200.8 Rev. 5.4 (1994)		0.0010	n	
1/2016	Sulfate	REIC	EPA 300.0, Rev.2.1 (1993)		1.00	n	
1/2016	Thallium	REIC	EPA 200.8 Rev. 5.4 (1994)		0.0002	þ	
1/2016	Total Dissolved Solids	REIC	SM2540 C-1997		9	 -	Result is qualified as estimated
1/2016	Total Organic Carbon	REIC	SM5310 C-2000	mg/L	0.39	ſ	Result is qualified as estimated
1/2016	Total Suspended Solids	REIC	SM2540 D-1997	mg/L	1.0	n	
1/2016	Toxaphene	REIC	EPA 608	mg/L	0.000288	n	
1/2016	Zinc	REIC	EPA 200.8 Rev. 5.4 (1994)	mg/L	0.0061	-	Result is qualified as estimated
1/2016	Bacteria, Heterotrophic Plate Count	REIC	SM9215 B SIMPLATE	MPN/mL	40.0		< 30% of lowest sample
1/2016	E-Coli	REIC	SM9223B-QT	MPN/100mL	1	Ω	
1/2016	Fecal Coliform	REIC	SM9222 D-1997	col/100mL	-	Ω	
1/2016	Total Coliform	REIC	SM9223B-QT	MPN/100mL	-	þ	
	05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016 05/11/2016	╶╅╄┋╏╃╇╅╏╃╇╇╏	Pyrene Selenium Silver Sulfate Thallium Total Dissolved Solids Total Organic Carbon Total Suspended Solids Total Suspended Solids Total Heterotrophic Plate Count E-Coli Fecal Coliform Total Coliform	Selenium REIC EPA 610 Selenium REIC EPA 200.8 Rev. 5.4 (1994) Silver REIC EPA 200.8 Rev. 5.4 (1994) Sulfate REIC EPA 200.8 Rev. 5.4 (1994) Total Dissolved Solids REIC EPA 200.8 Rev. 5.4 (1994) Total Organic Carbon REIC EPA 200.8 Rev. 5.4 (1994) Total Organic Carbon REIC SM2540 D-1997 Total Suspended Solids REIC SM5310 C-2000 Total Suspended Solids REIC SM5310 C-2000 Total Suspended Solids REIC SM5310 C-1997 Total Solids REIC SM5310 B-1997 Fecal Coliform REIC SM9223B-QT Fecal Coliform REIC SM9223B-QT REIC	Selenium REIC EPA 610 Selenium REIC EPA 200.8 Rev. 5.4 (1994) Silver REIC EPA 200.8 Rev. 5.4 (1994) Sulfate REIC EPA 200.8 Rev. 5.4 (1994) Total Dissolved Solids REIC EPA 200.8 Rev. 5.4 (1994) Total Organic Carbon REIC EPA 200.8 Rev. 5.4 (1994) Total Organic Carbon REIC SM2540 C-1997 Total Suspended Solids REIC SM5310 C-2000 Total Suspended Solids REIC SM5310 C-2000 Total Suspended Solids REIC SM5310 C-1997 Total Suspended Solids REIC SM5310 B-1997 E-Coli REIC SM9223B-QT Fecal Coliform REIC SM9223B-QT Total Coliform REIC SM9223B-QT REIC SM922B-QT REIC SM922B-QT REIC SM922B-QT REIC SM922B-QT REIC SM922B-QT REIC SM922B-QT REIC SM922B-	Pyrene REIC EPA 610 mgL Selenium REIC EPA 200.8 Rev. 5.4 (1994) mgL Sulfate REIC EPA 200.8 Rev. 5.4 (1994) mgL Thallium REIC EPA 200.8 Rev. 5.4 (1994) mgL Total Dissolved Solids REIC EPA 200.8 Rev. 5.4 (1994) mgL Total Organic Carbon REIC SM2540 C-1997 mgL Total Suspended Solids REIC SM2540 D-1997 mgL Toxaphene REIC SM2540 D-1997 mgL Ainc REIC SM2540 D-1997 mgL Bacteria, Heterotrophic Plate Count REIC SM9215 B SIMPLATE MPN/mL Fecal Coliform REIC SM9223B-QT MPN/100mL Fecal Coliform REIC SM9223B-QT MPN/100mL	Pyrene REIC EPA 610 mgL Selenium REIC EPA 200.8 Rev. 5.4 (1994) mgL Sulfate REIC EPA 200.8 Rev. 5.4 (1994) mgL Thallium REIC EPA 200.8 Rev. 5.4 (1994) mgL Total Dissolved Solids REIC EPA 200.8 Rev. 5.4 (1994) mgL Total Organic Carbon REIC SM2540 C-1997 mgL Total Suspended Solids REIC SM2540 D-1997 mgL Toxaphene REIC SM2540 D-1997 mgL Ainc REIC SM2540 D-1997 mgL Bacteria, Heterotrophic Plate Count REIC SM9215 B SIMPLATE MPN/mL Fecal Coliform REIC SM9223B-QT MPN/100mL Fecal Coliform REIC SM9223B-QT MPN/100mL

LL Hg Blanks

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
LL HG BLANK	06/24/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	07/07/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	Ü
LL HG BLANK	07/20/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	08/03/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	08/17/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	09/01/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	09/15/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	09/29/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	10/13/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	11/03/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	11/09/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	11/17/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	12/01/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK	12/15/2015	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 07A	01/05/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 19A	01/05/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 08A	02/02/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 20A	02/02/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 7A	02/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 20A	02/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 07A	02/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 19A	03/07/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 07A	03/21/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 19A	03/21/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 08A	03/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 20A	03/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 08A	04/13/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 20A	04/13/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 10A	03/29/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 19A	03/29/2016	Mercury		EPA 245.7	ng/L	1.80	U
LL HG BLANK 10A	05/11/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 20A	05/11/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LL HG BLANK 10A	06/01/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U
LLHG BLANK19A	06/01/2016	Mercury	REIC	EPA 245.7	ng/L	1.80	U

 $\mu g/L$

0.500

Sample	Date	Parameter	Lab	Method	Units	Result	Onella
ID ID							Qualifier
TRIP BLANK 11A	07/20/2015	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	07/20/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	07/20/2015	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 11A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
	07/20/2015	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
	07/20/2015	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 11A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Toluene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A	07/20/2015	Trichloroethene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A	07/20/2015	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	07/20/2015	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 19A	07/20/2015	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	Ü
	07/20/2015	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	07/20/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	07/20/2015	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	07/20/2015	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	07/20/2015	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	07/20/2015	1,4-Dichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Acrylonitrile	REIC	EPA 603	μg/L μg/L	7.50	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L μg/L	0.500	<u>U</u>
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L μg/L	0.500	
TRIP BLANK 19A	07/20/2015	Carbon tetrachloride	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	_		
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC		μg/L	0.500	U
TRIP BLANK 19A				EPA 624	μg/L	0.500	U
TRIP BLANK 19A (m,p-Xylene Methylene chloride	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A (REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A (o-Xylene Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A (Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A (REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A (Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	06/05/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U

Sample	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 11A	08/03/2015	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	υ
TRIP BLANK 11A	08/03/2015	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	08/03/2015	Benzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A	08/03/2015	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	Chloroform	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A	08/03/2015	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A	08/03/2015	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	m,p-Xylene	REIC	EPA 624	μg/L	1.00	Ü
TRIP BLANK 11A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	08/03/2015	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
	08/03/2015	Toluene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A		Trichloroethene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	08/03/2015	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	08/03/2015	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	08/03/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A	08/03/2015	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	08/03/2015	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 08A 0		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0	8/1//2015	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
	08/17/2015	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	08/17/2015	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 08A	08/17/2015	Acrylonitrile	REIC	EPA 603	μg/L	7.50	Ü
	08/17/2015	Benzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 08A	08/17/2015	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	Ū
		Bromoform	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 08A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
	08/17/2015	Methylene chloride	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 08A		o-Xylene	REIC	EPA 624		0.500	U
TRIP BLANK 08A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Toluene	REIC	EPA 624	μg/L	0.500	
TRIP BLANK 08A		Trichloroethene	REIC	EPA 624	μg/L		U
TRIP BLANK 08A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC		μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane		EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	08/17/2015		REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
	08/17/2015	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
	08/17/2015	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	08/17/2015	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	08/17/2015	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
	08/17/2015	Benzene	REIC	EPA 624	μg/L	0.500	U
	08/17/2015	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	08/17/2015	m,p-Xylene		EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
	A 1	4 4 - 1 4 4 4					
TRIP BLANK 11A (1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 11A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 11A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	09/01/2015	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 11A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Trichloroethene	REIC	EPA 624	μg/L	0.500	_ U
TRIP BLANK 11A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U_
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
	09/01/2015	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L	0.500	– U
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	IJ
TRIP BLANK 07A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (TRIP BLANK 07A (1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	1.50	U
TRIP BLANK 07A (1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (TRIP BLANK 07A (1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIE BLANK U/A L	13/2013	Benzene	REIC	EPA 624	μg/L	0.500	U

Sample	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 07A	09/15/2015	Bromodichloromethane	REIC				
TRIP BLANK 07A		Bromoform	REIC	EPA 624 EPA 624	μg/L	0.500	U
		Carbon tetrachloride	REIC	EPA 624	μg/L		
		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	Chloroform	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	m,p-Xylene	REIC		μg/L	0.500	U
TRIP BLANK 07A		Methylene chloride	REIC	EPA 624 EPA 624	μg/L	1.00	U
TRIP BLANK 07A		o-Xylene	REIC		μg/L	0.500	U
	09/15/2015	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	Toluene	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	Trichloroethene		EPA 624	μg/L	0.500	U
	09/15/2015	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	09/15/2015		REIC	EPA 624	μg/L	0.500	U
	09/15/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
	09/15/2015	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	1.50	U
	09/15/2015	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 20A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Chloroform Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Ethylbenzene Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 20A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Toluene Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A			REIC	EPA 624	μg/L	0.500	U
NO TRIP BLANKS		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		NA 1.1.1 Trickloreathers	REIC		/7	0.500	
TRIP BLANK 19A		1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1	10/13/2015	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U

RRIP BLANK 19A 10/13/2015 Carbon tetrachloride REIC EPA 624 Hg/L 0.500 U	Sample	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 19A 10/13/2015 Carbon tetrachloride REIC EPA 624 µg/L 0.500 U		10/13/2015	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 10/13/2015 Chlorobenzone REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015	Carbon tetrachloride	REIC	EPA 624			
TRIP BLANK 19A 10/13/2015 Dhromochloromethane REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015	Chlorobenzene					
TRIP BLANK 19A 10/13/2015 Ethylbenzene REIC EPA 624 µg/L 0.500 U			Chloroform					
TRIP BLANK 19A 10/13/2015 Ethylhenzere REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015	Dibromochloromethane	REIC				
TRIP BLANK 19A 10/13/2015 Methylene chloride REIC EPA 624 µg/L 0.500 U								
TRIP BLANK 19A 10/13/2015 O-Xylene REIC EPA 624 µg/L 0.500 U								
TRIP BIANK 19A 10/13/2015 O-Xylene REIC EPA 624 µg/L 0.500 U							_	
TRIP BLANK 19A 10/13/2015 Totuene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015						
TRIP BIANK 19A 10/13/2015 Toluene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015						
TRIP BILANK 19A 10/13/2015	TRIP BLANK 19A	10/13/2015	Toluene					
TRIP BILANK 19A 10/13/2015	TRIP BLANK 19A	10/13/2015	Trichloroethene	REIC		-		
TRIP BIANK 08A 11/03/2015 1,1,2-Trichloroethane REIC EPA 624 µg/L 0.500 U	TRIP BLANK 19A	10/13/2015	Vinyl chloride					
TRIP BLANK 08A 11/03/2015 1,1,2-Trichloroethane	TRIP BLANK 08A	11/03/2015						
TRIP BLANK 08A 11/03/2015 1,1,2-Trichloroethane REIC EPA 624 µg/L 0.500 U								
TRIP BLANK 08A 11/03/2015 1,1-1-bichloroethene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	1,1,2-Trichloroethane					
TRIP BLANK 08A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	1,1-Dichloroethene	REIC				
TRIP BLANK 08A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015						
TRIP BLANK 08A 11/03/2015 1,2-Dichloroethane REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015						
TRIP BLANK 08A 11/03/2015 1,2-Dichloropropane REIC EPA 624 1g/L 0.500 U	TRIP BLANK 08A	11/03/2015	1,2-Dichloroethane					
TRIP BLANK 08A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 µg/L 0.500 U			1,2-Dichloropropane		EPA 624			
TRIP BLANK 08A 11/03/2015 Acrylonitrile REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015						
TRIP BLANK 08A 11/03/2015 Benzene REIC EPA 603 µg/L 7.50 U	TRIP BLANK 08A	11/03/2015	1,4-Dichlorobenzene					
TRIP BLANK 08A 11/03/2015 Benzene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Acrylonitrile	REIC				
TRIP BLANK 08A 11/03/2015 Bromodichloromethane REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015		REIC	EPA 624			
TRIP BLANK 08A 11/03/2015 Carbon tetrachloride REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Bromodichloromethane	REIC				U
TRIP BLANK 08A 11/03/2015 Carbon tetrachloride REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Bromoform	REIC				U
TRIP BLANK 08A 11/03/2015 Chlorobenzene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Carbon tetrachloride	REIC	EPA 624			
TRIP BLANK 08A 11/03/2015 Dibromochloromethane REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Chlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015 Ethylbenzene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Chloroform	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015 Ethylbenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Methylene chloride REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 O-Xylene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Tetrachloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Tetrachloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Toluene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Trichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Trichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Trichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Vinyl chloride REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 1,1,1-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1,2-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1,2-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-Dichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Ben	TRIP BLANK 08A	11/03/2015	Dibromochloromethane	REIC				
TRIP BLANK 08A 11/03/2015 m,p-Xylene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Ethylbenzene	REIC				
TRIP BLANK 08A 11/03/2015 Methylene chloride REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	m,p-Xylene	REIC	EPA 624		1.00	U
TRIP BLANK 08A 11/03/2015 O-Xylene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Methylene chloride	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015 Tetrachloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Toluene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Trichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 08A 11/03/2015 Vinyl chloride REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1,1-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1,2-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-2-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Trichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U <	TRIP BLANK 08A	11/03/2015	o-Xylene	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015 Toluene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Tetrachloroethene	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015 Trichloroethene REIC EPA 624 µg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Toluene	REIC	EPA 624		0.500	U
TRIP BLANK 08A 11/03/2015	TRIP BLANK 08A	11/03/2015	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 11/03/2015 1,1,2,2-Tetrachloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2,4-Trichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U	TRIP BLANK 08A	11/03/2015	Vinyl chloride	REIC	EPA 624			U
TRIP BLANK 20A 11/03/2015 1,1,2,2-Tetrachloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,1-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2,4-Trichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 11/03/2015 1,1-Dichloroethene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,1,2,2-Tetrachloroethane	REIC	EPA 624		0.500	U
TRIP BLANK 20A 11/03/2015 1,2-4-Trichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 11/03/2015 1,2-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 11/03/2015 1,2-Dichloroethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,2-Dichlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK 20A 11/03/2015 1,2-Dichloropropane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,2-Dichloroethane	REIC	EPA 624		0.500	U
TRIP BLANK 20A 11/03/2015 1,3-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U			1,2-Dichloropropane	REIC	EPA 624			U
TRIP BLANK 20A 11/03/2015 1,4-Dichlorobenzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U				REIC				
TRIP BLANK 20A 11/03/2015 Acrylonitrile REIC EPA 603 μg/L 7.50 U TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	1,4-Dichlorobenzene	REIC				
TRIP BLANK 20A 11/03/2015 Benzene REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	Acrylonitrile					
TRIP BLANK 20A 11/03/2015 Bromodichloromethane REIC EPA 624 μg/L 0.500 U TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	Benzene					
TRIP BLANK 20A 11/03/2015 Bromoform REIC EPA 624 μg/L 0.500 U	TRIP BLANK 20A	11/03/2015	Bromodichloromethane					
			Bromoform					
	TRIP BLANK 20A	11/03/2015	Carbon tetrachloride					

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 20A	11/03/2015	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 20A	11/03/2015	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	11/03/2015	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1.1-Dichloroethene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloroethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloropropane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 11A		1,3-Dichlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK 11A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Benzene	REIC		μg/L		
TRIP BLANK 11A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500 0.500	U
TRIP BLANK 11A		Bromoform		EPA 624	μg/L		
TRIP BLANK 11A		Carbon tetrachloride	REIC REIC	EPA 624	μg/L	0.500	U
	11/09/2015			EPA 624	μg/L	0.500	U
		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 11A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 19A 1		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1	1/09/2015	Chloroform	REIC	EPA 624	μg/L	0.500	U
TIME DESCRIPTION OF STREET	11/07/2015	CINOIOIDI	1				
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 19A	11/09/2015	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A	11/09/2015	Methylene chloride	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A	11/09/2015	o-Xylene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 19A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 08A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichloroethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichloropropane	REIC	EPA 624		0.500	Ü
TRIP BLANK 08A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	11/17/2015	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	
	11/17/2015	Acrylonitrile	REIC		μg/L		U
TRIP BLANK 08A		Benzene	REIC	EPA 603 EPA 624	μg/L	7.50	U
TRIP BLANK 08A		Bromodichloromethane	REIC		μg/L	0.500	U
TRIP BLANK 08A				EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Bromoform	REIC	EPA 624	μg/L	0.500	U
		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 08A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	11/17/2015	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	11/17/2015	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A	11/17/2015	Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A	1/17/2015	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	1/17/2015	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 1		m,p-Xylene	REIC	EPA 624	μg/L μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L μg/L		
		mionificate emorite	LINE	151 AL 024	µg/L	0.500	U

Project No. 0101-15-0018

Sample	Date	Parameter	Lab	Method	Units	Result	Ovalifian
TRIP BLANK 19A		o-Xylene					Qualifier
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624 EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC		μg/L	0.500	U
	11/17/2015	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	11/17/2015	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
	12/01/2015	Acrylonitrile		EPA 624	μg/L	0.500	U
	12/01/2015	1,1,1-Trichloroethane	REIC REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane		EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene		EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene Acrylonitrile	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A			REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A		Benzene Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	12/01/2015	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
NO TRIP BLANKS		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		NA NA	REIC	===	Bris.		
		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 08A (Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A C		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
FRIP BLANK 08A 0		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A 0		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 08A 0	1/05/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 08A	01/05/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	01/05/2016	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	01/05/2016	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	01/05/2016	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	01/05/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	Ū
TRIP BLANK 20A		Benzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	Ū
	01/05/2016	Bromoform	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
	01/05/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
	01/05/2016	Methylene chloride	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		o-Xylene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Toluene	REIC	EPA 624	μg/L μg/L	0.500	Ū
TRIP BLANK 20A		Trichloroethene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Vinyl chloride	REIC	EPA 624	μg/L μg/L	0.500	Ü
TRIP BLANK 07A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 07A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1-Dichloroethene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 07A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 07A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,2-Dichloroethane		EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 07A		1,2-Dichloropropane	REIC	EPA 624		0.500	U
TRIP BLANK 07A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 07A		1,4-Dichlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK 07A		Benzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 07A		Bromodichloromethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 07A		Bromoform	REIC	EPA 624		0.500	U
TRIP BLANK 07A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	
TRIP BLANK 07A		Chloroform	REIC	EPA 624	μg/L		U
TRIP BLANK 07A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		m,p-Xylene	REIC	EPA 624	μg/L		Ü
TRIP BLANK 07A		Methylene chloride	REIC		μg/L	1.00	
TRIP BLANK 07A		o-Xylene		EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A			REIC	EPA 624	μg/L	0.500	U
TAIL DLANK U/A	VZ/VZ/Z010	Toluene	REIC	EPA 624	μg/L	0.500	U

Sample	Date	Parameter	Lab	Mr-4L-3	YY-24-	- L	
TOPO DI ANTI OGLI				Method	Units	Result	Qualifier
TRIP BLANK 07A TRIP BLANK 07A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	02/02/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
	02/02/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	02/02/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
	02/02/2016	Toluene	REIC	EPA 624	μg/L	0.500	U
	02/02/2016	Trichloroethene	REIC	EPA 624	µg/L	0.500	U
	02/02/2016	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 11A (Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A (Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Bromoform Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Chlorobenzene Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Dibromochloromethane Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0	2/29/2016		REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		m,p-Xylene Methylene chloride	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 11A 0		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0	2/29/2016		REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Toluene Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A 0		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
Daniel 17/1 0.		1,1,1-111cmoroeunane	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
	03/07/2016	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A	03/07/2016	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A	03/07/2016	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A	03/07/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A	03/07/2016	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 20A	03/07/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A	03/07/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A	03/07/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 20A	03/07/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
	03/07/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/07/2016	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	03/21/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	03/21/2016	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
	03/21/2016	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	03/21/2016	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	Ü
	03/21/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A	03/21/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 08A (Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Tetrachloroethene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 08A (Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 08A (3/21/2016	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A (3/21/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A 0	03/21/2016 03/21/2016	1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	REIC REIC	EPA 624 EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A (TRIP BLANK 20A (03/21/2016 03/21/2016 03/21/2016				μg/L		
TRIP BLANK 20A 0 TRIP BLANK 20A 0 TRIP BLANK 20A 0	03/21/2016 03/21/2016 03/21/2016 03/21/2016	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A (TRIP BLANK 20A (03/21/2016 03/21/2016 03/21/2016 03/21/2016 03/21/2016	1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	REIC REIC	EPA 624 EPA 624	μg/L	0.500 0.500	U U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 20A	03/21/2016	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/21/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	03/21/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
	03/21/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
		Bromoform	REIC	EPA 624		0.500	U
TRIP BLANK 20A		Carbon tetrachloride	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Chlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK 20A		Chloroform	REIC	EPA 624	μg/L μg/L	0.500	Ü
TRIP BLANK 20A		Dibromochloromethane	REIC	EPA 624		0.500	
TRIP BLANK 20A		Ethylbenzene	REIC	EPA 624	μg/L		U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Methylene chloride	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 20A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
	03/21/2016	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Toluene			μg/L	0.500	U
	03/21/2016	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
	03/29/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
The state of the s	03/29/2016	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Acrylonitrile	REIC	EPA 624	μg/L	7.50	U
TRIP BLANK 07A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A (Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 07A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 07A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	3/29/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
RIP BLANK 19A 0		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A 0	3/29/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 19A	03/29/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 19A	03/29/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	03/29/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Acrylonitrile	REIC	EPA 603	μg/L μg/L	7.50	U
TRIP BLANK 19A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Bromodichloromethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Bromoform	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Carbon tetrachloride	REIC	EPA 624	μg/L μg/L	-0.500	U
TRIP BLANK 19A		Chlorobenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Dibromochloromethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		Ethylbenzene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A		m,p-Xylene	REIC	EPA 624		1.00	U
TRIP BLANK 19A		Methylene chloride	REIC	EPA 624		0.500	U
TRIP BLANK 19A		o-Xylene	REIC	EPA 624	μg/L		
TRIP BLANK 19A		Tetrachloroethene			μg/L	0.500	U
TRIP BLANK 19A		Toluene	REIC REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Trichloroethene		EPA 624	μg/L	0.500	U
TRIP BLANK 19A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A			REIC	EPA 624	μg/L	0.500	U
		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A TRIP BLANK 20A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	04/13/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 20A	04/13/2016	Acrylonitrile	REIC	EPA 603	μg/L	7.500	U
TRIP BLANK 20A	04/13/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	04/13/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	04/13/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 20A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	μg/L	1.000	U
		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		o-Xylene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Toluene	REIC	EPA 624		0.500	U
TRIP BLANK 20A		Trichloroethene	REIC	EPA 624	μg/L		
TRIP BLANK 20A		Vinyl chloride			μg/L	0.500	U
TRIP BLANK 11A			REIC	EPA 624	μg/L	0.500	U
		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 11A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Chlorobenzene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 11A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	04/20/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	04/20/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	04/20/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 11A	04/20/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	04/20/2016	o-Xylene		EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		Trichloroethene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 11A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		1,1-Dichloroethene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		1,2,4-Trichlorobenzene		EPA 624			
TRIP BLANK 20A		1,2-Dichlorobenzene	REIC REIC		μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloroethane		EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
			REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK 20A	04/20/2016	Benzene	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 20A	04/20/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	04/20/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A	04/20/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 20A	04/20/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Ethylbenzene	REIC	EPA 624	µg/L	0.500	U
TRIP BLANK 20A		m,p-Xylene	REIC	EPA 624	µg/L	1.00	U
TRIP BLANK 20A		Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 20A		Toluene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 20A		Trichloroethene	REIC	EPA 624		0.500	U
TRIP BLANK 20A		Vinyl chloride	REIC	EPA 624	μg/L		
TRIP BLANK 11A	05/11/2016	1,1,1-Trichloroethane			μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,1,2,2-Tetrachloroethane	REIC REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,1,2-Trichloroethane		EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016		REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
	05/11/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
	05/11/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 11A	05/11/2016	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK 19A	05/11/2016	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK 19A	05/11/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	<u>U</u>
	05/11/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	<u>U</u>
TRIP BLANK 19A	05/11/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	05/11/2016	Acrylonitrile	REIC	EPA 603	μg/L μg/L	7.50	U
	05/11/2016	Benzene	REIC	EPA 624		0.500	
	05/11/2016	Bromodichloromethane	REIC	EPA 624	μg/L μg/I		U
	05/11/2016	Bromoform	_		μg/L	0.500	U
THE DESIGNATION IN	SJ111/2010	DIOHOIOHI	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK 19A	05/11/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK 19A	05/11/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Toluene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK 19A	05/11/2016	Trichloroethene	REIC	EPA 624	1	0.500	U
TRIP BLANK 19A	05/11/2016	Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
LC-Trip Blank	05/11/2016	1,2,3-Trichloropropane	ALS	E524.3	μg/L	0.015	U
LC-Trip Blank	05/11/2016	1,3-Butadiene			ug/L		
LC-Trip Blank	05/11/2016	Chloromethane (methyl chloride)	ALS ALS	E524.3	ug/L	0.050	U
LC-Trip Blank	05/11/2016	1,1-Dichloroethane		E524.3	ug/L	0.10	U
			ALS	E524.3	ug/L	0.015	U
	05/11/2016	Chlorodifluoromethane (HCFC-22)	ALS	E524.3	ug/L	0.040	U
	05/11/2016	Bromochloromethane (Halon 1011)	ALS	E524.3	ug/L	0.030	U
	05/11/2016	Methyl bromide (bromomethane)	ALS	E524.3	ug/L	0.10	U
	06/01/2016	1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,1-Dichloroethene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,2-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,2-Dichloroethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,3-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
	06/01/2016	Benzene	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A	06/01/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A	06/01/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A		Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A	06/01/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A	06/01/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK08A	06/01/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A	06/01/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK08A		Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A		Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A		Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK08A		Vinyl chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		1,1,1-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		1,1,2,2-Tetrachloroethane	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK20A		1,1,2-Trichloroethane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		1,1-Dichloroethene	REIC	EPA 624	μg/L μg/L	0.500	U
TRIP BLANK20A		1,2,4-Trichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		1,2-Dichlorobenzene	REIC	EPA 624		0.500	U
TRIP BLANK20A		1,2-Dichloroethane	REIC	EPA 624	μg/L		
TRIP BLANK20A		1,2-Dichloropropane	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		1,3-Dichlorobenzene			μg/L	0.500	IJ
THE DESTRICT	00/01/2010	1,3-DICHIOIOUCHZCHC	REIC	EPA 624	μg/L	0.500	U

Sample ID	Date	Parameter	Lab	Method	Units	Result	Qualifier
TRIP BLANK20A	06/01/2016	1,4-Dichlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A		Acrylonitrile	REIC	EPA 603	μg/L	7.50	U
TRIP BLANK20A		Benzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Bromodichloromethane	REIC	EPA 624	μg/L	0.500	Ū
TRIP BLANK20A	06/01/2016	Bromoform	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Carbon tetrachloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Chlorobenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Chloroform	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Dibromochloromethane	REIC	EPA 624	μg/L	0.500	U
	06/01/2016	Ethylbenzene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	m,p-Xylene	REIC	EPA 624	μg/L	1.00	U
TRIP BLANK20A	06/01/2016	Methylene chloride	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	o-Xylene	REIC	EPA 624	μg/L	0.500	Ü
TRIP BLANK20A	06/01/2016	Tetrachloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Toluene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Trichloroethene	REIC	EPA 624	μg/L	0.500	U
TRIP BLANK20A	06/01/2016	Vinyl chloride	REIC	EPA 624	ug/L	0.500	II

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-G	08/03/2015	1,1,1-Trichloroethane	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	1,1,2,2-Tetrachloroethane	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,1,2-Trichloroethane	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,1-Dichloroethene	0.500	U	MNT-2-B		Ū	
LC-G	08/03/2015	1,2,4-Trichlorobenzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,2-Dichlorobenzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,2-Dichloroethane	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,2-Dichloropropane	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,3-Dichlorobenzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	1,4-Dichlorobenzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Acrylonitrile	7.50	U	MNT-2-B		Ū	
LC-G	08/03/2015	Benzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Bromodichloromethane	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Bromoform	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Carbon tetrachloride	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Chlorobenzene	0.500	U	MNT-2-B		U	
LC-G	08/03/2015	Chloroform	0.500	Ū	MNT-2-B		U	
LC-G	08/03/2015	Dibromochloromethane	0.500	Ü	MNT-2-B		U	
LC-G	08/03/2015	Ethylbenzene	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	m,p-Xylene	1.00	Ü	MNT-2-B		U	
LC-G	08/03/2015	Methylene chloride	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	o-Xylene	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	Tetrachloroethene	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	Toluene	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	Trichloroethene	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	Vinyl chloride	0.500	U	MNT-2-B	0.500	U	
LC-G	08/03/2015	1,2,3-Trichloropropane	0.015	U	MNT-2-B	0.015	U	
LC-G	08/03/2015	1,3-Butadiene	0.050	U	MNT-2-B	0.013	U	
LC-G	08/03/2015	Chloromethane (methyl chloride)	0.10	U	MNT-2-B	0.10	U	
LC-G	08/03/2015	1,1-Dichloroethane	0.015	U	MNT-2-B	0.015	U	_
LC-G	08/03/2015	Chlorodifluoromethane (HCFC-22)	0.040	U	MNT-2-B	0.040	U	
LC-G	08/03/2015	Bromochloromethane (Halon 1011)	0.030	U	MNT-2-B	0.030	U	
LC-G	08/03/2015	Methyl bromide (bromomethane)	0.10	U	MNT-2-B	0.10	U	
LC-C	08/03/2015	2,4,6-Trichlorophenol	0.0004	U	MNT-C	0.0004	U	
LC-C	08/03/2015	2,4-Dichlorophenol	0.0004	U	MNT-C	0.0004	U	_
LC-C	08/03/2015	2,4-Dimethylphenol	0.0004	Ü	MNT-C	0.0004	Ü	
LC-C	08/03/2015	2,4-Dinitrophenol	0.0002	U	MNT-C	0.0002	U	
LC-C	08/03/2015	2,4-Dinitrotoluene	0.0020	U	MNT-C	0.0020	U	
LC-C	08/03/2015	2-Chloronaphthalene	0.0020	U	MNT-C	0.0020	U	
LC-C	08/03/2015	2-Chlorophenol	0.0003	U	MNT-C	0.0003	U	
LC-C	08/03/2015	4,4'-DDT	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015	4,6-Dinitro-2-methylphenol	0.002	U	MNT-C	0.000023	U	
LC-C	08/03/2015	4-MCHM	1	U	MNT-C	2	U	
LC-C	08/03/2015	Acenaphthene	0.0001	U	MNT-C	0.0001	U	
LC-C	08/03/2015	Aldrin	0.000026	U	MNT-C	0.00001	U	
LC-C	08/03/2015	Alkalinity, Total (As CaCO3)	50.6		MNT-C	48		5.07
LC-C	08/03/2015	alpha-BHC	0.000026	U	MNT-C	0.000025	U	5.27
LC-C	08/03/2015	Aluminum	0.102		MNT-C			9.45
LC-C	08/03/2015	Anthracene	0.0003	U		0.111	 _	8.45
LC-C	08/03/2015	Antimony	0.0003	U	MNT-C	0.0003	U	
LC-C	08/03/2015	Aroclor 1016	0.0002	U	MNT-C	0.0002	U	
LC-C	08/03/2015	Aroclor 1221	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.000026	U	MNT-C MNT-C	0.000025 0.000025	U	

Sample ID	Date	Parameter	Result	Qualifier	Sample	Result	Qualifier	RPD
LC-C	08/03/2015		0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.0010	U	MNT-C	0.0010	U	
LC-C	08/03/2015		0.0313		MNT-C	0.0328		4.68
LC-C	08/03/2015		0.0006	U	MNT-C	0.0006	U	
LC-C	08/03/2015		0.0001	U	MNT-C	0.0001	U	
LC-C	08/03/2015	()	0.0001	U	MNT-C	0.0001	U	
LC-C	08/03/2015	\$ /	0.0001	U	MNT-C	0.0001	U	
LC-C	08/03/2015		0.0002	U	MNT-C	0.0002	U	
LC-C	08/03/2015	beta-BHC	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015		0.0051	U	MNT-C	0.0051	U	
LC-C	08/03/2015		0.05	U	MNT-C	0.05	U	
LC-C	08/03/2015	Cadmium	0.0002	U	MNT-C	0.0002	U	
LC-C	08/03/2015	Chlordane	0.000026	U	MNT-C	0.000251	U	
LC-C	08/03/2015	Chloride	6.32		MNT-C	6.28		0.63
LC-C	08/03/2015	Chrysene	0.0006	U	MNT-C	0.0006	U	7.52
LC-C	08/03/2015	Copper	0.0023		MNT-C	0.0023	J	
LC-C	08/03/2015	Cyanide, Free	0.005	U	MNT-C	0.005	U	_
LC-C	08/03/2015	Cyanide, Total	0.005	U	MNT-C	0.005	U	
LC-C	08/03/2015	Dibenzo(a,h)anthracene	0.0001	U	MNT-C	0.0001	<u>U</u>	· · · · · ·
LC-C	08/03/2015	Dieldrin	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015	Endrin	0.000026	U	MNT-C	0.000025	U	_
LC-C	08/03/2015	Fluoranthene	0.0001	U	MNT-C	0.0001	Ū	
LC-C	08/03/2015	Fluorene	0.0001	U	MNT-C	0.0001	U	
LC-C	08/03/2015	Fluoride	0.05	U	MNT-C	0.08	<u>J</u>	46.15
LC-C	08/03/2015	gamma-BHC	0.000026	U	MNT-C	0.000025	U	40.13
LC-C	08/03/2015	Hardness, Total (As CaCO3)	68.8		MNT-C	68.9		0.15
LC-C	08/03/2015	Heptachlor	0.000026	U	MNT-C	0.000025	U	0.13
LC-C	08/03/2015	Heptachlor epoxide	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015	Hexachlorobenzene	0.0020	U	MNT-C	0.0020	U	
LC-C	08/03/2015	Indeno(1,2,3-cd)pyrene	0.0001	U	MNT-C	0.0020	<u>U</u>	
LC-C	08/03/2015	Iron	0.205		MNT-C	0.223		8.41
LC-C	08/03/2015	Lead	0.0002	J	MNT-C	0.0002	J	0.41
LC-C	08/03/2015	Manganese	0.047	J	MNT-C	0.002		
LC-C	08/03/2015	MBAS (calibrated on MW340 LAS)	0.0250	U	MNT-C	0.100	U, H	
LC-C	08/03/2015	Mercury	1.80	U	MNT-C	1.80	U	
LC-C	08/03/2015	Methoxychlor	0.000026	U	MNT-C	0.000025	U	
LC-C	08/03/2015	Nickel	0.002	U	MNT-C	0.0020	U	
LC-C	08/03/2015	Nitrogen, Nitrate	0,24		MNT-C	0.0020	U	115.79
LC-C	08/03/2015	Nitrogen, Nitrite	0.05	U	MNT-C	0.05	U	113.79
LC-C	08/03/2015	Pentachlorophenol	0.0004	U	MNT-C	0.0004	U	
LC-C	08/03/2015	Phenol	0.0004	U	MNT-C	0.0004	U	
LC-C	08/03/2015	Pyrene	0.0004	U	MNT-C	0.0004	U	
LC-C	08/03/2015	Selenium	0.0010	U	MNT-C	0.0001	U	
LC-C	08/03/2015	Silver	0.0010	U	MNT-C	0.0010	U	
LC-C	08/03/2015	Sulfate	18.8		MNT-C		<u> </u>	1.00
LC-C	08/03/2015	Thallium	0.0002	U		18.6	- TT	1.07
LC-C	08/03/2015	Total Dissolved Solids	98		MNT-C	0.0002	U	4.00
LC-C	08/03/2015	Total Organic Carbon	2,44		MNT-C	103		4.98
LC-C	08/03/2015	Total Suspended Solids	5.0		MNT-C	2.37		2.91
LC-C	08/03/2015	Toxaphene	0.00026	U	MNT-C MNT-C	5.0 0.000251	U	

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-C	08/03/2015	Zinc	0.0031		MNT-C	0.0037	J	17.65
LC-C	08/03/2015	Dioxin (2,3,7,8-TCDD)	1.10	U	MNT-C	1.30	U	
LC-C	08/03/2015	Gross Alpha	2.11	U	MNT-C	2.09	U	
LC-C	08/03/2015	Gross Beta	2.02	U	MNT-C	2.08		2.93
LC-C	08/03/2015	Radium-226	0.935	U	MNT-C	0.978	U	
LC-C	08/03/2015	Radium-228	0.926	U	MNT-C	0.871	U	
LC-C	08/03/2015	Tritium	226	Ü	MNT-C	228	U	
LC-C	08/03/2015	Uranium	0.193	U	MNT-C	0.193	U	
LC-C	08/03/2015	Dissolved Alpha Emitters	2.17	U	MNT-C	1.94	U	
LC-C	08/03/2015	Strontium-90 (dissolved)	0.841	U	MNT-C	0.858	U	
LC-C	08/03/2015	Asbestos (fiber > 10 micrometers)	1.00	Ū	MNT-C	0.20	U	
LC-C	08/03/2015	Strontium	103		MNT-C	104		0.97
LC-C	08/03/2015	Chromium (total)	0.41		MNT-C	0.39		5.00
LC-C	08/03/2015	Cobalt	0.33	U	MNT-C	0.33	Ŭ	
LC-C	08/03/2015	Molybdenum	0.33	U	MNT-C	0.33	U	
LC-C	08/03/2015	Vanadium	0.49		MNT-C	0.48		2.06
LC-C	08/03/2015	Hexavalent chromium (dissolved)	0.0060	U	MNT-C	0.0060	U	
LC-C	08/03/2015	Chlorate	3.4	U	MNT-C	3.4	U	
LC-C	08/03/2015	1,4-Dioxane	0.014	U	MNT-C	0.014	U	
LC-C	08/03/2015	Perfluorooctylsulfonic acid (PFOS)	0.0400	U	MNT-C	0.0370	Ŭ	
LC-C	08/03/2015	Perfluorooctanoic acid (PFOA)	0.0200	U	MNT-C	0.0185	U	
LC-C	08/03/2015	Perfluorononanoic acid (PFNA)	0.0200	U	MNT-C	0.0185	U	
LC-C	-	Perfluorohexylsulfonic acid				0.0070		
	08/03/2015	(PFHxS)	0.0300	U	MNT-C	0.0278	U	
LC-C	08/03/2015	Perfluoroheptanoic acid (PFHpA)	0.0100	U	MNT-C	0.00926	U	
LC-C	08/03/2015	Perfluorobutanesulfonic acid (PFBS)	0.0900	U	MNT-C	0.0833	U	
LC-C	08/03/2015	17-β-Estradiol	0.000400	U	MNT-C	0.000400	U, S	
LC-C	08/03/2015	17-α-Ethynylestradiol	0.000900	U	MNT-C	0.000900	U, S	
LC-C	08/03/2015	16-α-Hydroxyestradiol (estriol)	0.000800	U	MNT-C	0.000800	Ú, S	
LC-C	08/03/2015	Equilin	0.00400	U	MNT-C	0.00400	U, S	
LC-C	08/03/2015	Estrone	0.00200	U	MNT-C	0.00200	U, S	
LC-C	08/03/2015	Testosterone	0.000100	U	MNT-C	0.000100	U, S	
LC-C	08/03/2015	4-Androstene-3,17-dione	0.000300	U	MNT-C	0.000300	U, S	
LC-C	08/03/2015	Cryptosporidium	0.00		MNT-C	0.00	U	
LC-C	08/03/2015	Giardia lamblia	0.00		MNT-C	0.00	U	
LC-S	08/03/2015	Bacteria, Heterotrophic Plate Count	290		MNT-S	244		17.23
LC-S	08/03/2015	E-Coli	18	· ·	MNT-S	18		
LC-S	08/03/2015	Fecal Coliform	23		MNT-S	30		26.42
LC-S	08/03/2015	Total Coliform	1990		MNT-S	1730		13.98

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-G	11/09/2015	1,1,1-Trichloroethane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,1,2,2-Tetrachloroethane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,1,2-Trichloroethane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,1-Dichloroethene	0.500	U	MNT-1-B	0.500	Ū	
LC-G	11/09/2015	1,2,4-Trichlorobenzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,2-Dichlorobenzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,2-Dichloroethane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,2-Dichloropropane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,3-Dichlorobenzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	1,4-Dichlorobenzene	0.500	U	MNT-1-B	0.500	Ü	
LC-G	11/09/2015	Acrylonitrile	7.50	U	MNT-1-B	7.50	U	
LC-G	11/09/2015	Benzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Bromodichloromethane	0.500	U	MNT-1-B	0.500	Ü	
LC-G	11/09/2015	Bromoform	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Carbon tetrachloride	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Chlorobenzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Chloroform	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Dibromochloromethane	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	Ethylbenzene	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	m,p-Xylene	1.00	U	MNT-1-B	1.00	U	
LC-G	11/09/2015	Methylene chloride	0.500	U	MNT-1-B	0.500	U	
LC-G	11/09/2015	o-Xylene	0.500	U	MNT-1-B	0.500	Ü	
LC-G	11/09/2015	Tetrachloroethene	0.500	Ü	MNT-1-B	0.500	Ū	
LC-G	11/09/2015	Toluene	0.500	Ü	MNT-1-B	0.500	Ū	
LC-G	11/09/2015	Trichloroethene	0.500	U	MNT-1-B	0.500	Ü	
LC-G	11/09/2015	Vinyl chloride	0.500	U	MNT-1-B	0.500	Ü	
LC-G	11/09/2015	1,2,3-Trichloropropane	0.015	Ü	MNT-1-B	0.015	U	
LC-G	11/09/2015	1,3-Butadiene	0.050	Ū	MNT-1-B	0.050	U	
LC-G	11/09/2015	Chloromethane (methyl chloride)	0.10	Ū	MNT-1-B	0.10	Ū	
LC-G	11/09/2015	1,1-Dichloroethane	0.015	Ü	MNT-1-B	0.015	U	
LC-G	11/09/2015	Chlorodifluoromethane (HCFC-22)	0.040	Ü	MNT-1-B	0.040	U	
LC-G	11/09/2015	Bromochloromethane (Halon 1011)	0.030	U	MNT-1-B	0.030	U	
LC-G	11/09/2015	Methyl bromide (bromomethane)	0.10	Ü	MNT-1-B	0.10	U	
LC-C	11/09/2015	2,4,6-Trichlorophenol	0.0004	Ü	MNT-C	0.0004	Ü	
LC-C	11/09/2015	2,4-Dichlorophenol	0.0004	U	MNT-C	0.0004	U	
LC-C	11/09/2015	2,4-Dimethylphenol	0.0004	U	MNT-C			
LC-C	11/09/2015	2,4-Dinitrophenol		U	MNT-C	0.0004	U	
LC-C			0.0002			0.0002	U	
	11/09/2015	2,4-Dinitrotoluene	0.0020	U	MNT-C	0.0021	U	
LC-C	11/09/2015	2-Chloronaphthalene	0.0020	U	MNT-C	0.0021	U	
LC-C	11/09/2015	2-Chlorophenol	0.0003	U	MNT-C	0.0003	U	
LC-C	11/09/2015	4,4´-DDT	2.5E-05	U	MNT-C	2.5E-05	Ū	
LC-C	11/09/2015	4,6-Dinitro-2-methylphenol	0.0020	U	MNT-C	0.0021	U	
LC-C	11/09/2015	4-MCHM	2	U	MNT-C	2	U	
LC-C	11/09/2015	Acenaphthene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Aldrin	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Alkalinity, Total (As CaCO3)	42.6		MNT-C	41.4	J	2.86
LC-C	11/09/2015	alpha-BHC	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Aluminum	0.131		MNT-C	0.116		12,15
LC-C	11/09/2015	Anthracene	0.0003	U	MNT-C	0.0003	U	
LC-C	11/09/2015	Antimony	0.0002	U	MNT-C	0.0002	U	
LC-C	11/09/2015	Aroclor 1016	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Aroclor 1221	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Aroclor 1232	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Aroclor 1232	2.5E-05	U	MNT-C	2.5E-05	U	
	11/09/2015	Aroclor 1242 Aroclor 1248	2.5E-05	U	1411.4.1C	4.JE-VJ	U	

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-C	11/09/2015	Aroclor 1254	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Aroclor 1260	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Arsenic	0.0010	U	MNT-C	0.0010	U	
LC-C	11/09/2015	Barium	0.0274		MNT-C	0.0268	-	2.21
LC-C	11/09/2015	Benzo(a)anthracene	0.0006	U	MNT-C	0.0007	U	
LC-C	11/09/2015	Benzo(a)pyrene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Benzo(b)fluoranthene	0.0001	U	MNT-C	0.0001	Ü	
LC-C	11/09/2015	Benzo(k)fluoranthene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Beryllium	0.0002	U	MNT-C	0.0002	U	
LC-C	11/09/2015	beta-BHC	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Bis(2-ethylhexyl)phthalate	0.0051	U	MNT-C	0.0051	U	
LC-C	11/09/2015	Bromide	0.05	U	MNT-C	0.05	U	
LC-C	11/09/2015	Cadmium	0.0002	U	MNT-C	0.0002	U	
LC-C	11/09/2015	Chlordane	0.00025	U	MNT-C	0.000253	U	
LC-C	11/09/2015	Chloride	6.02		MNT-C	6.01	U	0.17
LC-C	11/09/2015	Chrysene	0.0006	U	MNT-C	0.0007	U	0.17
LC-C	11/09/2015	Copper	0.0000	<u> </u>	MNT-C	0.0007	J	11.11
LC-C	11/09/2015	Cyanide, Free	0.0019	U	MNT-C	0.0017	U	11,11
LC-C	11/09/2015	Cyanide, Free		Ū				
LC-C	11/09/2015		0.005		MNT-C	0.005	U	
LC-C	11/09/2015	Dibenzo(a,h)anthracene	0.0001	U	MNT-C	0.0001	U	
		Dieldrin	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Endrin	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Fluoranthene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Fluorene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Fluoride	0.05	U	MNT-C	0.05	U	
LC-C	11/09/2015	gamma-BHC	2.5E-05	Ü	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Hardness, Total (As CaCO3)	60.8		MNT-C	59.5		2.16
LC-C	11/09/2015	Heptachlor	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Heptachlor epoxide	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Hexachlorobenzene	0.0020	U	MNT-C	0.0021	U	
LC-C	11/09/2015	Indeno(1,2,3-cd)pyrene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Iron	0.259		MNT-C	0.254		1.95
LC-C	11/09/2015	Lead	0.0005		MNT-C	0.0004	J	22.22
LC-C	11/09/2015	Manganese	0.034		MNT-C	0.034	J	
LC-C	11/09/2015	MBAS (calibrated on MW340 LAS)	0.0250	U	MNT-C	0.0250	U	
LC-C	11/09/2015	Mercury	1.80	U	MNT-C	1.80	Ü	
LC-C	11/09/2015	Methoxychlor	2.5E-05	U	MNT-C	2.5E-05	U	
LC-C	11/09/2015	Nickel	0.0020	U	MNT-C	0.0020	U	
LC-C	11/09/2015	Nitrogen, Nitrate	0.58		MNT-C	0.56		3.51
LC-C	11/09/2015	Nitrogen, Nitrite	0.05	U	MNT-C	0.05	U	
LC-C	11/09/2015	Pentachlorophenol	0.0004	U	MNT-C	0.0004	U	
LC-C	11/09/2015	Phenol	0.0004	U	MNT-C	0.0004	U	
LC-C	11/09/2015	Pyrene	0.0001	U	MNT-C	0.0001	U	
LC-C	11/09/2015	Selenium	0.0010	Ū	MNT-C	0.0010	U	
LC-C	11/09/2015	Silver	0.0010	U	MNT-C	0.0010	U	
LC-C	11/09/2015	Sulfate	13.9		MNT-C	13.8		0.72
LC-C	11/09/2015	Thallium	0.0002	U	MNT-C	0.0002	U	0.72
LC-C	11/09/2015	Total Dissolved Solids	92	<u> </u>	MNT-C	97	U	5.29
LC-C	11/09/2015	Total Organic Carbon	2.48				т	
LC-C	11/09/2015		5.5		MNT-C	2.83	J	13.18
LC-C	The second second	Total Suspended Solids	$\overline{}$	TT	MNT-C	8,5	**	42.86
	11/09/2015	Toxaphene	0.00025	U	MNT-C	0.000253	U	
LC-C	11/09/2015	Zinc	0.0039		MNT-C	0.0072	J	59.46
LC-C	11/09/2015	Dioxin (2,3,7,8-TCDD)	2.00	U	MNT-C	2.50	Ü	
LC-C	11/09/2015	Gross Alpha	1.54	U	MNT-C	1.51	U	

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-C	11/09/2015	Gross Beta	1.86	U	MNT-C	1.78	U	
LC-C	11/09/2015	Radium-226	0.853	U	MNT-C	0.568	U	
LC-C	11/09/2015	Radium-228	0.851	U	MNT-C	0.849	U	
LC-C	11/09/2015	Tritium	256	U	MNT-C	257	U	
LC-C	11/09/2015	Uranium	0.193	U	MNT-C	0.193	U	
LC-C	11/09/2015	Dissolved Alpha Emitters	2.09	U	MNT-C	2.11	U	
LC-C	11/09/2015	Strontium-90 (dissolved)	3.12	U	MNT-C	3.97	U	
LC-C	11/09/2015	Asbestos (fiber > 10 micrometers)	10.00	υ	MNT-C	10.00	U	
LC-C	11/09/2015	Strontium	83.6		MNT-C	90.6		8.04
LC ₂ C	11/09/2015	Chromium (total)	0.34		MNT-C	0.48		34.15
LC-C	11/09/2015	Cobalt	0.33	U	MNT-C	0.33	U	
LC-C	11/09/2015	Molybdenum	0.33	U	MNT-C	0.33	U	
LC-C	11/09/2015	Vanadium	0.55		MNT-C	0.53		3.70
LC-C	11/09/2015	Hexavalent chromium (dissolved)	0.025		MNT-C	0.025		
LC-C	11/09/2015	Chlorate	3.4	U	MNT-C	3.4	U	
LC-C	11/09/2015	1,4-Dioxane	0.014	U	MNT-C	0.014	U	
LC-C	11/09/2015	Perfluorooctylsulfonic acid (PFOS)	0.040	U	MNT-C	0.040	U, S	
LC-C	11/09/2015	Perfluorooctanoic acid (PFOA)	0.020	U	MNT-C	0.020	U, S	
LC-C	11/09/2015	Perfluorononanoic acid (PFNA)	0.020	U	MNT-C	0.020	U, S	
LC-C	11/09/2015	Perfluorohexylsulfonic acid (PFHxS)	0.030	U	MNT-C	0.030	U, S	
LC-C	11/09/2015	Perfluoroheptanoic acid (PFHpA)	0.010	U	MNT-C	0.010	U, S	
LC-C	11/09/2015	Perfluorobutanesulfonic acid (PFBS)	0.090	U	MNT-C	0.090	U, S	
LC-C	11/09/2015	17-β-Estradiol	0.00040	U	MNT-C	0.00040	U	
LC-C	11/09/2015	17-α-Ethynylestradiol	0.00090	U	MNT-C	0.00090	U	
LC-C	11/09/2015	16-α-Hydroxyestradiol (estriol)	0.00080	U	MNT-C	0.00080	U	
LC-C	11/09/2015	Equilin	0.0040	U	MNT-C	0.0040	U	
LC-C	11/09/2015	Estrone	0.0020	U	MNT-Ç	0.0020	U	
LC-C	11/09/2015	Testosterone	0.00010	U	MNT-C	0.00010	U	
LC-C	11/09/2015	4-Androstene-3,17-dione	0.00030	U	MNT-C	0.00030	U	
LC-C	11/09/2015	Cryptosporidium	0.00		MNT-C	0.00	U	
LC-C	11/09/2015	Giardia lamblia	0.00		MNT-C	0.00	U	
LC-S	11/09/2015	Bacteria, Heierotrophic Plate Count	151		MNT-S	252		50.12
LC-S	11/09/2015	E-Coli	54		MNT-S	50		7.69
LC-S	11/09/2015	Fecal Coliform	58		MNT-S	62		6.67
LC-S	11/09/2015	Total Coliform	980		MNT-S	816		18.26

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-G	06/01/2016	1,2,3-Trichloropropane	0.015	U	MNT-1-T	0.015	U	
LC-G	06/01/2016		0.050	U	MNT-1-T	0.050	U	
LC-G	06/01/2016	Chloromethane (methyl chloride)	0.10	U	MNT-1-T	0.10	U	
LC-G	06/01/2016	1,1-Dichloroethane	0.015	U	MNT-1-T	0.015	U	
LC-G	06/01/2016	Chlorodifluoromethane (HCFC-22)	0.040	U	MNT-1-T	0.040	U	
LC-G	06/01/2016	Bromochloromethane (Halon 1011)	0.030	U	MNT-1-T	0.030	U	
LC-G	06/01/2016	Methyl bromide (bromomethane)	0.10	U	MNT-1-T	0.10	Ü	
LC-C	06/01/2016	Strontium	84		MNT-C	83		1.20
LC-C	06/01/2016	Chromium (total)	0.7		MNT-C	0.7		
LC-C	06/01/2016	Cobalt	1.0	U	MNT-C	1.0	U	
LC-C	06/01/2016	Molybdenum	1.0	U	MNT-C	1.0	Ū	
LC-C	06/01/2016	Vanadium	0.4		MNT-C	0.4	-	
LC-C	06/01/2016	Hexavalent chromium (dissolved)	0.030		MNT-C	0.044		37.84
LC-C	06/01/2016	Chlorate	3.4	U	Duplicate	3.4	U	
LC-C	06/01/2016	1,4-Dioxane	0.014	U	MNT-C	0.014	U	
LC-C	06/01/2016	Perfluorooctylsulfonic acid (PFOS)	0.0357	U	MNT-C	0.0345	U	
LC-C	06/01/2016	Perfluorooctanoic acid (PFOA)	0.0179	U	MNT-C	0.0172	U	
LC-C	06/01/2016	Perfluorononanoic acid (PFNA)	0.0179	U	MNT-C	0.0172	Ü	
LC-C	06/01/2016	Perfluorohexylsulfonic acid	0.0268	U	MNT-C	0.0259	U	
LC-C	06/01/2016	Perfluoroheptanoic acid (PFHpA)	0.0208	U	MNT-C	0.00862	U	
LC-C		Perfluorobutanesulfonic acid (PFBS)	0.0804	U	MNT-C	0.00802	U	
LC-C	06/01/2016	17-β-Estradiol	0.00040	U	MNT-C	0.00040	U	
LC-C	06/01/2016	17-p-Estration 17-α-Ethynylestradiol	0.00040	U	MNT-C	0.00040	U	
LC-C	06/01/2016	16-α-Hydroxyestradiol (estriol)	0.00090	U	MNT-C	0.00090		
LC-C	06/01/2016	Equilin	0.0040	U	MNT-C	0.0040	U	
LC-C	06/01/2016	Estrone	0.0040	U	MNT-C		U	
LC-C	06/01/2016	Testosterone	0.0020	U	MNT-C	0.0020	U	
LC-C	06/01/2016	4-Androstene-3,17-dione		Ü		0.00010	U	
LC-C	06/01/2016		0.00030		MNT-C	0.00030	U	
LC-C	06/01/2016	Cryptosporidium	0.00	T 7	MNT-C	0.00	T.7	
LC-C	06/01/2016	Dioxin (2,3,7,8-TCDD) Gross Alpha	3.00	U	MNT-C	1.20	U	
LC-C			2.19	U	MNT-C	1.76	U	
LC-C	06/01/2016	Gross Beta	1.56	U	MNT-C	1.83	U	
LC-C	06/01/2016	Radium-226	0.783	U	MNT-C	0.825	U	0.5.50
	06/01/2016	Radium-228	1.02	* * *	MNT-C	0.711	U	35.70
LC-C	06/01/2016	Tritium	259	U	MNT-C	249	U	
LC-C	06/01/2016	Uranium	0.193	U	MNT-C	0.193	U	
LC-C	06/01/2016	Dissolved Alpha Emitters	2.31	U	MNT-C	1.77	U	
LC-C	06/01/2016	Strontium-90 (dissolved)	1.01	U	MNT-C	0.961	U	
LC-C	06/01/2016	Asbestos (fiber > 10 micrometers)	0.54	U	MNT-C	0.54	U	
LC-G	06/01/2016	1,1,1-Trichloroethane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,1,2,2-Tetrachloroethane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,1,2-Trichloroethane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,1-Dichloroethene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,2,4-Trichlorobenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,2-Dichlorobenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,2-Dichloroethane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,2-Dichloropropane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,3-Dichlorobenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	1,4-Dichlorobenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Acrylonitrile	7.50	U	MNT-1-T	7.50	U	
LC-G	06/01/2016	Benzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Bromodichloromethane	0.500	U	MNT-1-T	0.500	U	

Sample ID	Date	Parameter	Result	Qualifier	Sample ID	Result	Qualifier	RPD
LC-G	06/01/2016	Bromoform	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Carbon tetrachloride	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Chlorobenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Chloroform	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Dibromochloromethane	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Ethylbenzene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	m,p-Xylene	1.00	U	MNT-1-T	1.00	U	
LC-G	06/01/2016	Methylene chloride	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	o-Xylene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Tetrachloroethene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Toluene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Trichloroethene	0.500	U	MNT-1-T	0.500	U	
LC-G	06/01/2016	Vinyl chloride	0.500	U	MNT-1-T	0.500	U	
LC-C	06/01/2016	2,4,6-Trichlorophenol	0.0004	U	MNT-C	0.0005	U	
LC-C	06/01/2016	2,4-Dichlorophenol	0.0004	U	MNT-C	0.0005	U	
LC-C	06/01/2016	2,4-Dimethylphenol	0.0004	U	MNT-C	0.0004	U	
LC-C	06/01/2016	2,4-Dinitrophenol	0.0002	Ū	MNT-C	0.0002	U	
LC-C	06/01/2016	2,4-Dinitrotoluene	0.0022	Ū	MNT-C	0.0020	U	
LC-C	06/01/2016	2-Chloronaphthalene	0.0022	U	MNT-C	0.0020	U	
LC-C	06/01/2016	2-Chlorophenol	0.0003	Ü	MNT-C	0.0004	U	
LC-C	06/01/2016	4,4'-DDT	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	4,6-Dinitro-2-methylphenol	0.0022	U	MNT-C	0.0020	U	-
LC-C	06/01/2016	4-MCHM	2	U	MNT-C	2	U	
LC-C	06/01/2016	Acenaphthene	0.0001	U	MNT-C	0.0001	U	· · · · ·
LC-C	06/01/2016	Aldrin	2.6E-05	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Alkalinity, Total (As CaCO3)	42.1		MNT-C	42.7	U	1.42
LC-C	06/01/2016	alpha-BHC	2.6E-05	U	MNT-C	0.000026	U	1,72
LC-C	06/01/2016	Aluminum	0.095	J	MNT-C	0.148		
LC-C	06/01/2016	Anthracene	0.0003	U	MNT-C	0.0003	U	
LC-C	06/01/2016	Antimony	0.0003	U	MNT-C	0.0003	U	
LC-C	06/01/2016	Aroclor 1016	2.6E-05	U	MNT-C	0.00026	U	
LC-C	06/01/2016	Aroclor 1221	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Aroclor 1221 Aroclor 1232	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Aroclor 1232 Aroclor 1242	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Aroclor 1242	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Aroclor 1254	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Aroclor 1260	2.6E-05	Ū	MNT-C	0.000026	U	
LC-C	06/01/2016	Arsenic	0.0010	U	MNT-C	0.000020	U	
LC-C	06/01/2016	Barium	0.0010	U	MNT-C	0.0303	Ų	£ 0.0
LC-C	06/01/2016	Benzo(a)anthracene	0.0288	U				5.08
LC-C	06/01/2016	Benzo(a)anthracene Benzo(a)pyrene	0.0006	U	MNT-C	0.0006	U	
LC-C	06/01/2016	Benzo(a)pyrene Benzo(b)fluoranthene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Benzo(b)fluoranthene Benzo(k)fluoranthene			MNT-C	0.0001	U	
LC-C	06/01/2016		0.0001	U	MNT-C	0.0001	U	
	-	Beryllium bete BUC	0.0002	U	MNT-C	0.0002	U	
LC-C	06/01/2016	beta-BHC	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Bis(2-ethylhexyl)phthalate	0.0055	U	MNT-C	0.0050	U	
LC-C	06/01/2016	Bromide	0.05	U	MNT-C	0.05	U	
LC-C	06/01/2016	Cadmium	0.0002	U	MNT-C	0.0002	Ü	
LC-C	06/01/2016	Chlordane	0.00026	U	MNT-C	0.000261	U	
LC-C	06/01/2016	Chloride	4.40		MNT-C	4.26		3.23
LC-C	06/01/2016	Chrysene	0.0006	U	MNT-C	0.0006	U	
LC-C	06/01/2016	Copper	0.0013	J	MNT-C	0.0015	J	

Sample ID	Date	Parameter	Result	Qualifier	Sample	Result	Qualifier	RPD
LC-C	06/01/2016	Cyanide, Free	0.005	U	MNT-C	0.005	U	
LC-C	06/01/2016	Cyanide, Total	0.005	Ū	MNT-C	0.005	U	
LC-C	06/01/2016	Dibenzo(a,h)anthracene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Dieldrin	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Endrin	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Fluoranthene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Fluorene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Fluoride	0.05	U	MNT-C	0.05	U	
LC-C	06/01/2016	gamma-BHC	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Hardness, Total (As CaCO3)	55.7		MNT-C	55.4		0.54
LC-C	06/01/2016	Heptachlor	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Heptachlor epoxide	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Hexachlorobenzene	0.0022	U	MNT-C	0.0020	U	
LC-C	06/01/2016	Indeno(1,2,3-cd)pyrene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Iron	0.173		MNT-C	0.288		49.89
LC-C	06/01/2016	Lead	0.0005	J	MNT-C	0.0012		
LC-C	06/01/2016	Manganese	0.029	J	MNT-C	0.035	J	
LC-C	06/01/2016	MBAS (calibrated on MW340 LAS)	0.0500	U	MNT-C	0.0500	U	
LC-C	06/01/2016	Mercury	1.80	U	MNT-C	1.80	U	
LC-C	06/01/2016	Methoxychlor	2.6E-05	U	MNT-C	0.000026	U	
LC-C	06/01/2016	Nickel	0.0020	U	MNT-C	0.0023	J	
LC-C	06/01/2016	Nitrogen, Nitrate	0.35		MNT-C	0.44		22.78
LC-C	06/01/2016	Nitrogen, Nitrite	0.05	U	MNT-C	0.05	U	
LC-C	06/01/2016	Pentachlorophenol	0.0004	U	MNT-C	0.0004	U	
LC-C	06/01/2016	Phenol	0.0004	U	MNT-C	0.0004	U	
LC-C	06/01/2016	Pyrene	0.0001	U	MNT-C	0.0001	U	
LC-C	06/01/2016	Selenium	0.0010	U	MNT-C	0.0010	U	
LC-C	06/01/2016	Silver	0.0010	U	MNT-C	0.0010	U	
LC-C	06/01/2016	Sulfate	14.4		MNT-C	14,4		0.00
LC-C	06/01/2016	Thallium	0.0002	U	MNT-C	0.0002	U	
LC-C	06/01/2016	Total Dissolved Solids	81		MNT-C	76		6.37
LC-C	06/01/2016	Total Organic Carbon	3.07		MNT-C	2.35		26.57
LC-C	06/01/2016	Total Suspended Solids	11.5		MNT-C	11.0		4.44
LC-C	06/01/2016	Toxaphene	0.00026	U	MNT-C	0.000261	U	
LC-C	06/01/2016	Zinc	0.0098	J	MNT-C	0.0098	J	
LC-S	06/01/2016	Bacteria, Heterotrophic Plate Count	155		MNT-S	210		30.14
LC-S	06/01/2016	E-Coli	21		MNT-S	30		35.29
LC-S	06/01/2016	Fecal Coliform	280		MNT-S	22		170.86
LC-S	06/01/2016	Total Coliform	1,200		MNT-S	2419.6		67.39
LC-C	06/01/2016	Cryptosporidium	0.00		MNT-C	0.00	U,T+	
LC-C	06/01/2016	Giardia lamblia	0.00		MNT-C	0.00	U,T+	

SEDIMENT STUDY FOR FOR SEVEN SITES ON THE KANAWHA RIVER CHARLESTON, WEST VIRGINIA

WJC No. 10-2211-15

Prepared For:

Potesta & Associates, Inc. 7012 MacCorkle Avenue, SE Charleston, WV 25304

Prepared By:

1345 Route 38 West Hainesport, NJ 08036

William J. Castle, P.E., S.E. WV License No. 20312

9

20312 STATE OF VIRE ON ALL

2-16-16

TABLE OF CONTENTS

I.	INT	RODUCTION	1
II.	EQU	JIPMENT	2
III.	SUF	RVEY METHODOLOGY	<i>6</i>
IV.	FIN	DINGS	10
	A.	Sediment Map Findings:	10
	B.	Sub-bottom Findings:	20
	C.	Graphic Images:	21
APPE	ENDIX	X A: SIDE SCAN RAW IMAGES	76
APPE	ENDIX	X B: SUB-BOTTOM PROFILE RAW IMAGES	134

I. INTRODUCTION

W.J Castle, P.E. & Associates, P.C. (CASTLE) was retained by Potesta & Associates, Inc. to evaluate seven (7) different areas of the Kanawha River in and around Charleston, West Virginia. The sites are designated SED01 through SED 07. The areas to be studied run approximately 500 feet along both banks, and include the full width of the river at each site. The purpose of the evaluation was to determine what sediments are present and the limits of each area of sediment on the channel bottom and banks.

Figure 1: Location of the seven study areas.

Four levels of study were performed for the project: a single beam hydrographic survey; a side scan sonar study of the area; a sonar sub-bottom profiler mapping of the area; and core and grab samples of the channel bottom. All survey operations were conducted from CASTLE's 24-foot steel survey boat, "Buddy Boat II". The hydrographic survey was performed of the area to record channel bottom elevations and develop a bathymetric map of the area. The side scan sonar was used to identify surface sediments and locate areas of changes. The sub-bottom profiler detects the possible changes in soil layers below the surface, which the side scan sonar cannot detect. The core samples were 2-inch diameter and varied from approximately one-foot to 7-feet deep depending on the soil. Grab samples were taken in areas where the channel bottom was too rocky to be able to obtain a core sample. The core samples were then delivered to Potesta daily for further evaluation. The combination of these four forms of data collection provides a comprehensive picture of the seven study areas and the sediments that comprise the channel bottom.

This report presents all of the data collected. All forms of data are combined and shown in our findings. All of the findings are presented for Potesta & Associates, Inc. to be used for further study and engineering.

II. EQUIPMENT

A. HYDROGRAPHIC SURVEY

The hydrographic survey was performed using a Seafloor Systems Hydrolite-TM single beam hydrographic survey equipment. This is a GPS based sonar depth system that meets the Army Corps of Engineers specifications provided in the Hydrographic Survey Manual EM 1110-2-1003. The Hydrolite-TM system has a beam width of 4 degrees and a depth accuracy of 1 cm.

B. SIDE SCAN SONAR

The side scan sonar system used was a J.W. Fishers dual frequency SSS-100K/600K PC side scan sonar. The imaging is achieved by a tow fish that is pulled behind the vessel. Sonar images are generated and recorded while the tow fish travels over the channel bottom. A Trimble ProXT GPS was tied into the sonar processing system for geo-referencing the sonar data. This allows for all information collected to be referenced in the West Virginia South State Plane Coordinate system. The photos below show the sonar tow fish and the computer interface during operation.

Figure 2: Side Scan Sonar Tow Fish.

Figure 3: Side Scan Sonar Controller and Interface.

Figure 4: Side Scan Sonar Interface during data collection.

C. SUB-BOTTOM PROFILER

The device employed for the survey was an EdgeTech X-Star Chirp Sub-bottom Profiler. The tow fish used was the model SB-216S which can sweep sonic pulses from 2 kHz to 16 kHz. The sub-bottom profiler is capable of penetrating the sediment and getting reflections from changes in density from one type of sediment to another. The limitations of the sub-bottom profiler are:

- 1. The sediment may not be conducive to penetration if it contains gaseous organic material.
- 2. The sediment may be too coarse (large grain size) for significant penetration. Typical penetration for this system is 6 meters in coarse sand and 80 meters in soft clay.

Figure 5: Sub-Bottom Profiler Towfish.

D. CORE SAMPLES

The core samples were obtained with a VibeCore-D vibrating head manufactured by Specialty Devices, Inc. The VibeCore obtains samples with either a 2 or 3-inch diameter tube that can range from 2 feet to 20 feet long and are attached to the vibrating head. The tubes can be manufactured from aluminum, plastic, or stainless steel. It was agreed that for the purposes of this study that a 2-inch diameter, 8-foot long aluminum tube would be used. The VibeCore was lifted and lowered into the water by a davit crane attached to the boat. Vibrations cause the tube to sink into the soil and capture the sample. Photo 5 shows the VibeCore in operation.

Figure 6: VibeCore-D Equipment.

III. SURVEY METHODOLOGY

The seven areas to be studied covered the full width of the river, and spanned approximately 500 feet along the banks of the river centered on each of the given locations. These locations were provided by Potesta & Associates, Inc. as *.kmz files that could be processed in Google Earth.

A. HYDROGRAPHIC SURVEY

A hydrographic survey was the first operation conducted at each site. Survey points were recorded on a maximum 50 foot grid. In our experience, this spacing provides a sufficient density of points to create an accurate contour map of the river bottom.

The hydrographic survey data was recorded using Carlson SurvCE software. The 3D data points were recorded in the West Virginia South State Plane Coordinate system. The water depths were recorded and converted to elevations using United States Geological Survey (USGS) gauge readings at time of the survey. USGS gauge 03198000 was used for this study. It is located on the left bank of the old Lock 6 in the Winfield Pool at an elevation of 547.14 feet above NAVD 88. The gauge readings are available at 15 minute intervals on the USGS website, gauge readings were obtained for the time the survey was conducted. SED01 through SED05 were located in the Winfield pool and were calculated directly from USGS data and the recorded water depths. SED06 and SED07 are located in the Marmet pool, and the elevations were calculated using the water elevation difference between pools, which was obtained from the Marmet lock master. The hydrographic data was processed using AutoCAD and Microstation InRoads.

B. SIDE SCAN SONAR

The side scan sonar was performed second to provide a picture of the limits of the various sediments that make up the river channel bottom. The first scans were performed at a long range/lower resolution. Two to five passes were performed to cover the entire area depending on the width of the river at the given location. These runs helped develop an overall picture of the river. The subsequent passes were performed at a shorter range and higher resolution for a more detailed image of the sediments along the river bottom. The imaging was performed traveling upstream and downstream.

Data Processing:

All side scan sonar data was processed using SonarTRX software. This allows for all images to be geo-referenced onto maps such as Google Earth for review and data interpretation. The images collected can also be viewed as raw playback images from the JW Fishers processing software. This viewing mode displays high resolution images and provides tools to measure dimensions of any object found.

Multiple runs were made at each location and each run was saved as a separate image. The images for each site are post-processed in-house and combined as a mosaic in Photoshop to construct a complete image of the channel bottom at each site.

C. SUB-BOTTOM PROFILER

The sub-bottom profiler is capable of detecting different densities in soil layers below the river bottom. It uses sonar at low frequencies that penetrate the soil and reflect when the densities change. These are changes are mapped as reflectors at varying depths. This test was performed after the side scan sonar. The survey vessel was mobilized with the Sub-bottom Profiler and Trimble DGPS Navigation System. The navigation computer with Hypack Navigation Software was used to interface the DGPS and output tow fish coordinates to the Sub-bottom profiler computer topside. The navigation computer was loaded with pre-planned survey lines equally spaced at 50 foot intervals through the length and width of the survey area within the waterway. This method provided visual guidance to the helmsman for navigation of each line. The DGPS system received differential corrections from the nearest Coast Guard beacon, and it was also able to provide WGS 84 differential positions to the Navigation computer.

The Sub-bottom profiler was deployed at the side of the vessel. The distance from the DGPS antenna to the center of the transducers was measured. The layback and offset was calculated by the Navigation software, enabling tow fish coordinates to be sent to the Sub-bottom page 7profiler computer in real time.

Data Processing:

The Sub-bottom profiler data was recorded in the native EdgeTech (.jsf) format on the hard drive in the Sub-bottom profiler computer. The data was monitored in real time and replayed and analyzed for detection of near surface layers and prospective coring locations to identify them. In post processing, the survey data was imported into the Chesapeake SonarWiz6 Program where the individual transects were navigationally smoothed. They were displayed and adjusted for color, gain and resolution. Reflectors were identified and digitized into XYZ (X and Y horizontal coordinates and Z vertical thickness from river bottom to reflector or thickness between reflectors) files. Profile views as images (HTML-PNG format in Appendix B) and isopach (sediment thickness contour map) XYZ files were produced. The XYZ files were imported to the Golden Software Surfer Program to produce color contoured isopach images such as the example in Figure 7.

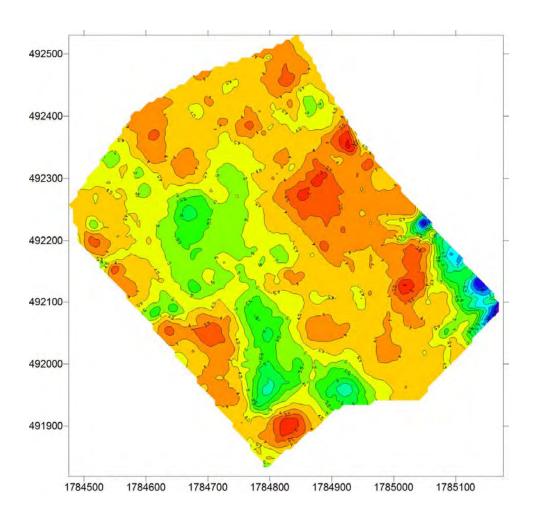


Figure 7: Isopach map of RF1 reflector from SED01.

D. CORE SAMPLES

Core samples were obtained as the final part of the study. The locations of the core samples were based on an interpretation of the findings from the sub-bottom profiler and side scan sonar. Core samples were taken in locations that appeared to have varying sediments and specifically along the banks in order to obtain a good representative sample.

The vibration from the VibeCore allows the tube to sink into the soil and collect the sample. Once the full length of tube sinks into the soil or reaches a point of refusal, the VibeCore was turned off and lifted up to the surface. Once the sample was brought to the surface, it was capped on both the top and bottom. The soil sample height was then recorded and the excess tubing is cut away.

Depending on the nature of the soil the tube might reach a point of refusal before the full length of the tube can sink into the soil. This is commonly seen with rocks and other hard objects like buried trees. In some instances where the surface was too rocky, the tube was unable to penetrate the surface. Alternatively, CASTLE collected grab samples obtained by a commercial diver using commercial SCUBA gear. All core sample locations were recorded using GPS.

Three samples were obtained at each site. These samples were stored upright at all times to prevent soil layers from mixing. At the end of each day, CASTLE handed off the core samples to Potesta & Associates, Inc., to be logged and checked for classification and contaminants.

IV. FINDINGS

The findings are presented at the end of this section in a series of graphics. Presented for each site are; a contour plan, surface sediment plan, sub-bottom isopach plans, and boring logs.

A. Sediment Map Findings:

The sediment maps for each location are graphics developed by correlating side scan and boring log data. The results from the boring collection were provided by Potesta & Associates. The side scan sonar imaging shows coarseness and types of sediment by the differing reflectivity received. Similar reflectivity or imaging in an area with a boring indicates that the sediment collected in the boring is distributed in those areas with similar imaging. Based on this methodology, outlines were placed on the sediment maps with labels indicating the most likely and relevant types of sediment for each delineated area. The figure below is an example of the different imaging. The upper portion of the image shows coarser sediment and the lower portion shows finer sediment with some scattered large rocks. In this case, the boring taken in the lower area showed silty sand and coal fines. Therefore the map was labeled accordingly.

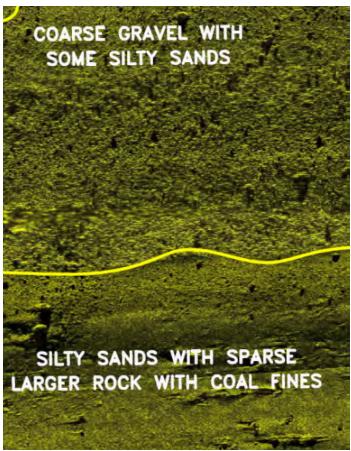


Figure 8: Varied imaging due to the differing sediments.

The surface sediment findings are generally silty sands, coal fines and gravel. The site just below Marmet Lock – SED05 exhibited less silty sands and more coarse gravel and cobbles. And the site just above Marmet Lock exhibited mostly silty sands and finer grained deposits. This is expected. Sediment would be eroded away just below a dam and collected just above a dam due to the flow conditions created by the dam.

It should be noted that the coal fines commonly appear as the finest sediments in all of the side scan survey imaging. It can be used as a confident assessment of this sediment classification.

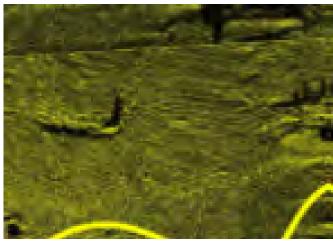


Figure 9: Varied imaging due to differing sediments.

1. SED01

Figure 10: Location of SED01.

This site is at the Charleston riverfront facilities. The Charleston bank and the opposite bank are heavily protected with 12 inch to 24 inch riprap. Just beyond the embankment is the typical silty sand and gravel throughout the remainder of the riverbed.

Figure 11: Typical bank protection along the Charleston Waterfront.

2. SED02

Figure 12: Location of SED02.

This site is located east of SED01 with Charleston on the north bank. The north bank is protected with a mixture of capstone and riprap. There is a large outfall pipe on the bank inside the site limits. The opposite bank is composed of silty sands and gravels. The center of the channel is a mixture of sand and gravel.

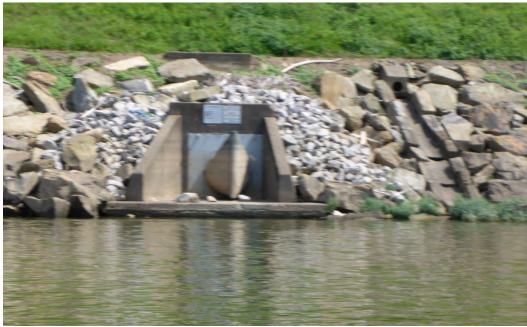


Figure 13: Large outfall pipe along the Charleston Waterfront.

3. SED03

Figure 14: Location of SED03.

Site 3 is located at Moose Lodge, which is on the north bank. Also located on the north bank, just west of the site limits, is a small creek, which is likely responsible for clay found in the northwest corner of the site. The south bank has two personal docks and rip rap protecting the embankment. The center of the channel is mostly coarse gravel with areas of silty sands with coal fines. Coal fines were also found along areas of both banks and therefore in all areas of the site.

Figure 15: Small creek at the northwest corner of the site.

4. SED04

Figure 16: Location of SED04.

Site 4 is located downstream of Campbell's Creek. There are silty sands located on the north bank, just downstream of the creek. There is also clay found below the top soil layer indicated by Core 1 near the creek. The other half of the north bank is very rocky sediment. The south bank is composed of sand organics and some coal fines. The center of the channel is composed of two main areas, one that is mostly coarse sands, and the other is mostly fine sediments. There is a medium sized outfall pipe located on each bank.

Figure 17: Campbell's Creek on the north bank upstream of SED04.

5. SED05

Figure 18: Location of SED05.

Site 5 is located just downstream of the Marmet Locks and Dam. Because of this, much of the silts and sands have eroded away and most of the river bottom in the site is composed of rock. The east bank does have silty sands along the bank, where two private docks are located. Near the west bank, just past the rock embankment is an area with sand mixed with gravel.

Figure 19: West bank with rock embankment and a mooring buoy.

6. SED06

Figure 20: Location of SED06.

Site 6 is located next to the DuPont Plant upstream of the Marmet Locks and Dam. Because it is upstream of the dam, there is significant silt that collects on the river bottom. The north bank is protected by riprap and just beyond that are medium grained sand and coal fines. The south bank is mostly silty sands. The southeast corner also has clay along with finer sands. The rest of the south bank contains coarser sediments and scattered debris. The middle of the channel is very uniform and is composed of fine grained sand, clay and some coal fines.

Figure 21: Outfall pipe with typical riprap along the north bank at DuPont plant.

7. SED07

Figure 11: Location of SED07

Site 7 is the farthest upstream and is located in the Marmet Pool. The north bank at this site was inaccessible by boat and sonar, because about 50 feet from the shoreline the channel bottom rose and the water depth dropped to about one foot. There was timber sheeting located at the area of change indicating that there was probably a structure located at this site in the past. Right in front of the sheeting and the shallow area is an area of silty, clayey sand and coal fines. Following this is a small area of coarse gravel and silty sand, also mixed with some coal fines.

Figure 22: Timber sheeting and shallow area near the north bank.

Cabin Creek is located on the south bank just upstream of the study area. There are also rock groins spaced about 100 feet apart and debris found along the bank. The sediments are mostly silty sands mixed with organics and coal fines. As with other sites near a creek, there are clay layers found below the surface near the creek. The center of the channel is a very uniform area of silty sands with some coal fines found. Coal fines were found everywhere in the site.

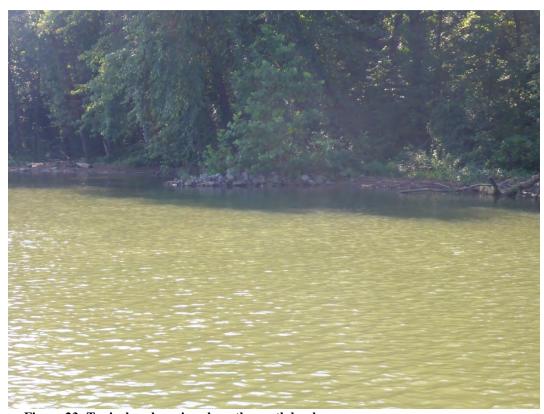


Figure 23: Typical rock groins along the south bank.

B. Sub-bottom Findings:

Near surface layers were detected in all seven areas; however, they were masked by near surface rocky material close to shore where the information was most needed. Most reflectors are subtle, indicating only slight changes in density. They are difficult to follow especially as they approach the river bank and shallow water. Bedrock was hypothesized to be at various elevations by several sources, but we had only anecdotal information to verify the deeper reflectors found in the data.

1. SED01

Layers mapped at this site include "RF1" and "RF2". RF1 and RF2 covered enough area to construct isopach maps RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness) and RF1-RF2 (RF1 to RF2 thickness). Reflectors were mapped on all track lines, including those closest to the banks.

2. SED02

The lines closest to the banks (2SE and 14SE) were completely masked.

Layers mapped at this site include "RF1" and "RF2". RF1 and RF2 covered enough area to construct isopach maps RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness) and RF1-RF2 (RF1 to RF2 thickness).

3. SED03

Layers mapped at this site include "RF0", "RF1", "RF2" and "RF3". RF0, RF1 and RF2 covered enough area to construct isopach maps RF0 (river bottom to RF0 thickness) RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness), RF0-RF1 (RF0 to RF1 thickness) and RF1-RF2 (RF1 to RF2 thickness). Reflectors were mapped on all track lines including those closest to the banks.

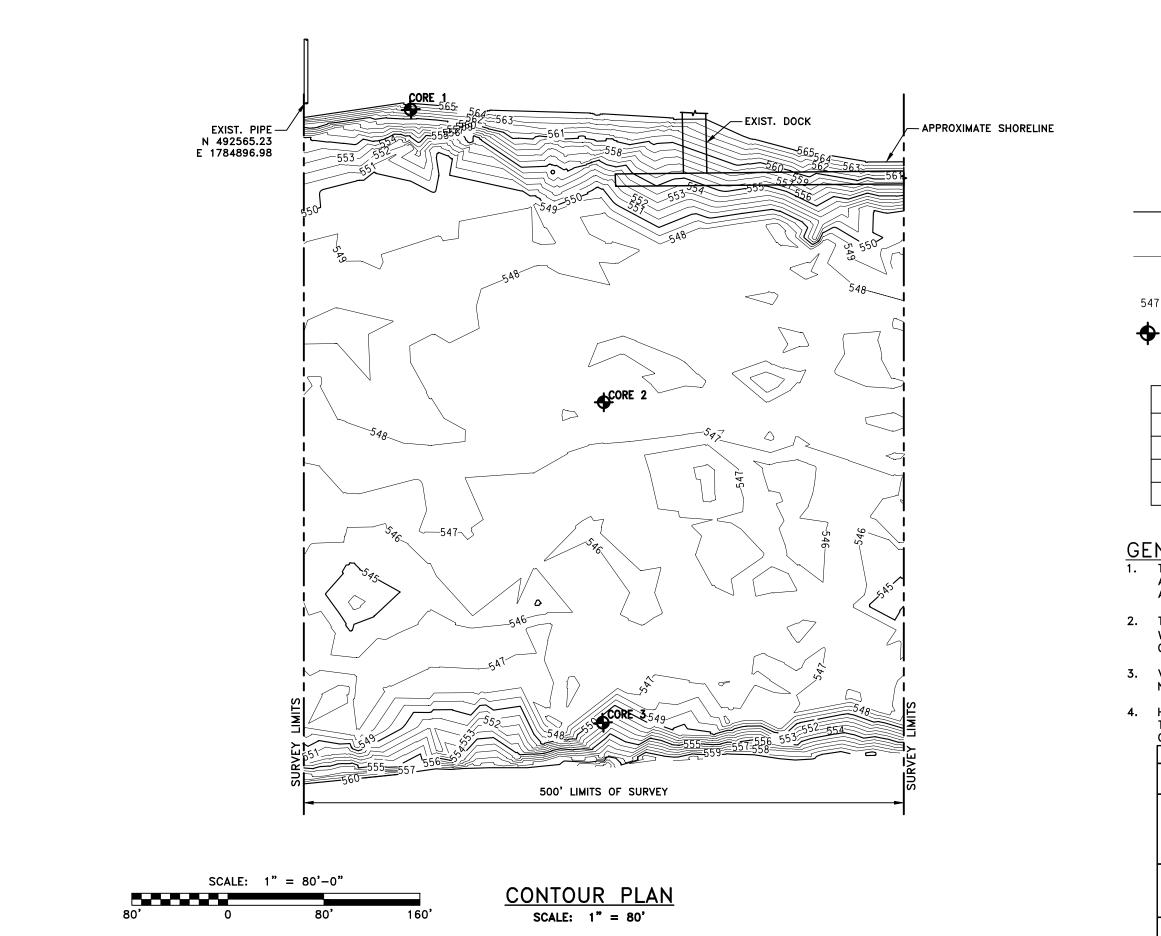
4. <u>SED04</u>

The line along the southwest bank (12SE) was masked while the line along the northeast bank (4SE) was not. Lines perpendicular and crossing 4SE did encounter masking as they approached the bank. Layers mapped at this site include "RF00", "RF0", "RF1"and "RF2". RF1 and RF2 covered enough area to construct isopach maps RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness) and RF1-RF2 (RF1 to RF2 thickness).

5. SED05

Layers mapped at this site include "RF0" and "RF1". RF1 covered enough area to construct an isopach map RF1 (river bottom to RF1 thickness). Reflectors were mapped on all track lines including those closest to the banks.

6. <u>SED06</u>


The lines closest to the banks (2NW and 17NW) were completely masked. Layers mapped at this site include "RF00", "RF0", "RF1"and "RF2". RF0, RF1 and RF2 covered enough area to construct isopach maps RF0 (river bottom to RF0 thickness) RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness) RF0-RF1 (RF0 to RF1 thickness) and RF1-RF2 (RF1 to RF2 thickness).

7. SED07

The lines closest to the banks (23E and 5W) were completely masked with the exception of a silty sand area on line 5W confirmed by boring SED-07C-1. Gravel was encountered at a depth of 3.6 feet below river bottom and this gravel layer was mapped and annotated as "Gravel" on the profile (see Figure 1). This was the only feature matched to a boring in the entire project. Other layers mapped at this site include "RF00", "RF0", "RF1", RF2 and "RF3". RF1 and RF2 covered enough area to construct isopach maps RF1 (river bottom to RF1 thickness) RF2 (river bottom to RF2 thickness) and RF1-RF2 (RF1 to RF2 thickness).

C. Graphic Images:

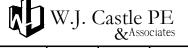
The findings are presented in the following series of graphics. Presented for each site are; a contour plan, surface sediment plan, sub-bottom isopach plans, and boring logs.

LEGEND:

- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- DENOTES CHANNEL BOTTOM ELEVATION

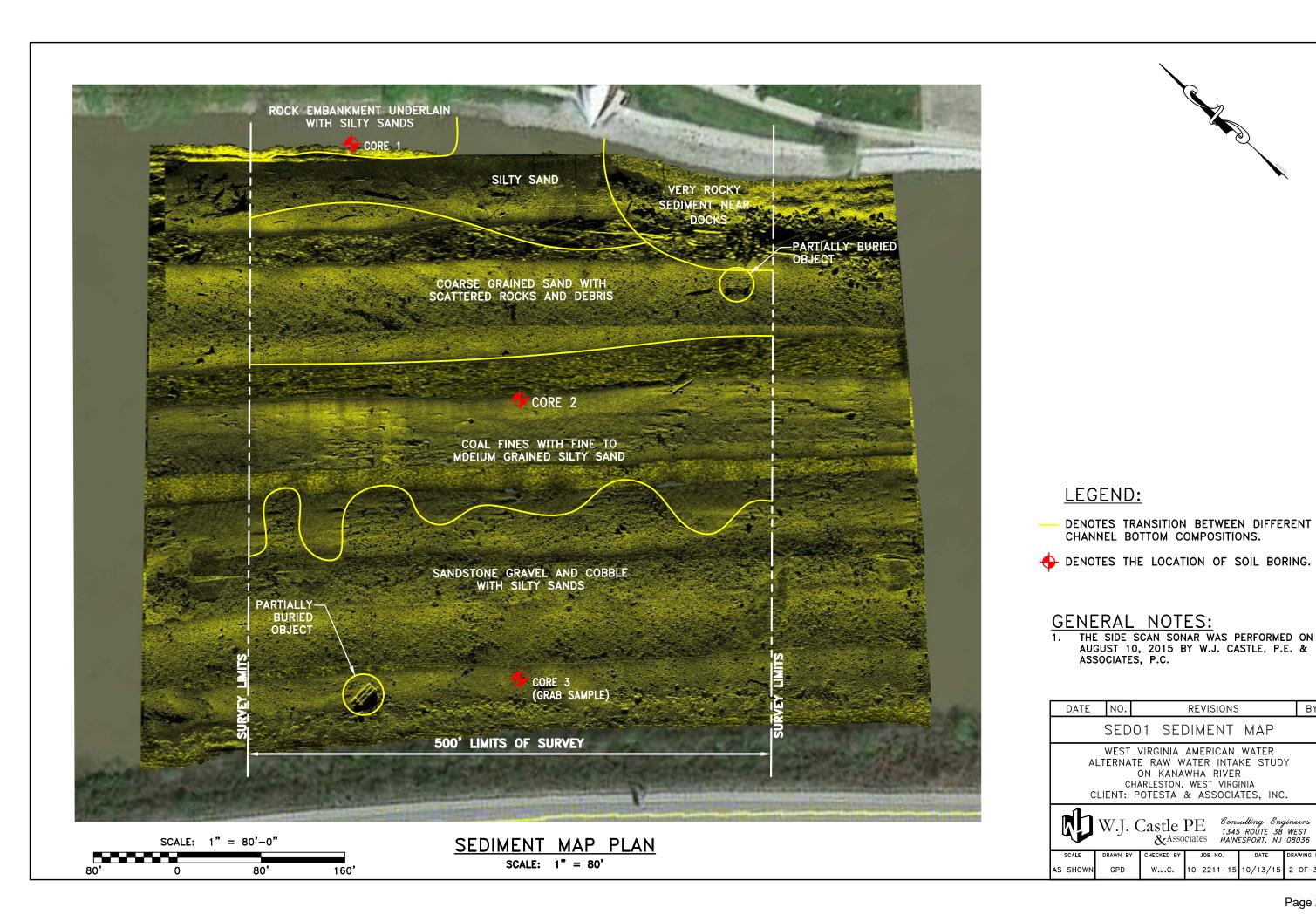
DENOTES THE LOCATION OF SOIL BORING.

CORE SAMPLE DATA						
CORE #	NORTHING	EASTING				
1	492485.72	1784918.96				
2	492203.16	1784844.45				
3	492025.69	1784644.84				

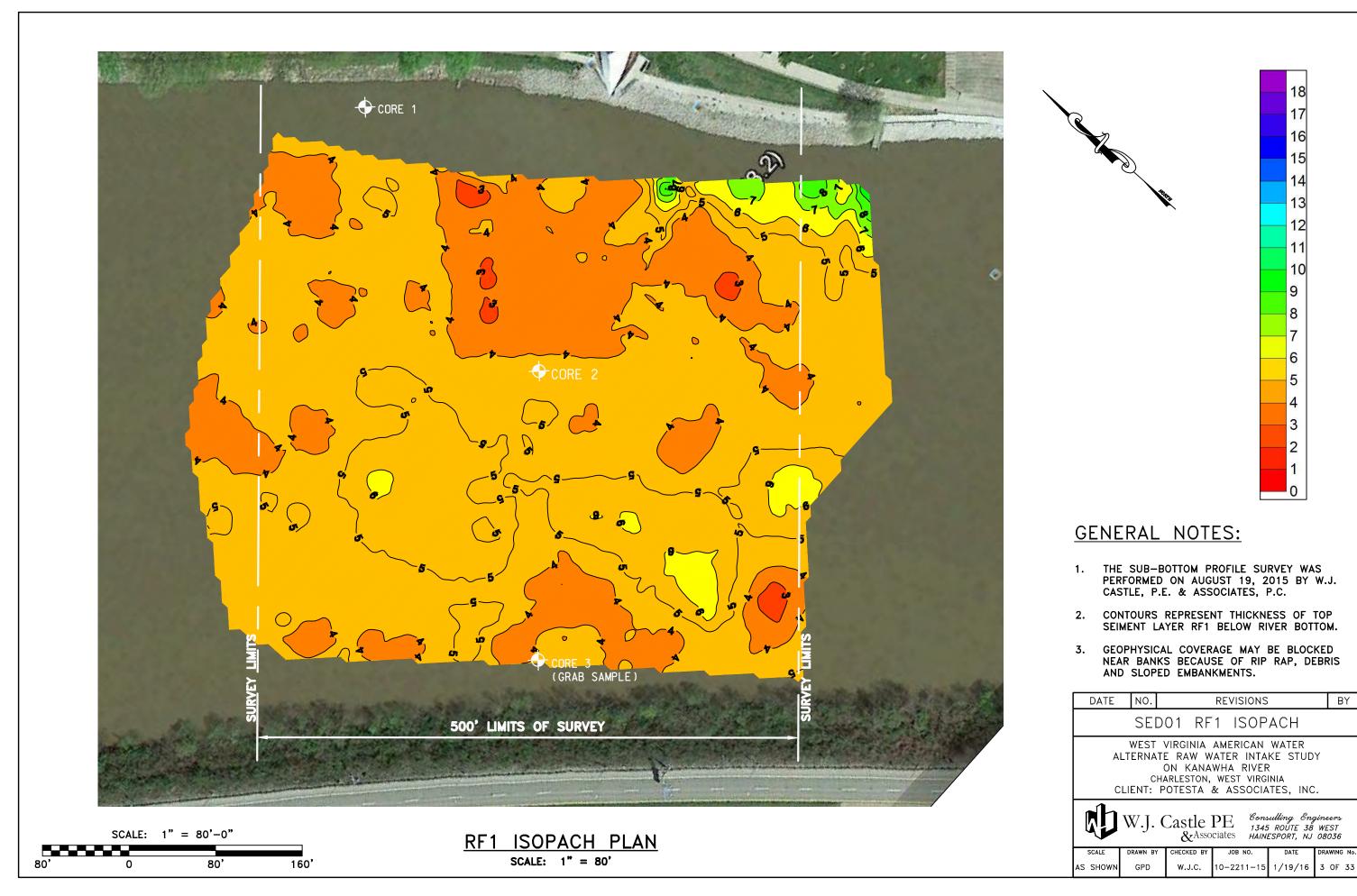

GENERAL NOTES:

- THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 10, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- 2. THE WATER SURFACE ELEVATION (WINFIELD POOL) WAS 565.42' AT THE TIME OF THE SURVEY BASED ON USGS GAUGE 03198000.
- VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.

NO. REVISIONS BY


SED01 FATHOMETRIC SURVEY

WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA CLIENT: POTESTA & ASSOCIATES, INC.

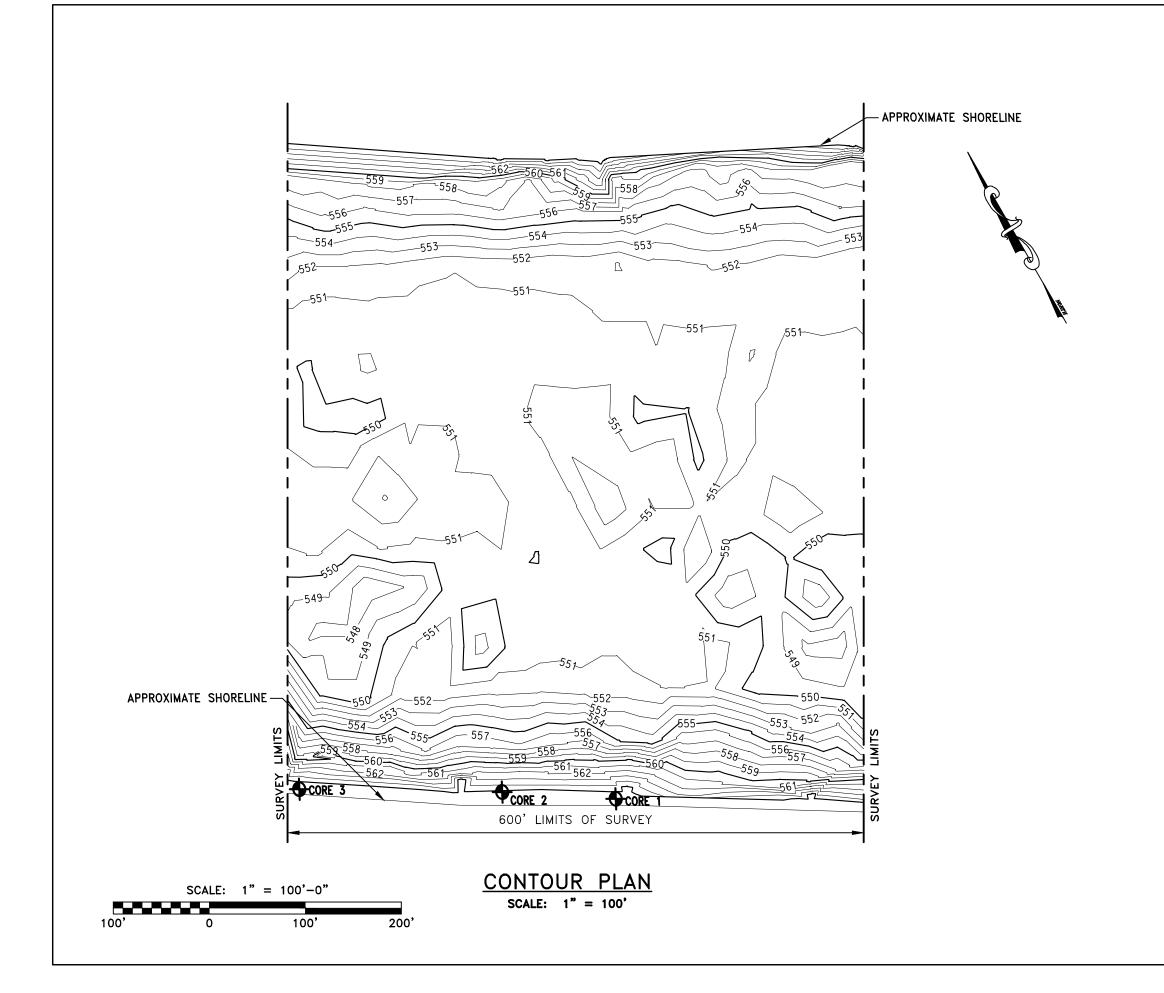



Consulling Engineers 1345 ROUTE 38 WEST HAINESPORT, NJ 08036

CHECKED BY AS SHOWN 10-2211-15 08/25/15 1 OF 33 W.J.C.

ΒY

BORING LOG RECORD


Client: West Virginia American Water	Pı	roject No. : _()101-15	5-0018				
Project Name: Kanawha River Water Study	Be	oring Method :	Dir	ect Pus	sh			
Location: Kanawha County, WV	W	Veather/ Temp.	:					
Start Date: 08-19-15	Field Engineer	c/ Geologist :						
Completion Date: 08-19-15	Driller: W.	J. Castle & Ass	ociates					
Surface Elevation : _563.3 Ft.	Benchmark/El	lev. :						
Water Level Observations : $\overline{\ }$ Immediate :	▼ A	At completion/#	hours	<u>/</u>				
Station: Off	set :		_ Bo	ring I	epth	: _	5.8 1	Ft.
Stratum Elevation/ Depth (ft.) Lithology Soil/Rock Descripti		Sample Type /Number	Sample Depth	Blows N-Value	Moisture (%)	covery)	RQD (%)	Unconf. Comp., Tsf
Soil/Rock Descripti	on	Sa	Sa		ĭ%	%	<u>%</u> %	50
563.1 Dark Gray, Fine Grained SILTY SAND 0.17 Dark Gray, Medium Grained SILTY SAND with Trace	ce Organics							
562.5								
0.83 Dark Gray, Medium to Fine Grained SILTY SAND w	vith Trace Organics		-					
\(\alpha\) \(\alpha\) \(\alpha\)								
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
\[\bar{\chi}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
\(\lambda\) \(\lambda\) \(\lambda\)								
\[\bar{\chi} \chi \chi \chi \chi \chi \chi \chi \chi								
\ \tag{\chi_{\chi}}\chi_{\chi}\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\chi_{\chi}\chi_{\chi\tiny{\chi_{\chi\tiny{\chi_{\chi\tiny{\chi_{\chi\tiny{\chi_{\chi\tiny{\chi}\chi\tiny{\chi\tiny{\chi}\tiny{\chi}\tiny{\chi\ti\tiny{\chi\tiny{\chi}\chi\chi\tiny{\chi\tin\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tiny\tiny{\chi\tiny{\chi\tiny{\chi\tiny\tin\chi\tin\tin\tii\tin\tin\tin\tin{\chi\tin\tii\tin\tin\tin{\chi\tiny{\chi\tii\tin\tin\			-					
\[\bar{\chi}\chi\chi\chi\chi\]								
558.3			5					
5 Dark Gray SILTY CLAY								
557.5								
5.83			-	•				
9/3/15								
ଜନ୍ମ								
8100-1								
<u>\$.</u>			10					
Ö Ö		BORING N	ÆTHOI			AMP		
TECTA 7012 MacCorkle		HSA - Hollow S SFA - Solid Fli		-				n Sample be Sample
POTESTA 7012 MacCorkle Charleston, WV Telephone: 304		CC - Concrete	Coring	F	RC -	Rock	Core	Sample
POTESTA 7012 MacCorkle Charleston, WV Telephone: 304	-342-1400	MD - Mud Dri HA - Hand Au		1	3S -	Bag S	sampl	ie
BOP		RC - Rock Co						

BORING LOG RECORD

	Level Obs	ervations:	☑ Immediate : Of			 mpletion/		rs <u>/</u> Borin	g D	epth	ı : _	0.81	Ft.
Stratum Stratum Depth (ft.)	Lithology		Soil/Rock Descrip	tion		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
0.17 546.3 0.75 0.75	Brown	Fine to Coarse G	rained SAND with Coal Fir	ies			5_						
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	POTI	ESTA	7012 MacCorkle Charleston, WV Telephone: 30	/ 25301	SF CC M H	BORING I SA - Hollow FA - Solid FI C - Concret D - Mud Dr A - Hand A C - Rock C	Stem A light Au te Corin rilling auger	Auger iger	SS ST RO BS	S - Γ - C -	Split Shell Rock	oy Tul	n Sample be Sample Sample

BORING LOG RECORD

Start	ct Na ion : Date	Kanawha River Water Study Kanawha County, WV	Field Engi	Borin Weat neer/ G	ng Method : her/ Temp.	: <u>G</u>						
	r Lev	vel Observations:		▼ At co	:ompletion/#		rs <u>/</u> Borin	g De	epth	ı: <u> </u>	0.3	Ft.
Stratum Elevation/ Depth (ft.)	o Lithology	Soil/Rock Description Coarse SANDSTONE GRAVEL AND COBBLE with		and	Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
BORING LOG RECORD 0101-15-0018.GPJ POTESTA,GDT 9/3/15		(Grab sample due to larger rocks.)			BORING N	5	OD		S	AMI	PLET	YPE
BORING LOG RECORD	P (7012 MacCorkle Charleston, WV Telephone: 304	25301	S () I	HSA - Hollow SFA - Solid Fl CC - Concrete MD - Mud Dr HA - Hand Au RC - Rock Co	Stem A ight Au e Corin illing uger	uger iger	SS ST RO BS	S - Γ - C -	Split Shell Rock	Spoo by Tul	n Sample be Sample Sample

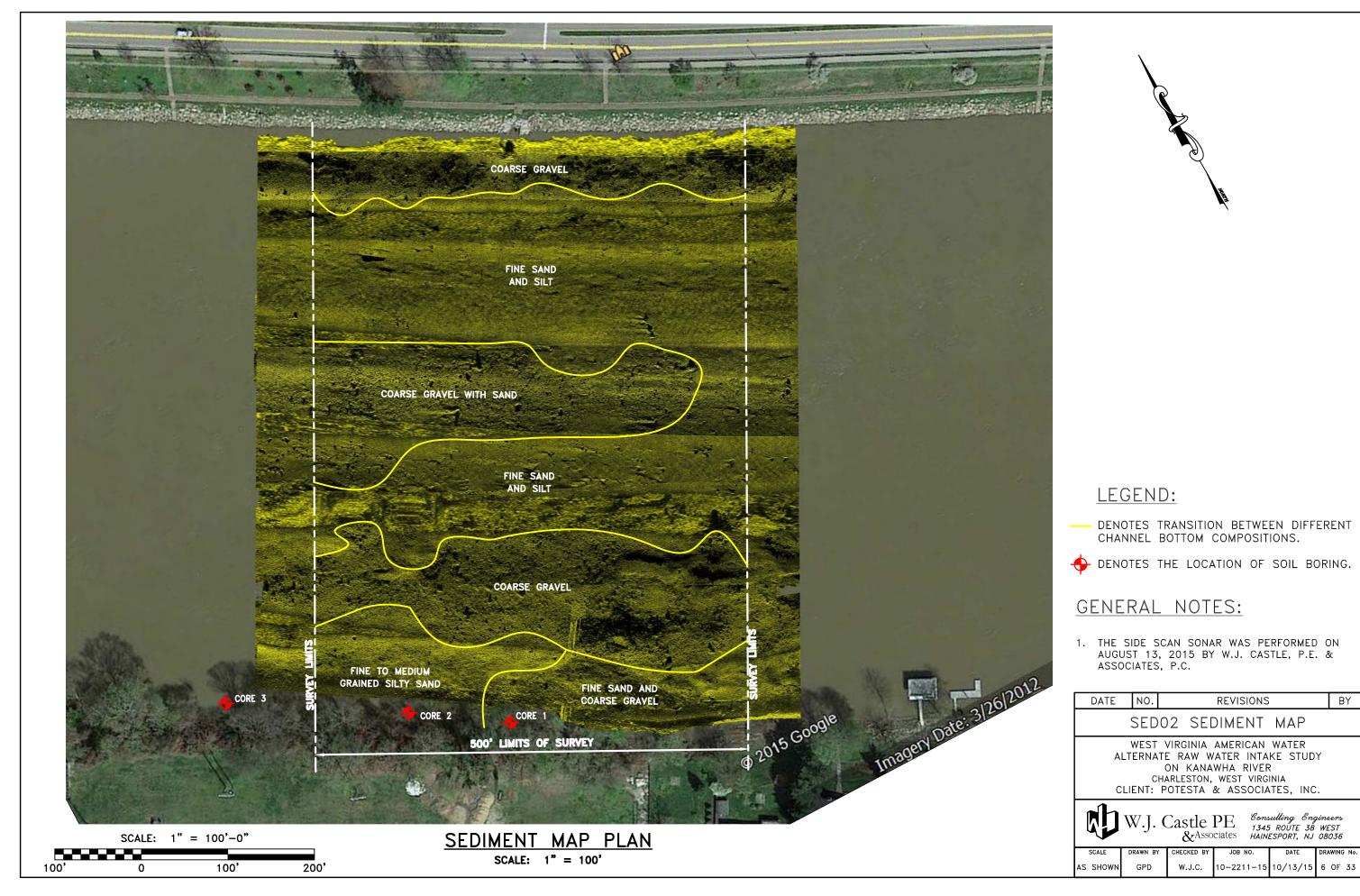
LEGEND:

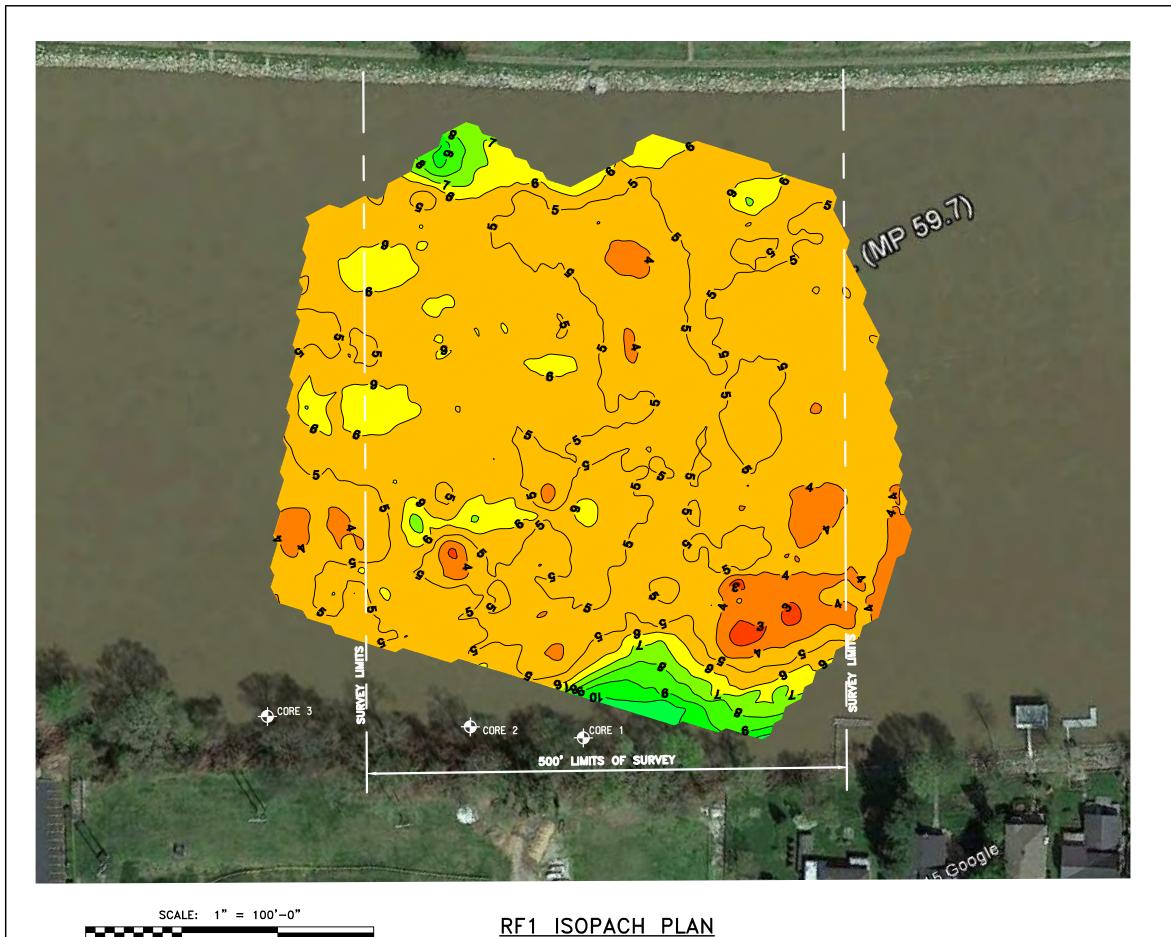
- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- 547 DENOTES CHANNEL BOTTOM ELEVATION
- DENOTES THE LOCATION OF SOIL BORING.

CORE SAMPLE DATA						
CORE #	NORTHING	EASTING				
1	486938.57	1790513.75				
2	487003.77	1790415.11				
3	487112.11	1790233.29				

GENERAL NOTES:

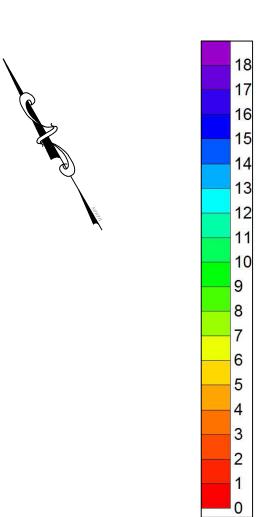
DATE NO.


- 1. THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 13, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- THE WATER SURFACE ELEVATION (WINFIELD POOL) WAS 565.66' AT THE TIME OF THE SURVEY. BASED ON USGS GAUGE 03198000.
- 3. VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- 4. HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.


SEDO)2	FATHOMETRIC SURVEY
•	. —	VIRGINIA AMERICAN WATER TE RAW WATER INTAKE STUDY
	C	ON KANAWHA RIVER HARLESTON. WEST VIRGINIA
CLIE		POTESTA & ASSOCIATES, INC.

REVISIONS

BY



SCALE: 1" = 100'

100'

100'

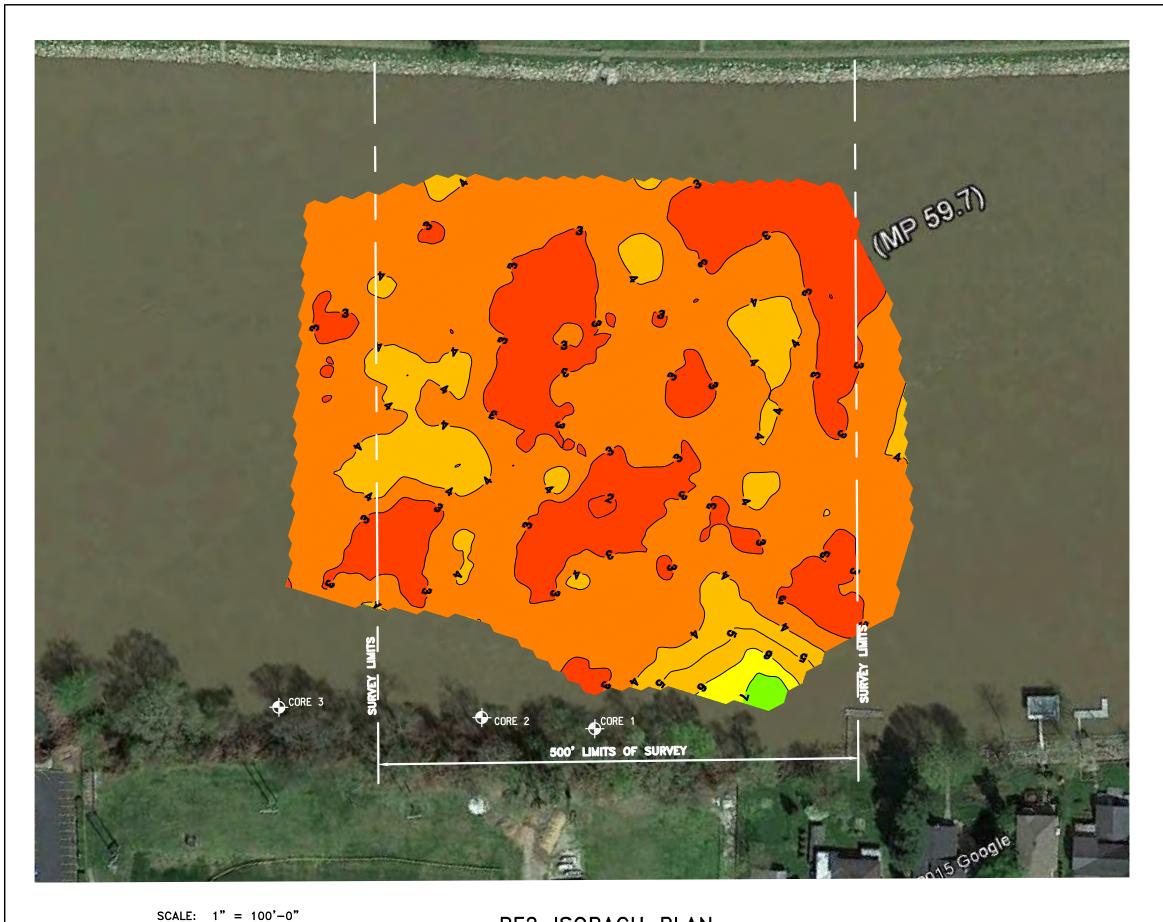
200'

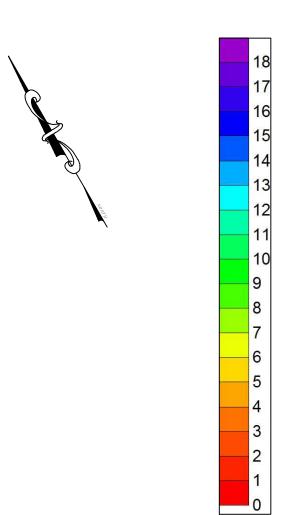
GENERAL NOTES:

- THE SUB-BOTTOM PROFILE SURVEY WAS PERFORMED ON AUGUST 19, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- CONTOURS REPRESENT THICKNESS OF TOP SEDIMENT LAYER RF1 BELOW RIVER BOTTOM.
- GEOPHYSICAL COVERAGE MAY BE BLOCKED NEAR BANKS BECAUSE OF RIP RAP, DEBRIS AND SLOPED EMBANKMENTS.

REVISIONS

SED02 RF1 ISOPACH WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.


CHECKED BY AS SHOWN W.J.C.


DATE

NO.

10-2211-15 7 OF 33

BY

GENERAL NOTES:

- THE SUB-BOTTOM PROFILE SURVEY WAS PERFORMED ON AUGUST 19, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- CONTOURS REPRESENT THICKNESS OF SECOND SEDIMENT LAYER RF2 BELOW RF1.
- 3. GEOPHYSICAL COVERAGE MAY BE BLOCKED NEAR BANKS BECAUSE OF RIP RAP, DEBRIS AND SLOPED EMBANKMENTS.

SED02 RF2 ISOPACH WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

REVISIONS

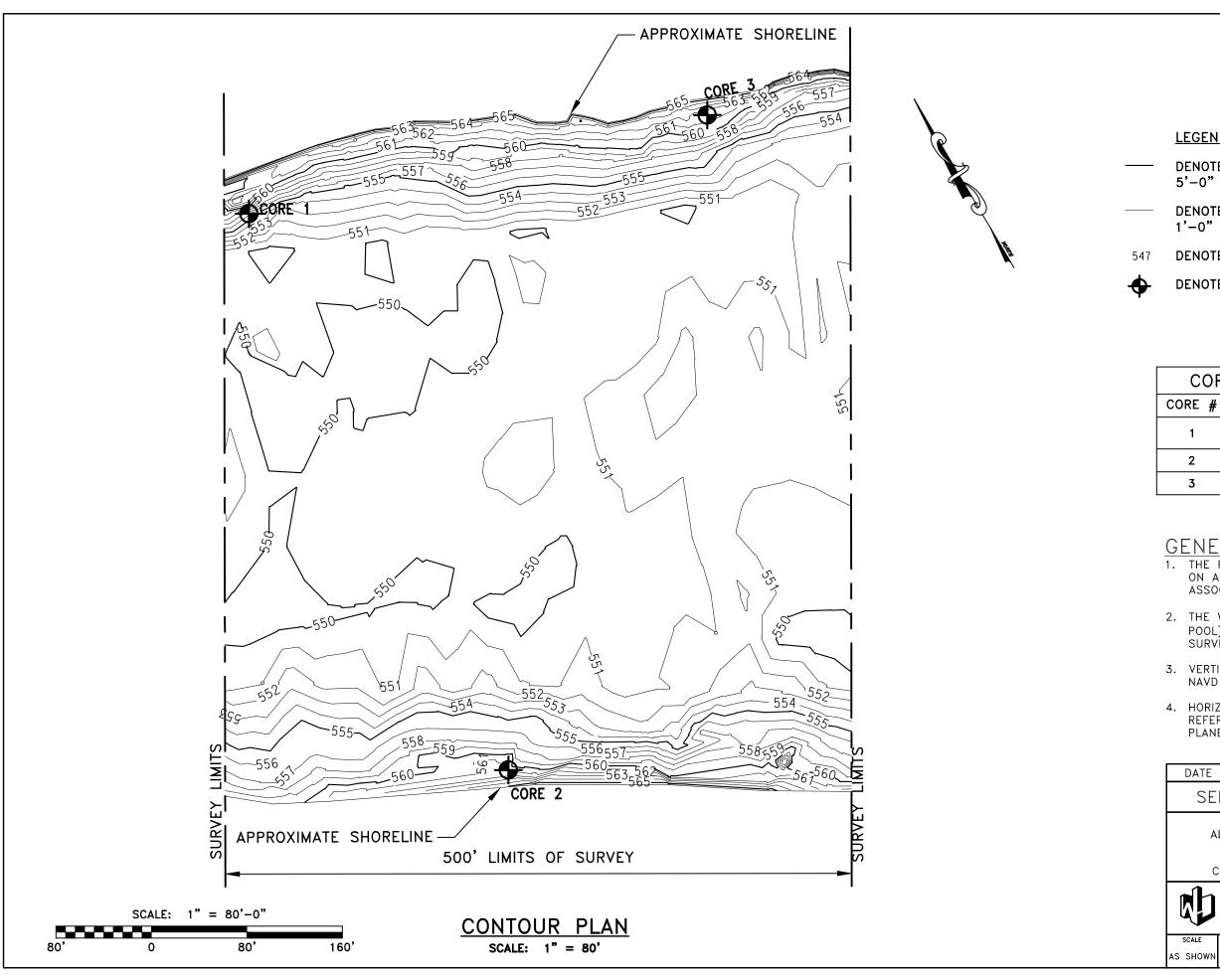
DATE

NO.

CHECKED BY AS SHOWN W.J.C. 10-2211-15 8 OF 33

100'

200'


BY

Locat Start	ct Na tion : Date														
	•	n Date: 08-19-15 Driller: Note that the property of the proper	W. J. Castle & Ass /Elev. :	sociate	es										
Wate: Statio			At completion/		rs <u>/</u> Borin	g D	epth	ı :	2.7 Ft.						
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Description	Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf					
564.7 0.29 564.1 0.92 563.9 1.08 563.4 1.58 563.0 2		Dark Gray, Medium to Fine Grained SAND with Trace Organics Gray, Fine SAND Gray, Fine SAND and Coarse GRAVEL Gray, Fine to Medium SAND Gray, Fine to Medium SAND with Yellow Orange, Medium SAND and GRAVEL Gray, Medium to Coarse Grained SAND with Trace Coarse Gravel	Coarse	-											
370 POLESI A.GDI 9/3/15				5											
BORING LOG RECORD 01011-15-0018.GPJ POTESTA.GDT 9/3/15	PC	7012 MacCorkle Ave SE Charleston, WV 25301 Telephone: 304-342-1400	BORING I HSA - Hollow SFA - Solid FI CC - Concret MD - Mud Dr HA - Hand A RC - Rock C	Stem A ight Au e Corir illing uger	Auger iger	SS ST ROBB	S - Γ - C -	Split Shell Rock	by Tul	n Sample be Sample Sample					

Client: West Virginia American Water Project No.: 0101-15-0018 roject Name: Kanawha River Water Study Boring Method: Direct Push												
		_										
Location: Kanawha County, WV		Veather/ '	-	• –								
Start Date: 08-19-15	Field Enginee	_	_	• .							_	
Completion Date : 08-19-15	Driller: W	. J. Castle	& Asso	ciate	S							
Surface Elevation: 564.6 Ft.	Benchmark/E											
Vater Level Observations : ∇ Immediate : ∇ At completion/# hours /												
Station: Boring Depth: 5.5 Ft.												
>0 >			ype					,		Js		
h (ft		E	ole T	ple	s/	alue	ture	very		onf. p., T		
Stratum Elevation/ Depth (ft.) Soil/Rock Descr	iption		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf		
Dark Gray, Fine SILTY SAND with Some Organi	cs and Coal Fines											
\(\sum_{\subset} \sum_{\subset} \sum												
$563.4 \begin{array}{c c} \hline \\ \hline $	Coarse Gravel											
); <u>(</u> , 2).												
562.4 (\(\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa_{\cappa\cappa\cappa\cappa_{\cappa_{\cappa_{\cappa\cap\cappa\cappa_{\cappa\cappa_{\cappa\cappa\cappa\cappa_{\cappa\capp				_								
2.17 Red, Medium Grained SAND with Trace Coarse C	bravel											
				-								
559.9												
4.67 Gray to Red, Medium to Coarse Grained SAND w	th Trace Coarse Gravel			5_								
559.1												
5.5												
				-								
				-								
				-								
				10								
		_	RING M	ETHO		~-		AMP				
ADATECTA 7012 MacCork			Hollow S Solid Flig		_	SS ST				n Sampl se Samp		
POTESTA 7012 MacCorr		CC -	Concrete Mud Drill	Coring		RO BS	C -		Core	Sample		
Telephone: 30	J4-342-1400		Hand Aug			D,	<i>,</i> -	Dag S	,ampi			

BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15

Cl	lien	t:	West Virginia American Water	Proje	ect No. : 0	101-	15-00)18					
Pr	roje	ct Na	me: Kanawha River Water Study	Borin	ng Method:	_D	irect	Pus	h				
Lo	ocat	ion :	Kanawha County, WV	Weather/ Temp.:									
St	art	Date	: 08-19-15 Field Engi	neer/ G	eologist :								
C	omp	oletio	n Date : 08-19-15 Driller :	W. J. C	Castle & Asso	ociate	es						
St	ırfa	ce El	evation: 565 Ft. Benchmar	k/Elev.	:								
	^l ate tatio				ompletion/#		rs <u>/</u> Borin	a D	onth		2.4	□ 4	
	tau	om:	Offset:		T T		OUTH	gυ	epu		2.4		
Stratum	Elevation/ Depth (ft.)	Lithology	Soil/Rock Description		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf	
56	.17		ORGANICS, Detritus, Silty, Brown, Fine Sand										
56	4.6		Brown, Silty, Fine SAND Brown, Silty, Medium SAND										
56	.42 54.4 .58		Brown, Coarse SAND and Fine GRAVEL			_							
56	53.8		Dark Gray, Medium to Fine SAND										
56	.17 53.6		Dark Gray, Medium to Fine SAND and Fine GRAVEL Dark Gray and Brown, Medium SAND with Some Fine Gravel and Tra	ace									
56	.42 53.3 .67		Organics	icc		-							
56	52.6 .42								<u> </u>				
						-							
						-							
						-							
						5_							
						_							
						_							
3/15													
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15						_							
JIESTA.													
GPJ PC						_							
15-0018.													
D 0101-					BORING M	10 ETH	OD	\top	S	 SAMI	LE T	YPE	
SOR	4 =	_	7012 MacCorkle Ave SE		HSA - Hollow S	tem A	uger	S				n Sample	
SG RE		Pľ	Charleston, WV 25301 Telephone: 304-342-1400		SFA - Solid Flig CC - Concrete			S' R				be Sample Sample	
الْوَ الْحَالِي		1	Telephone: 304-342-1400	1	MD - Mud Dril	ling	J	В			Samp		
30RI			,		HA - Hand Au RC - Rock Co								

- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- DENOTES CHANNEL BOTTOM ELEVATION
- DENOTES THE LOCATION OF SOIL BORING.

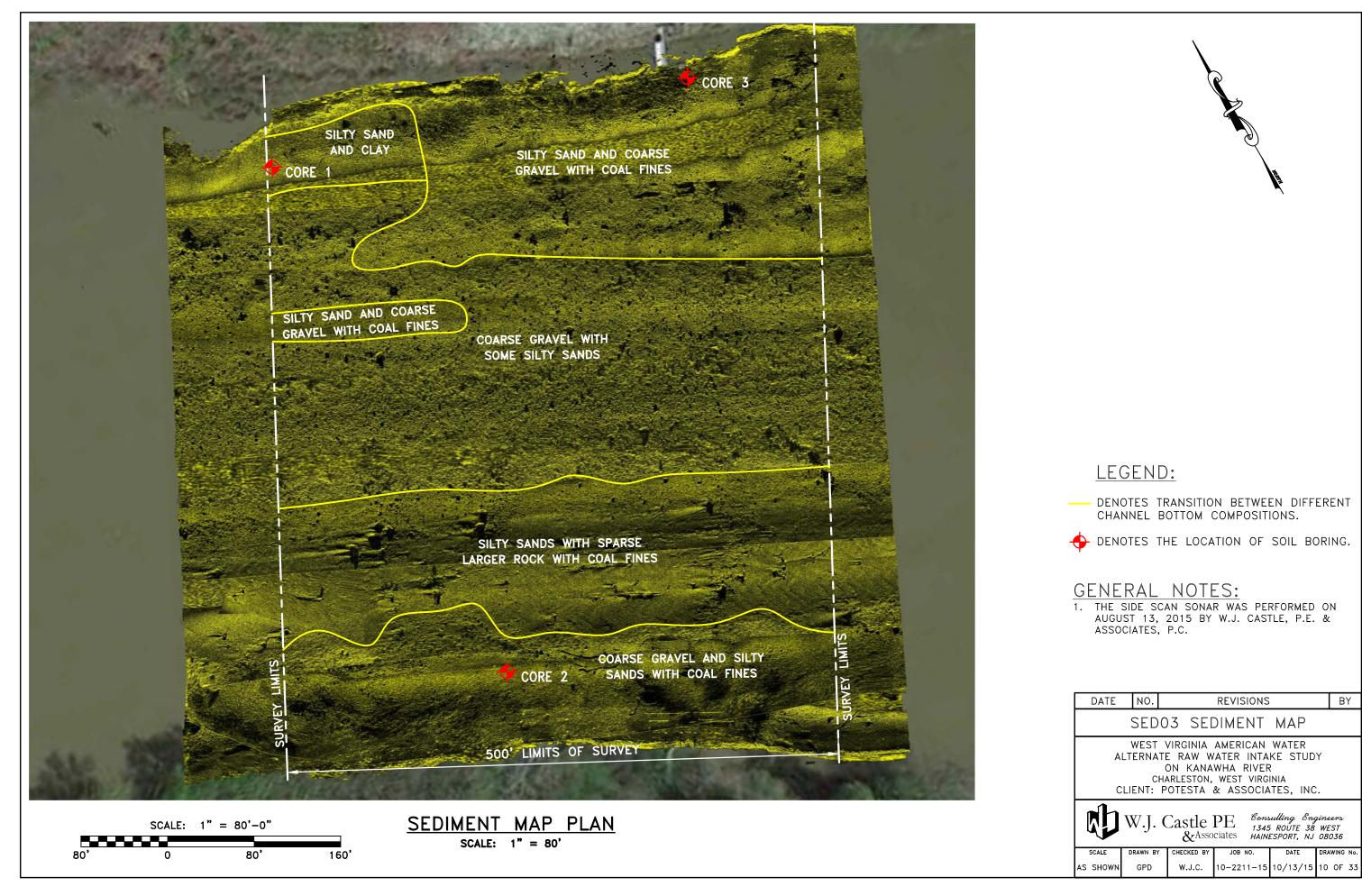
CORE SAMPLE DATA											
CORE #	NORTHING	EASTING									
1	485549.07	1799821.07									
2	485037.05	1799770.32									
3	485424.55	1800193.66									

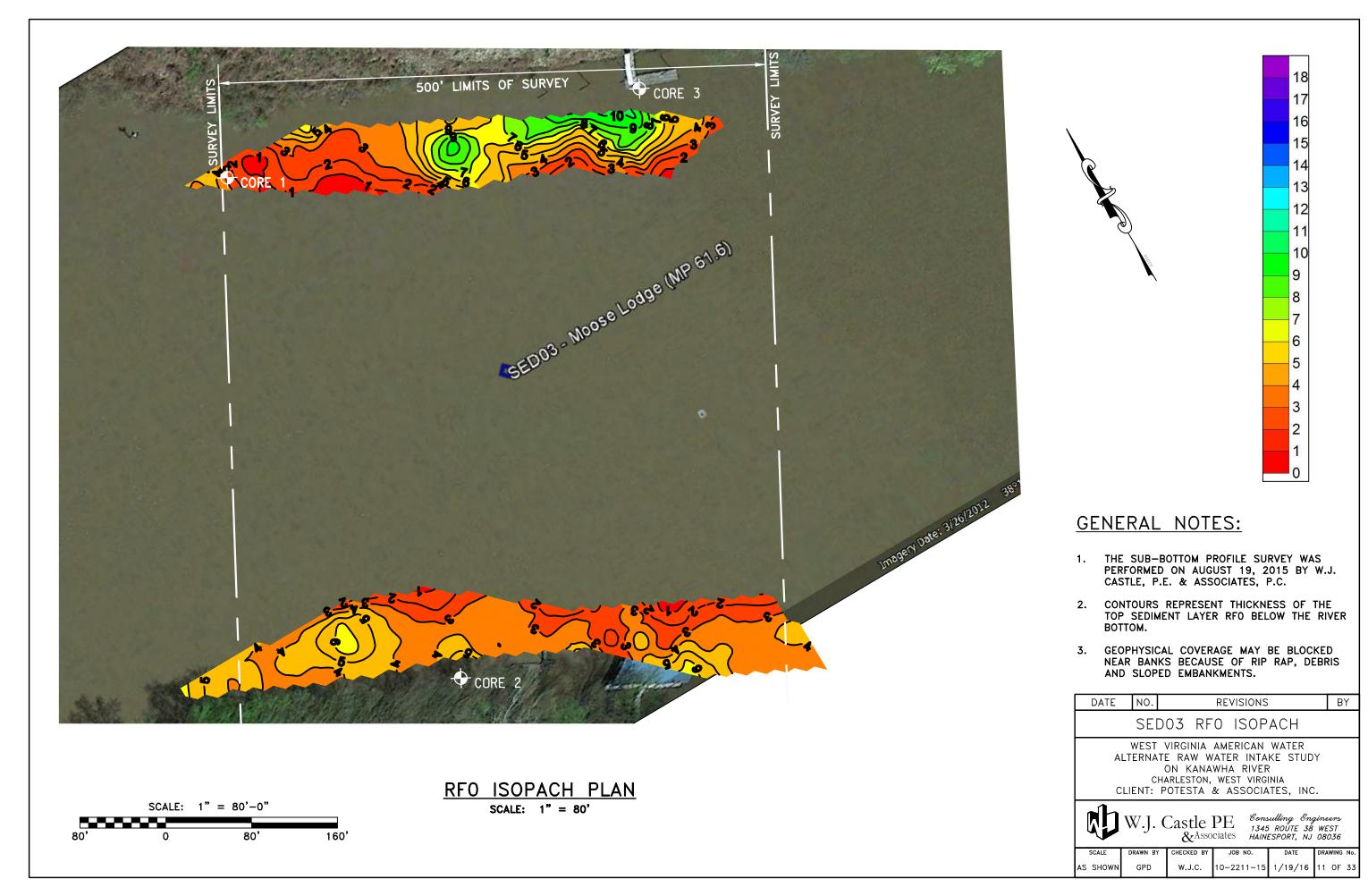
GENERAL NOTES:

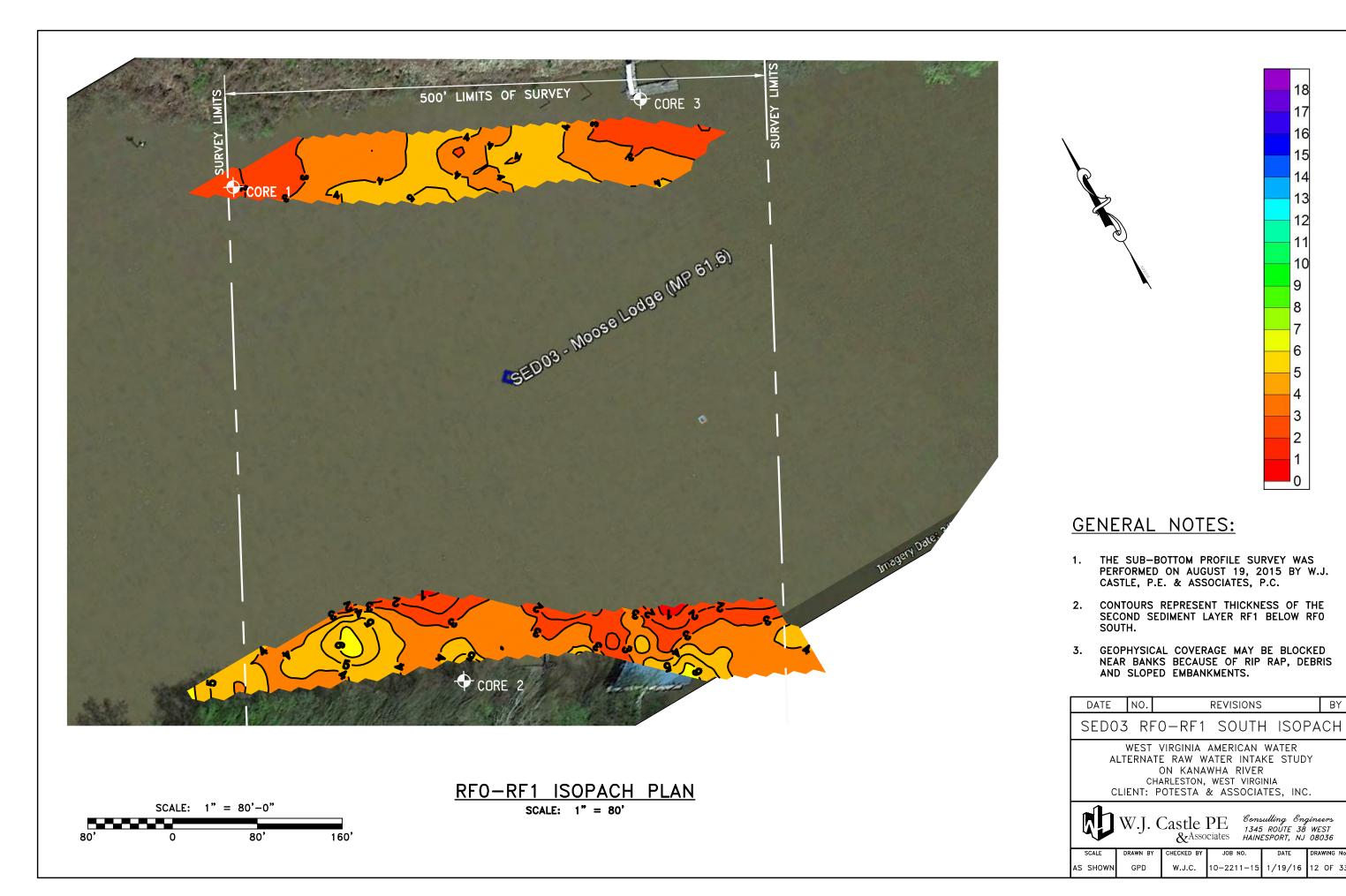
NO.

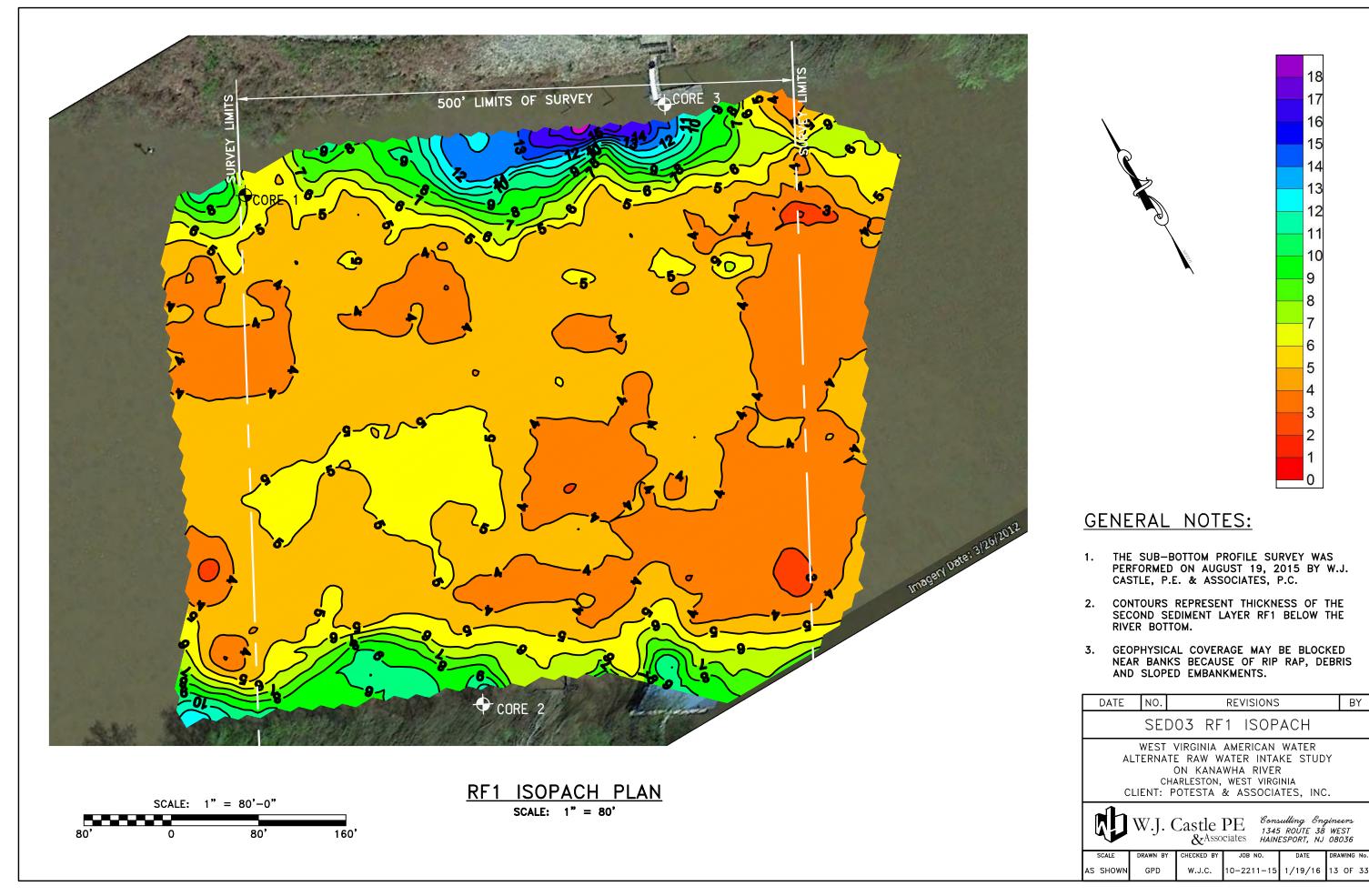
- 1. THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 13, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- 2. THE WATER SURFACE ELEVATION (WINFIELD POOL) WAS 565.64' AT THE TIME OF THE SURVÉY. BASED ON USGS GAUGE 03198000.
- 3. VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- 4. HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.

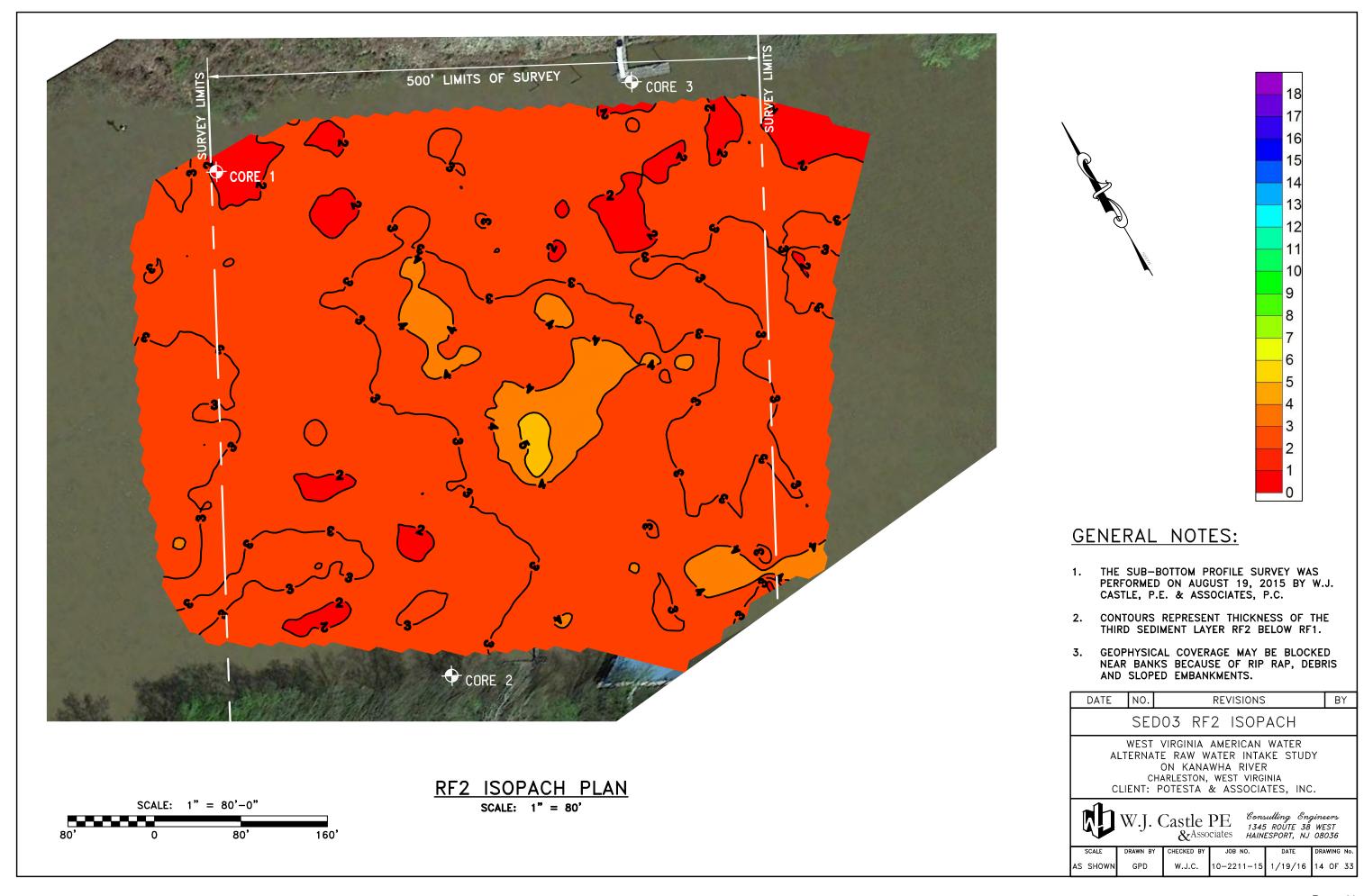
SED03 FATHOMETRIC SURVEY
WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA CLIENT: POTESTA & ASSOCIATES, INC.
W.J. Castle PE &Associates Consulting Engineers 1345 ROUTE 38 WEST HAINESPORT, NJ 08036

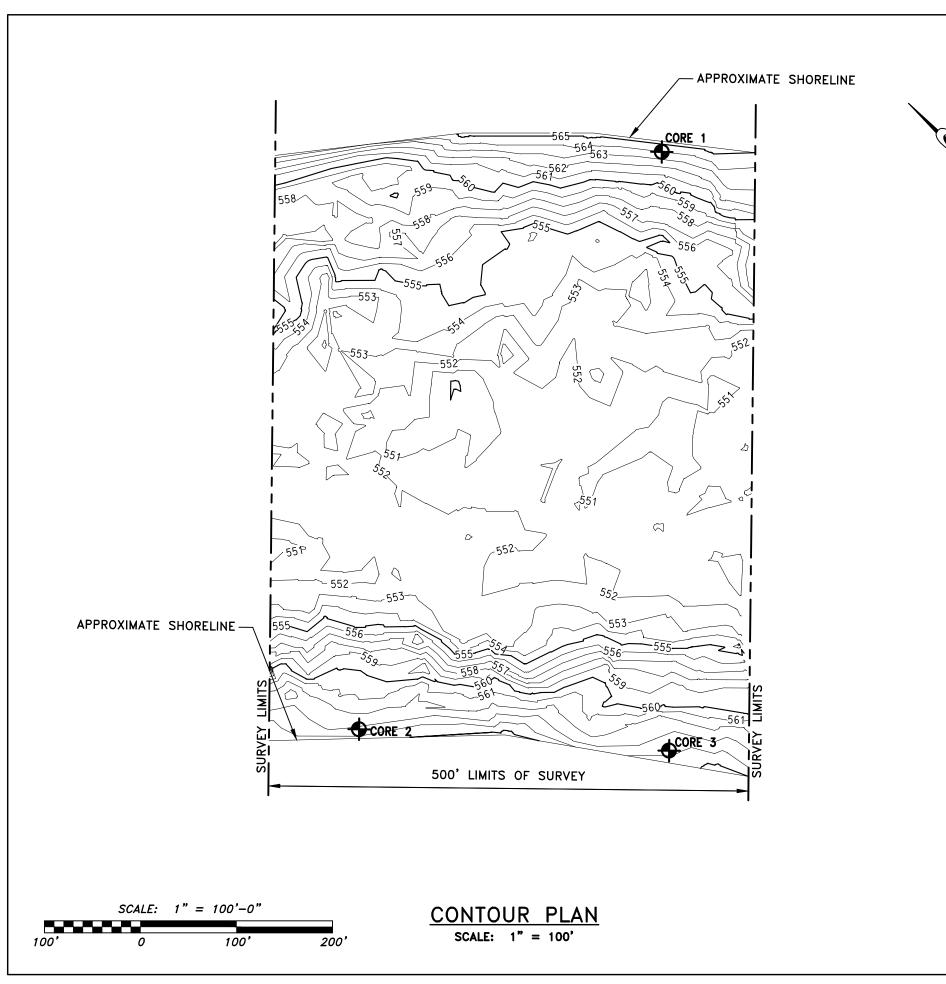

CHECKED BY


W.J.C.


REVISIONS


10-2211-15 08/25/15 9 OF 33


BY



	lien	-	West Virginia American Water					15-00					
	•		me: Kanawha River Water Study										
L	ocat	ion :	Kanawha County, WV										
S	tart	Date	: <u>08-19-15</u> Field Eng	gineer/ (Geolo	gist :							
C	omp	oletio	n Date : 08-19-15 Driller :	W. J. 0	Castl	e & Ass	ociate	es					
S	urfa	ce El	evation: 556.4 Ft. Benchma	ırk/Elev.	.:								
V	Vate	r Lev	vel Observations : $\overline{igspace}$ Immediate :	▼ At o	comp	letion/#	hou	rs <u>/</u>					
S	Statio	on:	Offset :				_ I	Borin	g D	epth	ı: -	3.3	Ft.
	> :	·				Sample Type /Number							Jst
un n	atior h (ft	olog				ole T ober	ple	SA	alue	sture	very		onf. p., T
Strat	Elevation/ Depth (ft.)	Lithology	Soil/Rock Description			Samı /Nun	Sample Depth	SPT Blows	N-Value	Moisture (%)	Rec (%)	RQD (%)	Unconf. Comp., Tsf
-5 :	56.3).08	<u> </u>	Brown SILTY CLAY										
5:	56.2		Brown SILTY SAND Brown, Medium Grained SAND with Trace Fine Gravel		/								
).17 55.4												
	1 55.1		Brown/Gray, Coarse Grained SAND with Fine and Coarse Gravel				_						
	.33	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Gray, Fine Grained SILTY SAND										
) ()))											
) (()											
5:	53.9 2.5).	Gray, Medium to Coarse Grained SILTY SAND										
		(•				_						
5:	53.2 3.25	<u> </u>											
	,.23												
							_						
							5_						
							-						
							-						
3/15													
/6 ТС													
TA.GI							_						
OTES													
2 2							_						
18.6													
15-00													
0101-							10_						
SP -				-		ORING M - Hollow S			S			Spoo	rYPE n Sample
RECC			7012 MacCorkle Ave SE		SFA	- Solid Fli	ght Au	ıger	S	Γ -	Shell	by Tu	be Sample
90]	4	71	Charleston, WV 25301 Telephone: 304-342-1400		CC	- Concrete	Corin		R	C -	Rock	Core	Sample
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15		. 1	Telephone: 304-342-1400			Mud DriHand Au			В	ა -	ьag	Samp	ie
BOR						- Rock Co							

Clien Proje Loca Start Com	ect Na tion : Date	Kanawha County	iver Water Study , WV	Field Engir									
	er Lev	evation : 561 Ft				mpletion/#		rs <u>/</u> Borin	g D	epth	ı :	1.3 1	Ft
Stratum Elevation/ Depth (ft.)	Lithology		Soil/Rock Description	n		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
560.7 0.33 -560.3 0.67 -560.0	? (?)? ? (?)?	Some Organics Brown, Medium Graine	o Fine Grained SILTY SAND a d SILTY SAND ND GRAVEL with Coal Fines		VEL with		_						
559.7 1.33							-						
							_						
							5_						
							_						
15							-						
OTESTA.GDT 9/3/							_						
101-15-0018.GPJ P							10						
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	P()TESTA	7012 MacCorkle Charleston, WV 2 Telephone: 304-	25301	SI Co M H	BORING M SA - Hollow FA - Solid Fl C - Concret ID - Mud Dr A - Hand Al C - Rock Co	METH Stem A ight Au e Corin illing uger	uger iger	SS ST RO BS	S - Γ - C -	Split Shell Rock	oy Tul	n Sample be Sample Sample

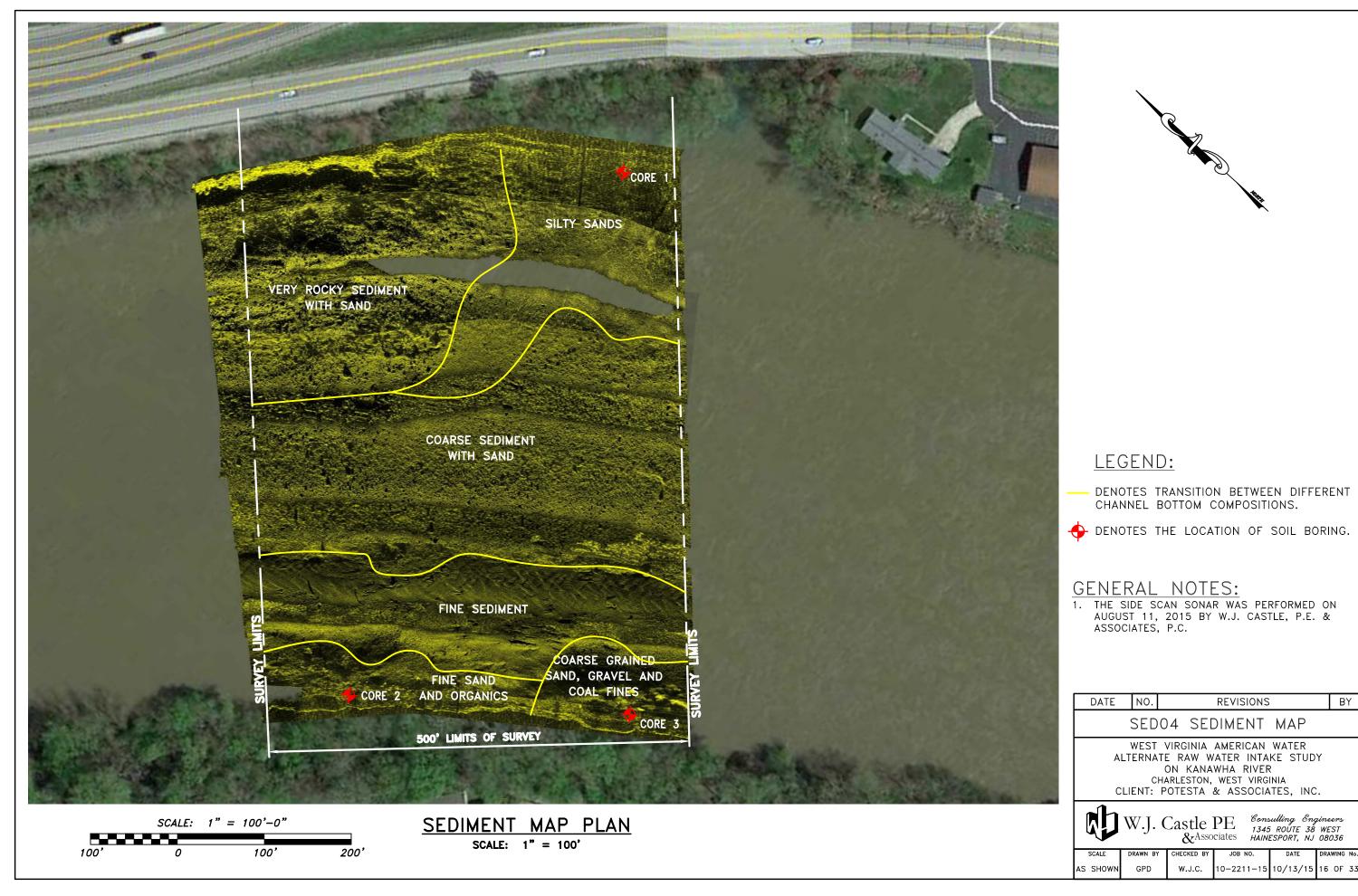
	West Virginia Americ		ject No.: 0101-15-0018										
_	ame: Kanawha Riv												
	Kanawha County,	WV		ather/ Temp.	: _								
Start Date	08-19-15		Field Engineer/	Geologist :									
Completio	on Date : 08-19-15		Driller: W. J.	. Castle & Ass	ociate	S							
Surface E	levation: 561.5 Ft.		Benchmark/Elev	v.:									
Water Le	vel Observations :	abla Immediate :	▼ At	completion/#									
Station:		Off	set:		_ B	orin	g D	epth	ı :	2.0	Ft.		
				Sample Type /Number							st		
Stratum Elevation/ Depth (ft.) Lithology				ole T	ple h	S/	N-Value	Moisture (%)	very		Unconf. Comp., Tsf		
Strat Elev Dept Lith		Soil/Rock Descripti	on	Samj /Num	Sample Depth	SPT Blows	N-V	Mois (%)	Recc (%)	RQD (%)	Com		
2:())	Brown, Fine to Medium G	-									, -	Γ	
> () (
560.5													
560.0	Brown, Fine to Medium G Fines	Grained SILTY SAND and C	Coarse GRAVEL with C	oal									
1.5	Dark Gray, Coarse GRAV	EL and Coal Fines											
559.5												H	
					_								
					5_								
					-								
					-								
					_								
				BORING M	10_ ÆTH (OD		S	AMF	LE T	YPE	_	
		7012 MacCorkle	Ave SE	HSA - Hollow S	Stem A	uger	SS	S -	Split	Spoo	n Sample		
⊿ Pl	DTESTA	Charleston, WV		SFA - Solid Fli			ST RO				be Sample Sample	•	
	/ I L J I A	Telephone: 304		MD - Mud Dri HA - Hand Au	lling		B			Samp			
4 P(RC - Rock Co									

- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- DENOTES CHANNEL BOTTOM ELEVATION

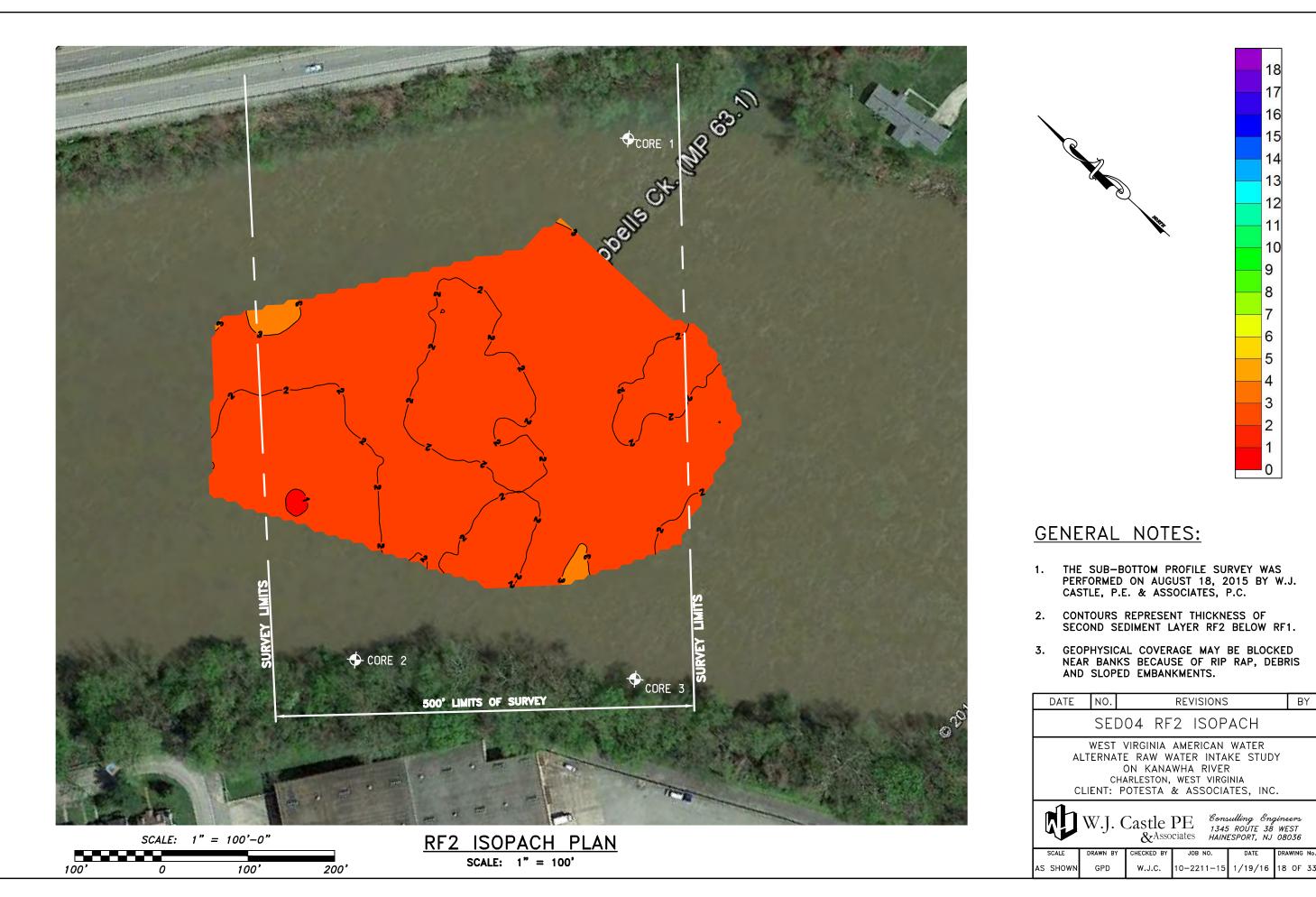
DENOTES THE LOCATION OF SOIL BORING.

CORE SAMPLE DATA										
CORE #	NORTHING	EASTING								
1	480068.19	1807047.84								
2	479895.22	1806391.14								
3	479641.79	1806592.60								

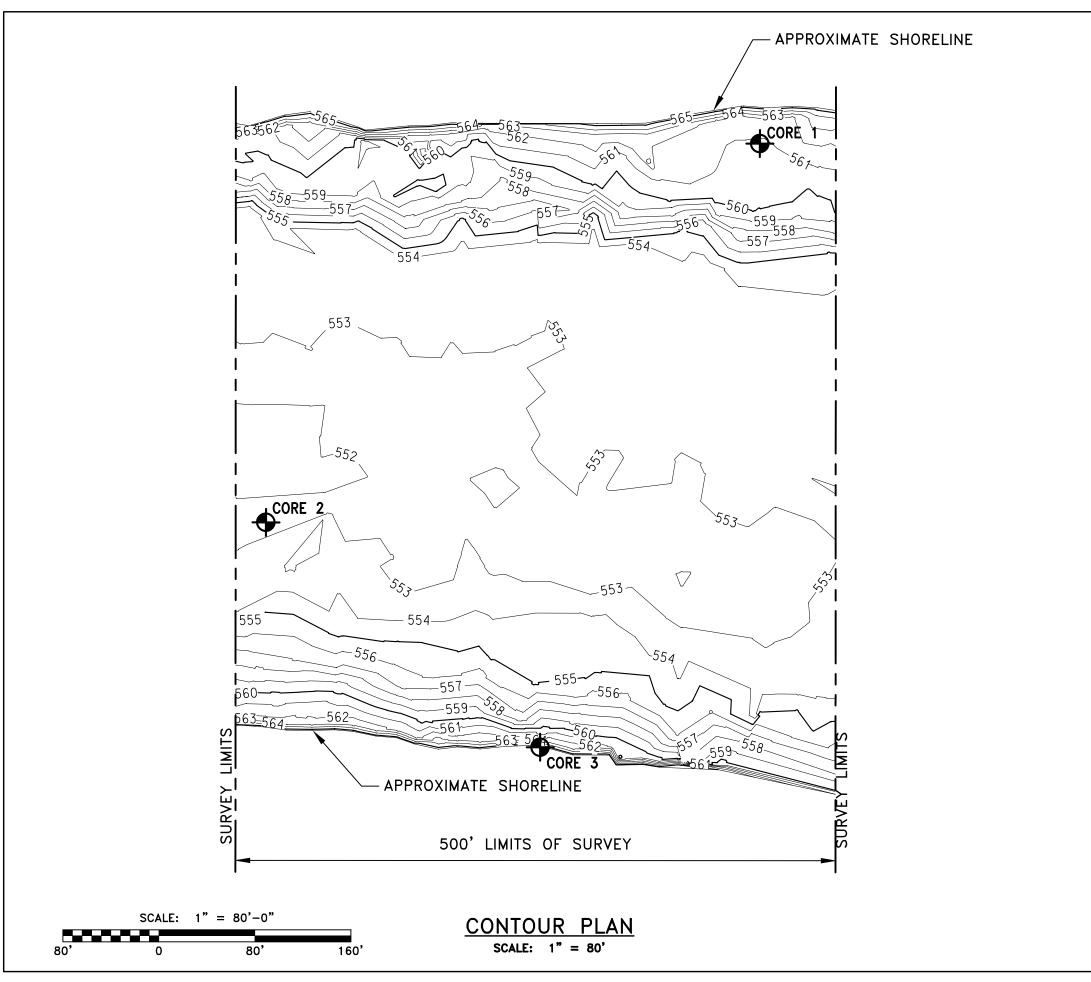
GENERAL NOTES:


- 1. THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 11, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- 2. THE WATER SURFACE ELEVATION (WINFIELD POOL) WAS 565.44' AT THE TIME OF THE SURVEY. BASED ON USGS GAUGE 03198000.
- VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- 4. HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.

DATE NO. REVISIONS BY
SED04 FATHOMETRIC SURVEY


WEST VIRGINIA AMERICAN WATER
ALTERNATE RAW WATER INTAKE STUDY
ON KANAWHA RIVER
CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

AS SHOWN GPD W.J.C. 10-2211-15 08/25/15 15 0F 33



CI.	4 -	West Vincinia Associated Wist		D '	-4 N C	101	15.00	110				
Client : West Virginia American Water Project No. : 0101-15-0018 Project Name : Kanawha River Water Study Boring Method : Direct Put												
ı		1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			g Memoa : her/ Temp.							
	Date	-	Field Engin		_	_						
			Driller:									
Com	pieno	11 Date . 00-10-13	Dilliei	W.J.C	asue & Asso	Jeran	28					
			Benchmark									
				✓ At co	mpletion/#							
Stati	ion :	Offse	et:			_ F	Borin	g D	epth	ı :	4.8	Ft.
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Description			Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
563.9 0.08	2. 5.2.	ORGANICS, Leaf Litter										
562.8	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Gray, Fine SILTY SAND with Organics and Trace Coa				_						
1.25 562.1	>	Brown/Gray, Medium to Fine Grained SILTY SAND w		ines								
1.92	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Gray, Medium Grained SILTY SAND and Coarse GRA	AVEL			-						
561.1 2.92) ()) () ())	Gray, Medium to Coarse Grained SILTY SAND				=						
560.3 3.75 559.3		Dark Gray SILTY CLAY with Gray Medium Grained S	Sand			-						
4.75						5_						
						-						
						_						
9/3/15												
TESTA.GDT						=						
18.GPJ PO						-						
0101-15-00.						10_						
ORD ORD				I	BORING M ISA - Hollow S			SS			PLE T	TYPE n Sample
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	P(TESTA 7012 MacCorkle A Charleston, WV 2 Telephone: 304-3	5301	S	FA - Solid Fli CC - Concrete ID - Mud Dri	ght Au Corin lling	ıger	ST RO BS	Γ - C -	Shell Rock	oy Tul	be Sample Sample
BORII		•			IA - Hand Au C - Rock Co							

Clien	-		Project N			15-00						
1 .		mme: Kanawha River Water Study Kanawha County, WV	Boring Method: Direct Push Weather/ Temp.:									
Start				-	• –							
		n Date: 08-18-15 Driller: V			ciate	es es						
		_		2 22 1 1550	refute							
		evation: $\underline{564}$ Ft. Benchmark/vel Observations: $\underline{\nabla}$ Immediate:	/Elev. : _ At comp	letion/#	hom	rc /						
Stati			- III comp			Borin	g D	epth	ı :	2.5	Ft.	
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Description		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf	
563.9 0.08		Dark Gray, Fine SAND AND ORGANICS Brown/Gray, Fine SAND										
563.4 0.58		Brown/Gray, Fine SAND AND ORGANICS										
563.2 0.83		Dark Gray, Fine SAND and Coarse GRAVEL			-							
562.9 -1.08		Dark Gray, Medium to Fine SAND with Trace Coarse Gravel and Organic	cs									
562.5 1.5		Dark Gray, Medium to Fine SAND AND ORGANICS Gray, Fine SAND										
562.4 1.58	000	Dark Gray, Coarse GRAVEL AND SILT			-							
561.9 2.08	0 0											
561.5 2.5					-							
	J											
					-							
					5_							
					-							
					_							
Ω												
9/3/1												
A.GDI					-							
TEST												
ار ا												
018.G												
-15-00												
010.			Ro	ORING M	10_ ETH	OD	<u> </u>	S	 SAMI	LE T	YPE	
		7012 MacCorkle Ave SE	HSA -	- Hollow S	tem A	uger	SS	S -	Split	Spoo	n Sample	
	P(Charleston, WV 25301 Telephone: 304-342-1400		Solid FligConcrete			S' R				oe Sample Sample	
BORNG LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	1	Telephone: 304-342-1400		 Mud Dril Hand Au 	_		В	S -	Bag	Samp	le	
R R				- Rock Co								

Clien	_	West Virginia American Water											
_		me: Kanawha River Water Study		ring Meth		Direct	Pus	h					
		Kanawha County, WV		eather/ Te									
Start	Date	: <u>08-18-15</u> Field I	Engineer/	Geologist	:								
Com	pletio	n Date :08-18-15	:: <u>W. J</u>	. Castle &	Associat	es							
Surfa	ice El	evation: 563.7 Ft. Bench	mark/Ele	v.:									
		rel Observations : $\overline{\Box}$ Immediate :		t completio		· <u>—</u>	_			2.0	.		
Stati	Station : Offset : Boring Depth: 3.9 Image: Station in the control of the control												
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Description		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf		
563.2 0.5	0 0 0	Black, Coarse GRAVEL AND COAL FINES Brown, Medium to Fine SAND with Some Coarse Sandstone Gra	vel										
562.5 1.25		Dark Gray and Brown, Medium to Fine SAND with Trace Coal F	ines										
562.0 1.67 561.7) ())	Dark Gray, Medium Grained SILTY SAND and Coarse GRAVE	L										
2 561.2		Brown, Medium Grained SAND and Coarse GRAVEL			-								
2.5	2: (5)	Gray, Medium Grained SILTY SAND with Coarse Gravel and C	oal Fines										
-560.9 2.83		Brown, Coarse to Medium Grained SAND with Some Coarse Gra	vel		-								
560.2 3.5		Brown/Red, Coarse Grained SAND											
559.8 3.92					-	_							
					5_								
2					-								
(SD)					-								
OLEVIA													
18.GPJ F					-								
1101-15-00				_	10_								
BORNG LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	P(7012 MacCorkle Ave SI Charleston, WV 25301 Telephone: 304-342-14		HSA - Hol SFA - Soli CC - Cor MD - Muc HA - Har	d Flight A acrete Corin d Drilling ad Auger	Auger uger	Si Si R B	S - T - C -	Split Shell Rock	by Tu	n Sample be Sample Sample		
BC				RC - Roc	k Coring								

- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- DENOTES CHANNEL BOTTOM ELEVATION
- DEN

DENOTES THE LOCATION OF SOIL BORING.

CORE SAMPLE DATA								
CORE #	NORTHING	EASTING						
1	460844.86	1804361.38						
2	461223.65	1804007.01						
3	460977.99	1803842.81						

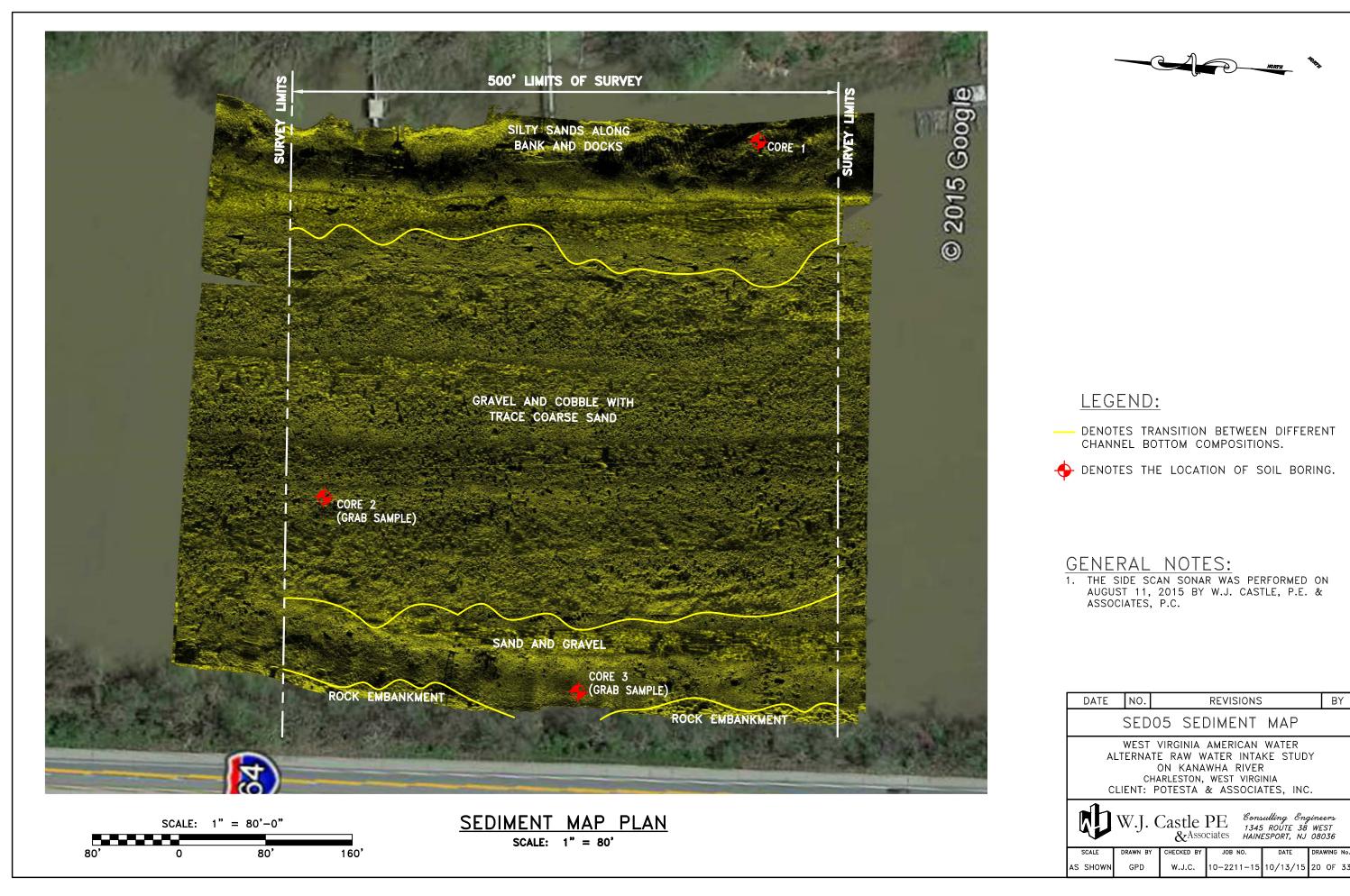
GENERAL NOTES:

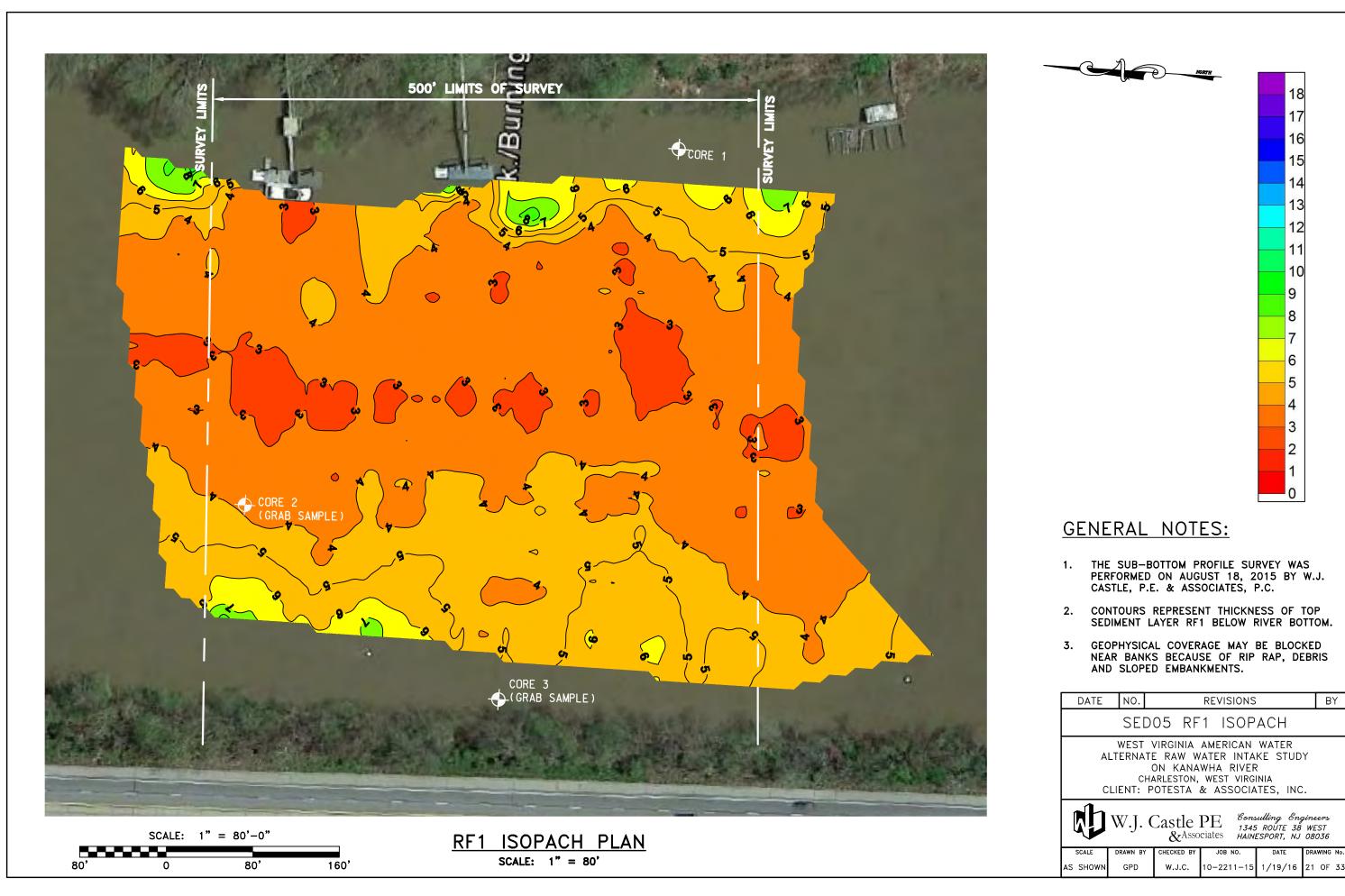
- 1. THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 11, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- THE WATER SURFACE ELEVATION (WINFIELD POOL) WAS 565.45' AT THE TIME OF THE SURVEY. BASED ON USGS GAUGE 03198000.
- VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- 4. HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.

SEDO5 FATHOMETRIC SURVEY

WEST VIRGINIA AMERICAN WATER
ALTERNATE RAW WATER INTAKE STUDY
ON KANAWHA RIVER
CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

REVISIONS

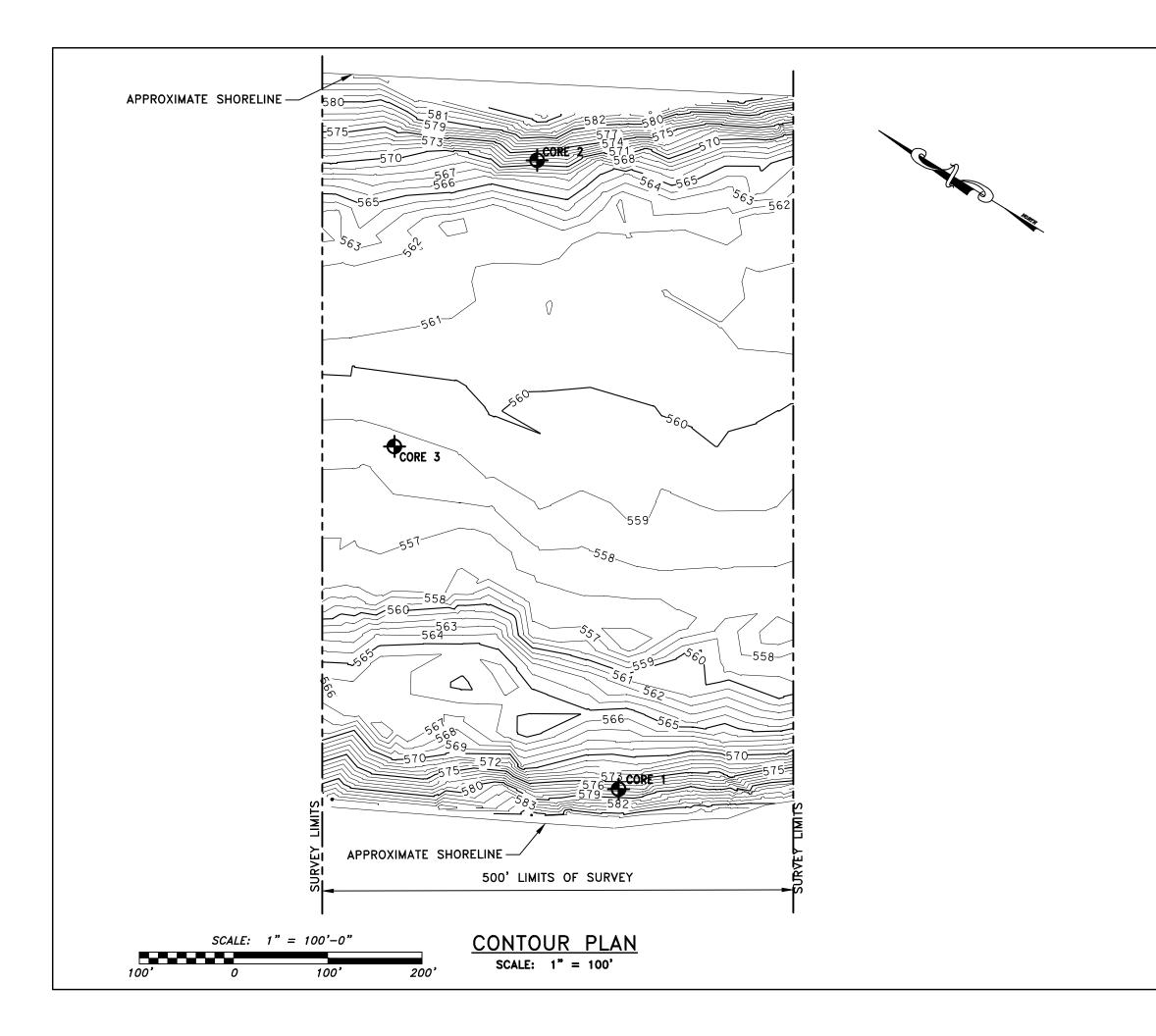

DATE


NO.

Consulling Engineers 1345 ROUTE 38 WEST HAINESPORT, NJ 08036

AS SHOWN GPD W.J.C. 10-2211-15 08/25/15 19 OF 33

BY



Client: West Virginia American Water Project Name: Kanawha River Water Study Location: Kanawha County, WV Start Date: 08-18-15 Completion Date: 08-18-15	roject Name: Kanawha River Water Study Boring Method: Direct Push Ocation: Kanawha County, WV Weather/ Temp.: art Date: 08-18-15 Field Engineer/ Geologist:									
Surface Elevation : $\underline{561.6}$ Ft. Water Level Observations : $\underline{\nabla}$ Immedia Station :		nchmark/Elev.: Variable At completion/# hours /_ Boring Depth: 1.8 Ft.								
	Description	Sample Type //Number	Sample Depth SPT Blows	N-Value Moisture (%) Recovery (%)	RQD (%) Unconf. Comp., Tsf					
ORGANICS Gray, Fine SILTY SAND with Some Coarse 560.7 0.92 Cray, Fine to Medium Grained SILTY SAN 559.9 1.75 POTESTA 7012 Macc Charlestor Telephone	-		5	SAMP	I.E.TVPE					
POTESTA 7012 Macon Charlestor Telephone	Corkle Ave SE n, WV 25301 e: 304-342-1400	HSA - Hollow St SFA - Solid Flig CC - Concrete C MD - Mud Drill HA - Hand Aug RC - Rock Cori	em Auger ht Auger Coring ing er	SS - Split ST - Shelb	Spoon Sample by Tube Sample Core Sample Sample					

Г															—
- [•	Client	t: _	West Virginia Americ	Project No.: 0101-15-0018											
	Proje	ct Na	me: Kanawha Riv	Boring Method: Grab											
]	Locat	ion :	Kanawha County,		Weather/ Temp. :										
	Start	Date	: 08-18-15		Field Engi	neer/ Ge	ologist :								
-	Comp	oletio	on Date: 08-18-15		Driller:		_								
L			<u> </u>												_
			levation: 552.6 Ft.		Benchmar										_
			vel Observations :	abla Immediate :		▼ At co	npletion/#								
	Statio	on:		Offs	set:			_]	Borin	g D	epth	ı:	0.3	Ft.	_
	Stratum Elevation/ Depth (ft.)	Lithology		Soil/Rock Description	on		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf	
	552.4	0 0		COBBLE with Trace Coarse	Sand										
L	0.25		(Grab sample due to large	rocks.)											
								-							
								-							
								_							
								5_							
								-							
								_							
,,															
9/3/16															
GDT.								-							
ESTA															
POT															
8.GPJ								-	-						
5-001															
101-1								10_							
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15						LIC	BORING N			S				TYPE n Sample	
RECC			ATCTA	7012 MacCorkle		SF	SA - Hollow SA - Solid Fl	ight Au	ıger	S	Γ -	Shell	by Tu	be Sample	
P 100		71)TESTA	Charleston, WV		CO	C - Concret D - Mud Dr		ng	R B			Core Samp	Sample	
RING		•		Telephone: 304	342-1400	H	A - Hand A	uger			J -	Dug	эшпр.		
8						RO	- Rock Co	oring							

Location Start D	t Name : on : Kan	awha County, -18-15	ver Water Study WV	Project No.: 0101-15-0018 y Boring Method: Grab Weather/ Temp.: Field Engineer/ Geologist: Driller: W. J. Castle & Associates									
	Level Obs	565 Ft.	☑ Immediate : Offs		▼ At con	Nev.:							
	o Brown,	Coarse SAND Al	Soil/Rock Description			Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
0.252	(Clab's	ample due to large	TOCKS.)			BORING	5	OD		S	SAMI	PLE 1	YPE
BORING LOG RECORD	POTE	STA	7012 MacCorkle Charleston, WV Telephone: 304	25301	SF CC MI HA	SA - Hollow SA - Solid F	Stem A light Au te Corin rilling auger	Auger iger	SS ST RO BS	S - Γ - C -	Split Shell Rock	Spoo by Tul	n Sample be Sample Sample

- DENOTES MAJOR CONTOUR LINES AT 5'-0" INTERVALS
- DENOTES MINOR CONTOUR LINES AT 1'-0" INTERVALS
- 547 DENOTES CHANNEL BOTTOM ELEVATION

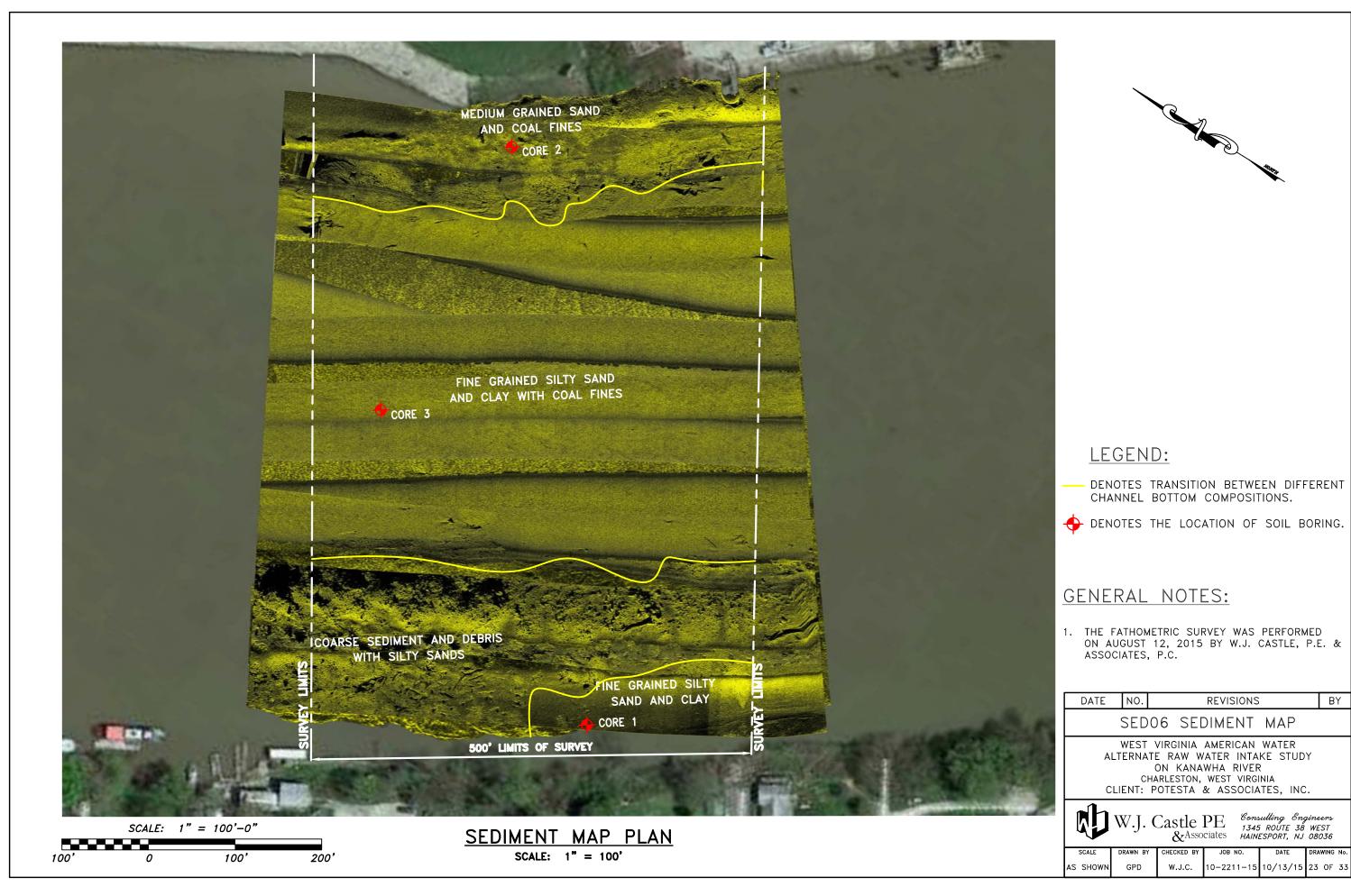
DENOTES THE LOCATION OF SOIL BORING.

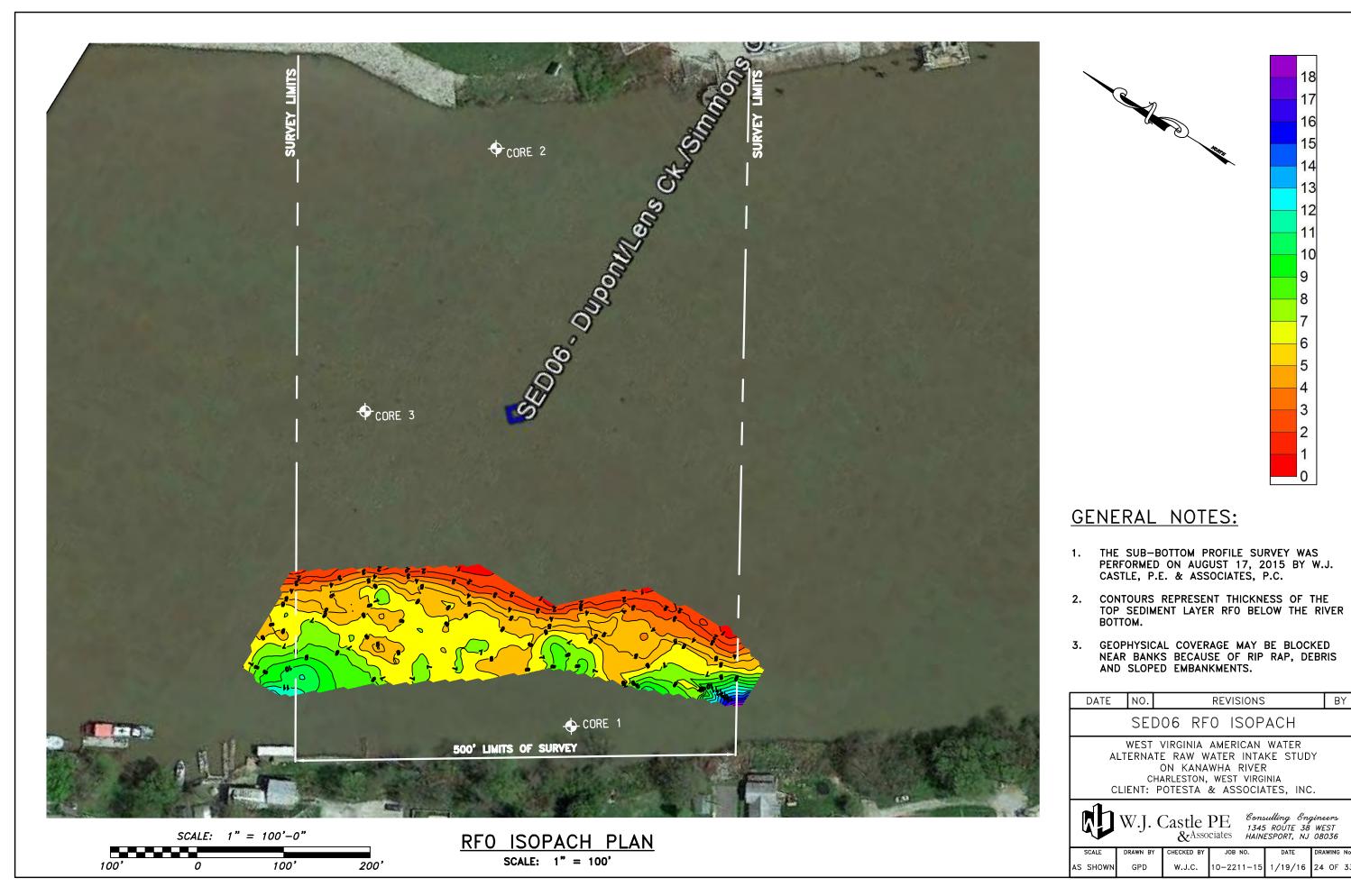
COR	E SAMPLE	DATA
CORE #	NORTHING	EASTING
1	453890.28	1806831.45
2	454314.52	1807354.22
3	454283.77	1807016.14

GENERAL NOTES:

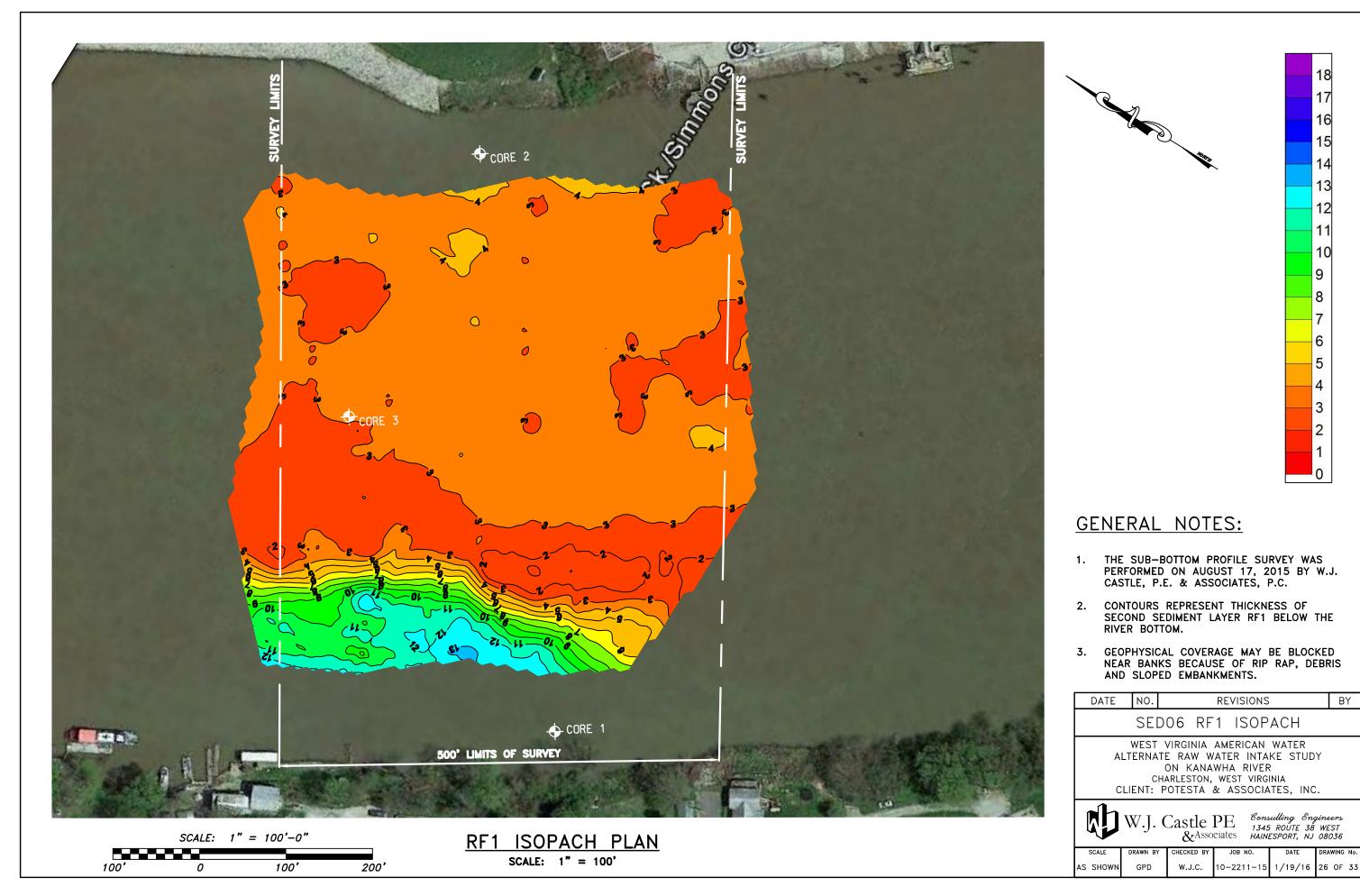
DATE

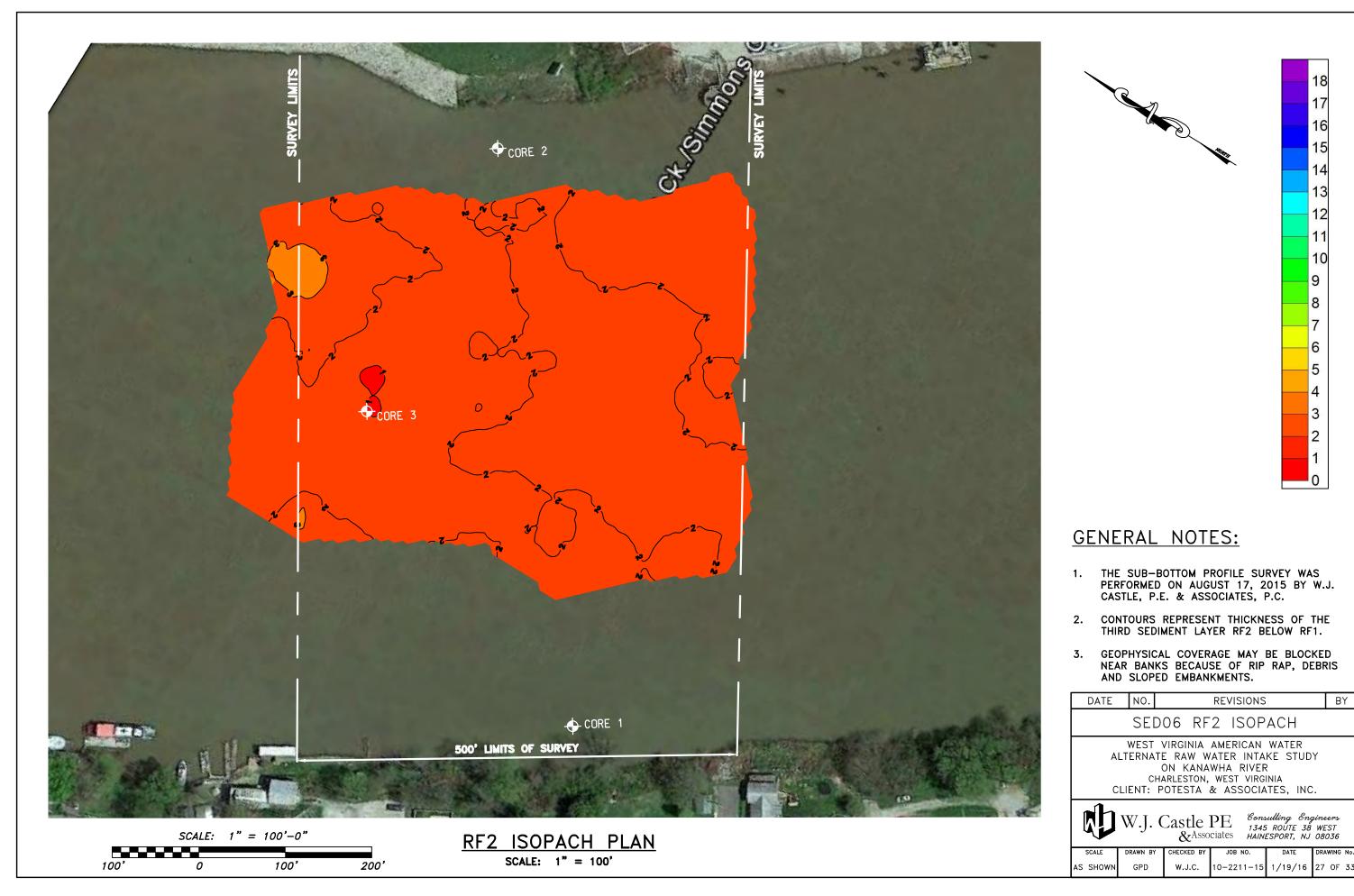
NO.

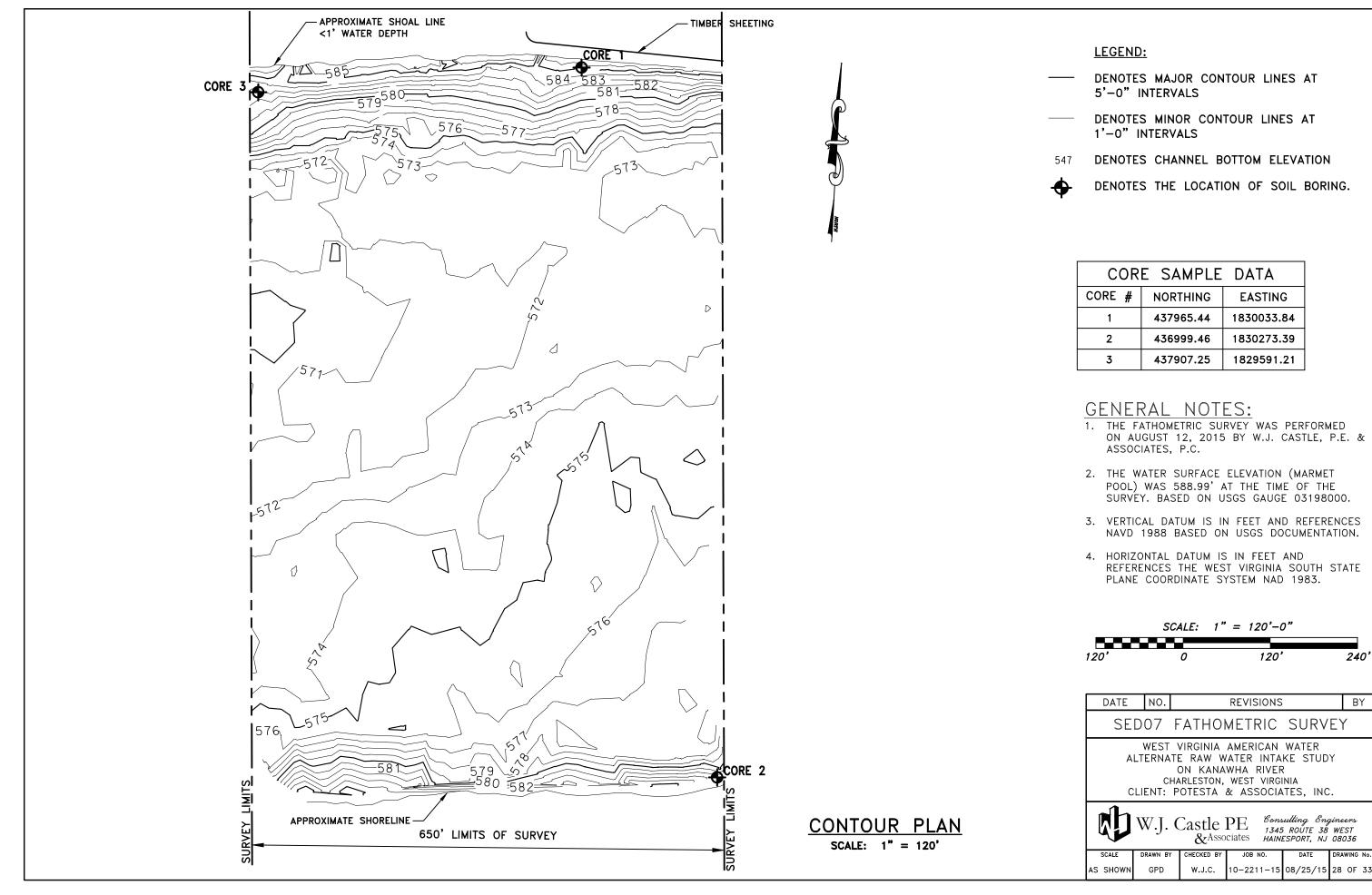

- 1. THE FATHOMETRIC SURVEY WAS PERFORMED ON AUGUST 12, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.
- 2. THE WATER SURFACE ELEVATION (MARMET POOL) WAS 589.17' AT THE TIME OF THE SURVEY. BASED ON USGS GAUGE 03198000.
- 3. VERTICAL DATUM IS IN FEET AND REFERENCES NAVD 1988 BASED ON USGS DOCUMENTATION.
- 4. HORIZONTAL DATUM IS IN FEET AND REFERENCES THE WEST VIRGINIA SOUTH STATE PLANE COORDINATE SYSTEM NAD 1983.

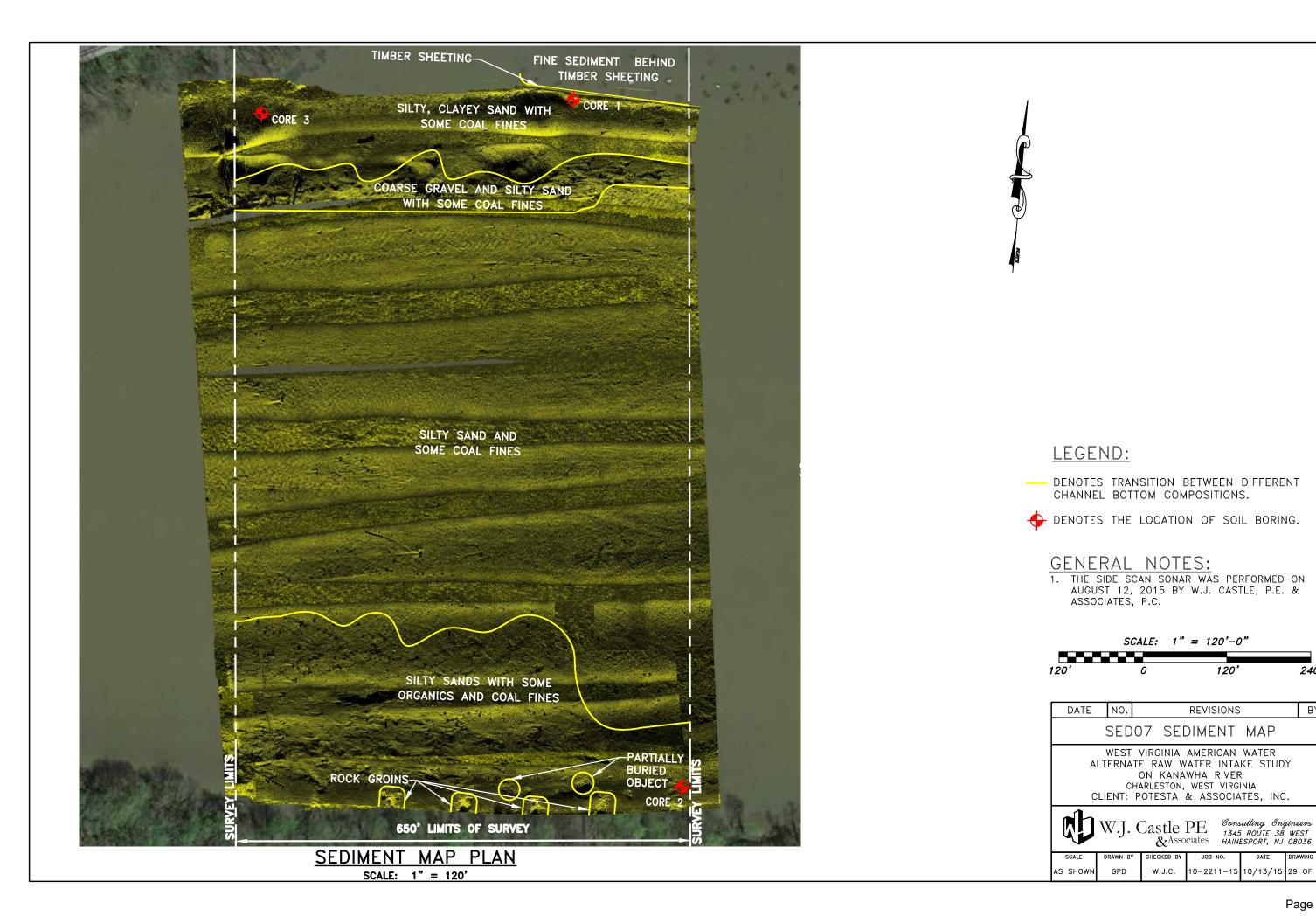

SED06 FATHOMETRIC SURVEY
WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY
ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA CLIENT: POTESTA & ASSOCIATES, INC.
MI WI Castle DE Consulting Engineers

REVISIONS




BY

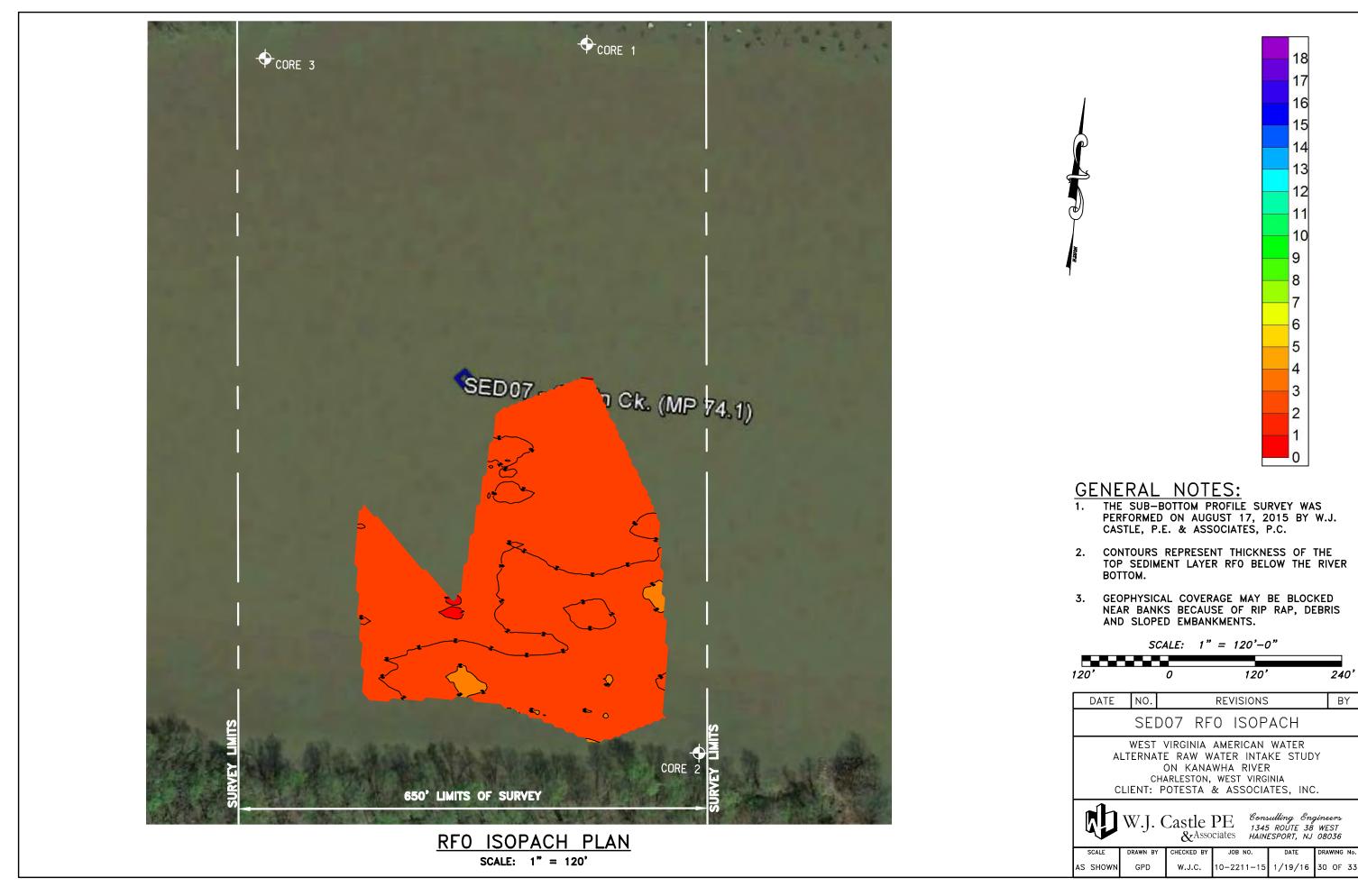



Start	ct Nation : Date	me: Kanaw	nawha County, WV Weather/ Temp. : 8-17-15 Field Engineer/ Geologist :												
	r Leve	el Observ	562.4 Ft	∑ Immedia	ate : Offse		nark/Elev.: ▼ At completion/# hours /_ Boring Depth: 1.4 Ft.								Ft.
Stratum Elevation/ Depth (ft.)	Lithology				k Description	1		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf
562.1 0.33	5.555 5.555 5.555 5.555	=	SILTY CLAY Fine Grained S	SILTY SAND					-						
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15								ROPING	5	OD			AME	N F T	WDF
BORING LOG RECORD	PO	TE	STA	7012 Mac Charlesto Telephon	n, WV 2	25301		BORING HSA - Hollow SFA - Solid F CC - Concre MD - Mud D HA - Hand A RC - Rock C	Stem A light Au te Corin rilling auger	Auger iger	SS ST RO BS	S - Γ - C -	Split Shell Rock	oy Tul	n Sample be Sample Sample

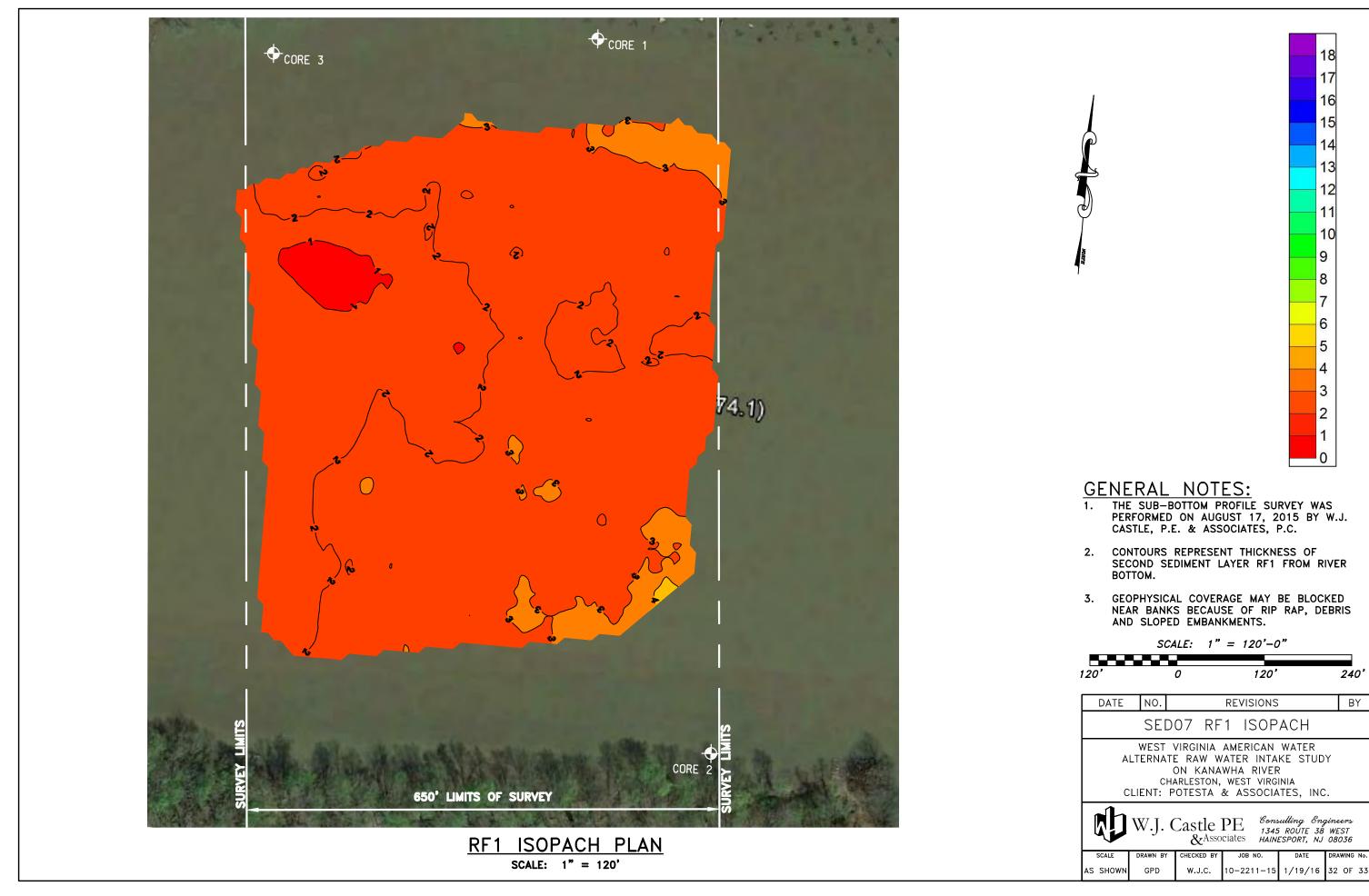
Client: West Virginia American Water Project No.: 0101-15-0018												
Project N	•	River Water Study		Boring Method: Direct Push								_
Location					Temp. :							-
Start Date: 08-17-15 Field Engineer/ Geologist: Completion Date: 08-17-15 Puillen - W. J. Contle & Approximate										-		
Completion Date: 08-17-15 Driller: W. J. Castle & Associates												
Surface Elevation: 556.5 Ft. Benchmark/Elev.:												
Water Level Observations: ✓ Immediate: ✓ At completion/# hours /												
Station: Offset: Boring Depth: 3.6 Ft.											₹t.	
Stratum Elevation/ Depth (ft.) Lithology		Soil/Rock Description			Sample Type /Number	Sample Depth SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf	
556.3 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Gray, Fine Grained SII Gray, Fine to Medium	TY SAND with Coarse Gravel Grained SILTY SAND with Trace Orgo	anics			-						
				RO	ORING MI	5		S	SAMP		VDE	
_P (OTESTA	7012 MacCorkle Ave Charleston, WV 2530 Telephone: 304-342-	1	HSA - SFA - CC - MD - HA -	Hollow St Solid Fligh Concrete C Mud Drilli Hand Aug Rock Cori	em Auger ht Auger Coring ing er	S S R B	S - T - C -	Split Shelb	Spoor y Tub Core	Sample e Sampl Sample	

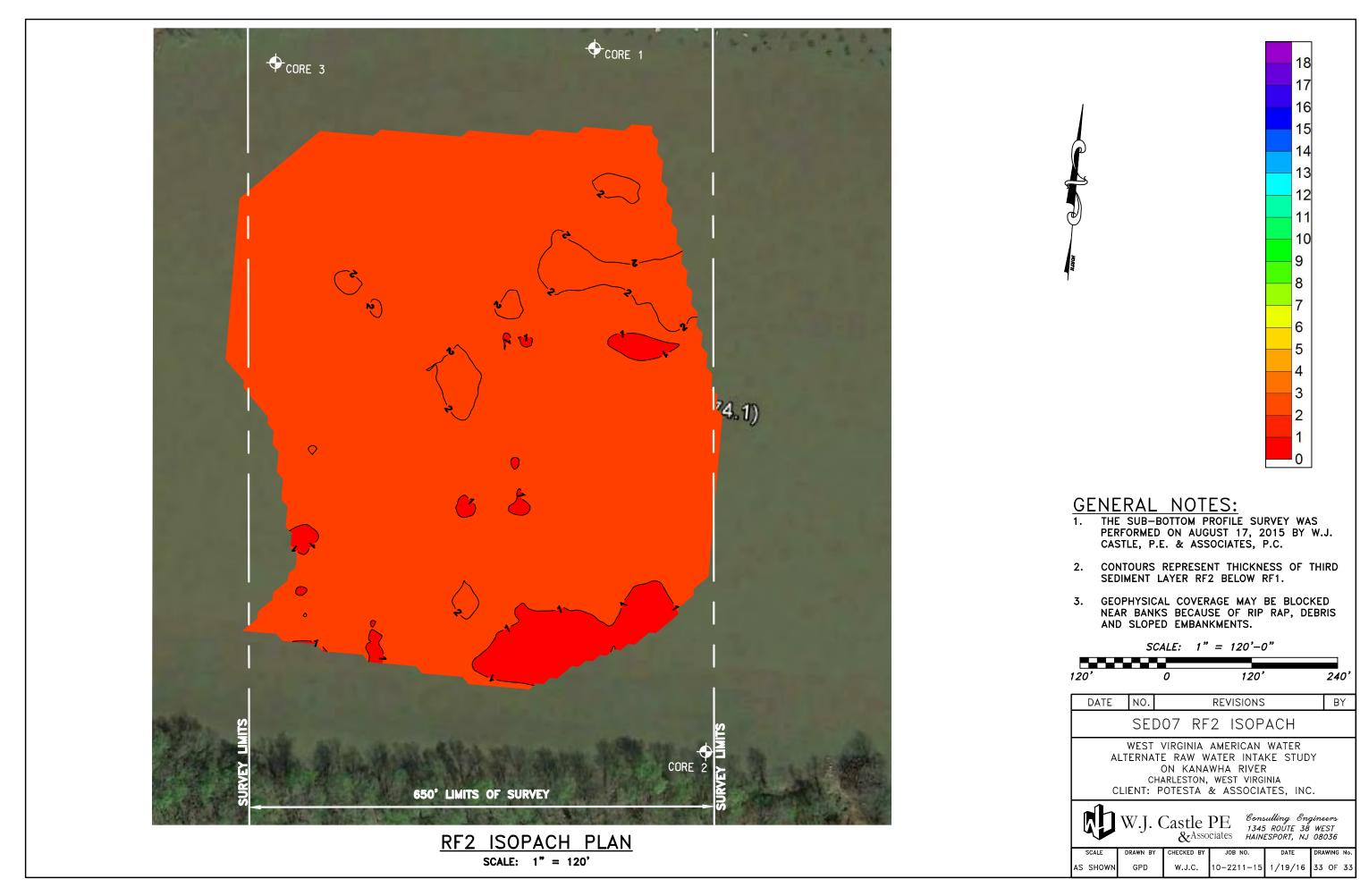
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15

Client: West Virginia American Water Project No.: 0101-15-0018 Boring Method: Direct Push Location: Kanawha County, WV Weather/ Temp.: Completion Date: 08-17-15 Driller: W. J. Castle & Associates										
Surface Elevation: 543.7 Ft. Water Level Observations: Station:	ediate :	mark/Elev.: At completion/# hours /_ Boring Depth: 1.4 Ft.								
Soil/ Soil/ Soil/ Dark Brown, Fine Grained SILTY SA	Rock Description ND and Coal Fines	Sample Type /Number Sample	Depth SPT Blows	Moisture (%) Recovery (%)	RQD (%) Unconf. Comp., Tsf					
543.2 Brown, Medium to Coarse Grained SA 542.9 0.83 Black COAL FINES with Medium Gr 542.3			-							
POTESTA 7012 N Charles Teleph			5	SAME	LE TYPE					
POTESTA 7012 N Charles Teleph	MacCorkle Ave SE ston, WV 25301 one: 304-342-1400	HSA - Hollow Ste SFA - Solid Flight CC - Concrete C MD - Mud Drillir HA - Hand Auge RC - Rock Corin	m Auger Auger oring Ig r	SS - Split ST - Shell	Spoon Sample by Tube Sample Core Sample					


10-2211-15 10/13/15 29 OF 33


240


BY

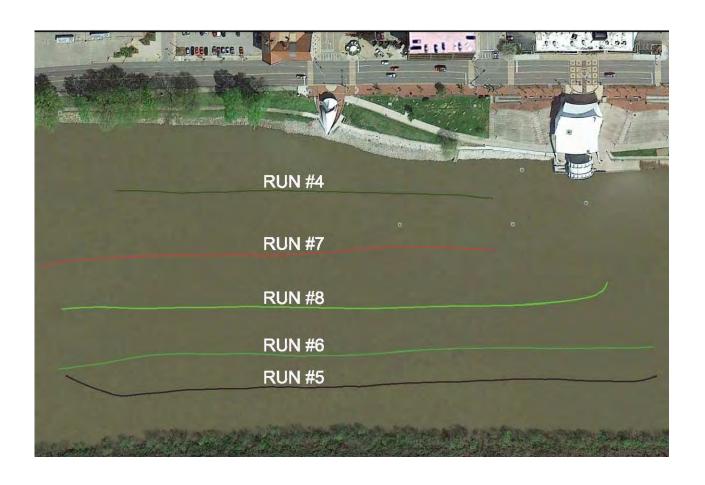

120'

REVISIONS

BORING LOG RECORD

Proje Loca	Project Name: Kanawha River Water Study					Project No.: 0101-15-0018 Soring Method: Direct Push Veather/ Temp.:								
Com	Completion Date: 08-17-15 Driller: W. J. Castle & Associates													
Wate	Surface Elevation: 570.4 Ft. Benchmark/Elev.: Water Level Observations: ☐ Immediate:								Ft.					
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Description	1		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf		
5,770	?	Dark Gray, Fine Grained SILTY SAND				-								
567.9 2.5 567.3 3.08	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Dark Gray, Medium Grained SILTY SAND to Coarse Coal Fines Dark Gray, Fine Grained, SILTY CLAYEY SAND	GRAVEL with	Trace		=								
						5_								
564.8						_								
15						_								
TESTA.GDT 9/3/						-								
101-15-0018.GPJ PC						10								
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	P(7012 MacCorkle & Charleston, WV 2 Telephone: 304-3	25301	BORING METHOD SAM HSA - Hollow Stem Auger SFA - Solid Flight Auger CC - Concrete Coring RC - Ro		Split Shell Rock	MPLE TYPE blit Spoon Sample nelby Tube Sample ock Core Sample ag Sample							

BORING LOG RECORD


Client : West Virginia	American Water	Project No. : 01	01-15-00	18						
Project Name : Kanaw	vha River Water Study	Boring Method: Direct Push								
Location : Kanawha C	County, WV	Weather/ Temp. :								
Start Date: 08-17-15	Field Eng	ineer/ Geologist :								
Completion Date: 08-										
Surface Elevation: 568 Ft. Benchmark/Elev.:										
Water Level Observation	Water Level Observations : \overline{Y} Immediate : \overline{Y} At completion/# hours \underline{Y}									
Station : Offset : Boring Depth: 7.3 Ft.										
		/be			Tsf					
Stratum Elevation/ Depth (ft.) Lithology		Sample Type //Number	s l	N-Value Moisture (%) Recovery	nf.					
Stratu Sleve Deptl	Soil/Rock Description	Samp	Sample Depth SPT Blows	N-Value Moisture (%) Recovery	RQD (%) (%) Unconf. Comp., 7					
	ed SILTY SAND AND ORGANICS	0.7	21 22H							
0.25 Cray, Fine Grain	ed SILTY SAND with Clay Layers									
567.0										
$1 \rangle \rangle \rangle$ Gray, Fine Grain	Gray, Fine Grained SILTY SAND with Some Organics									
[\(\frac{1}{2}\cdot\frac{1}{2}										
(), \(\frac{3}{2} \) \(\frac										
(; \(\frac{1}{2}\), \(\frac{1}{2}\)	(
(. \.(\)										
\[\langle \langle \lan										
564.6										
3.42 \rangle \rangle Gray, Fine Grain	ed SILTY SAND with Some Coal Fines and Organic	es								
\(\cdot \cdot \cdo										
(5.5.5)										
(· · · · · · · · · · · · · · · · · · ·										
	(· / · (· (·)		5_							
[2, 5, 2, 2] [2, 5, 6, 4]										
562.3 (\ (\	edium Grained SILTY SAND with Some Clay									
(' (' (' ()	·		-							
(. \.(\.\)										
(, (, ()										
560.7			-							
7.33										
© TO										
TA.G										
OTES										
ନ୍ଦ୍ର										
018.6										
-15-0										
0101			10							
ORD	BORING METHOD SAMPLE T HSA - Hollow Stem Auger SS - Split Spoor									
	POTESTA 7012 MacCorkle Ave SE Charleston, WV 25301 Telephone: 304-342-1400			SFA - Solid Flight Auger ST - Shelby Tube Sample						
	Charleston, WV 25301	CC - Concrete Coring RC - Rock Core Sample BS - Bag Sample								
PORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDI	Telephone: 304-342-1400	HA - Hand Aug	HA - Hand Auger							
м		RC - Rock Cori	RC - Rock Coring							

BORING LOG RECORD

Proje Loca Start													
Surface Elevation: 567.8 Ft. Benchmark/Elev.: Water Level Observations: ☐ Immediate: ☐ At completion/# hours / ☐ ☐ Boring Depth: ☐ 2.6 Ft. ☐ 2.6 Ft. ☐ Completion/# hours / ☐ Comple							 Ft.						
Stratum Elevation/ Depth (ft.)	Lithology	Soil/Rock Desc	=		Sample Type /Number	Sample Depth	SPT Blows	N-Value	Moisture (%)	Recovery (%)	RQD (%)	Unconf. Comp., Tsf	
567.1 0.67 566.5	?	Dark Gray, Fine Grained SILTY SAND with So Dark Gray, Fine Grained SILTY SAND AND O	-			_							
1.33 565.7 2.08 565.2		Gray SILTY CLAY Gray, Medium to Coarse Grained SAND and CO	OAL FINES with Coar	rse Gravel		-							
2.58						-							
						5_							
						_							
1/3/15						_							
POTESTA.GDT 9						=							
0101-15-0018.GP.					PODING	10	OD.			ABAT		NADE	
BORING LOG RECORD 0101-15-0018.GPJ POTESTA.GDT 9/3/15	P (7012 MacCor Charleston, V Telephone: 3		SF CC MI HA	O - Mud Dri	Stem A ght Au Corin lling ger	uger	SS ST RO BS	S - Γ - C -	Split Shell Rock	oy Tul	n Sample be Sample Sample	

2015 KANAWHA RIVER SEDIMENT STUDY

APPENDIX A: SIDE SCAN RAW IMAGES

Photo 1: Side Scan Sonar Track Lines

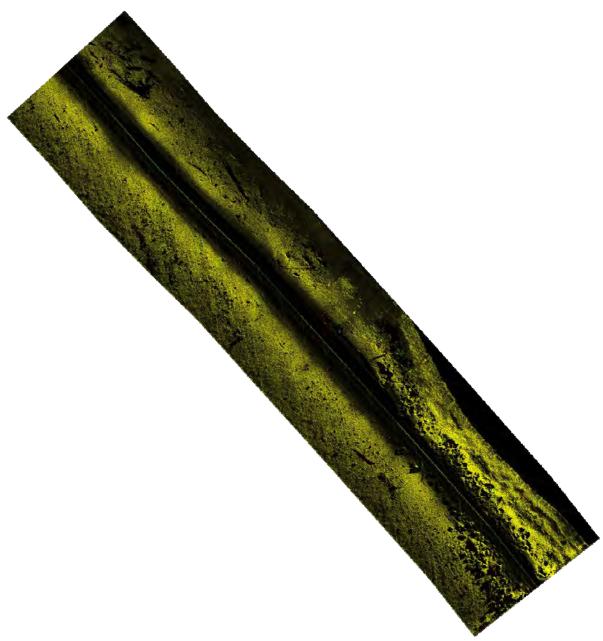


Photo 2: Run #4

Photo 3: Run #5

Photo 4: Run #6

Photo 5: Run #7

Photo 6: Run #8

Photo 7: Side Scan Sonar Track Lines

Photo 8: Run #17

Photo 9: Run #18

Photo 10: Run #19

Photo 11: Run #20

Photo 12: Run #21

Photo 13: Run #22

Photo 14: Side Scan Sonar Track Lines

Photo 15: Run #6

Photo 16: Run #7

Photo 17: Run #8

Photo 18: Run #9

Photo 19: Run #10

Photo 20: Run #11

Photo 21: Run #12

Photo 22: Side Scan Sonar Track Lines

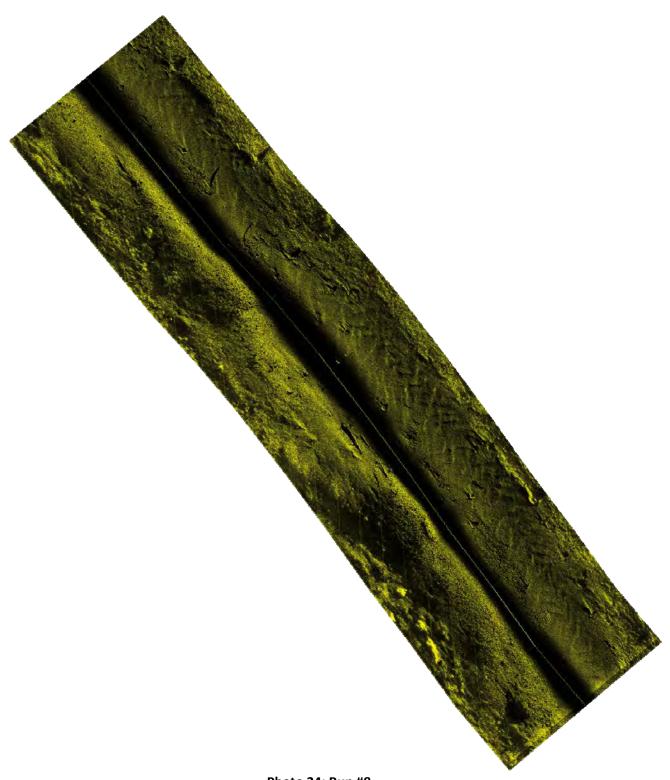


Photo 24: Run #8

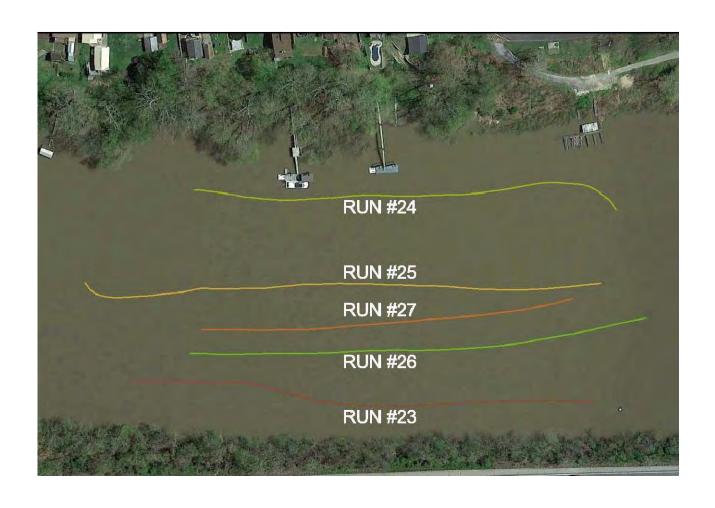



Photo 25: Run #9

Photo 26: Run #10

Photo 27: Side Scan Sonar Track Lines

Photo 31: Run #26

Photo 32: Run #27

Photo 33: Side Scan Sonar Track Lines

Photo 34: Run #18

Photo 35: Run #19

Photo 36: Run #20

Photo 37: Run #21

Photo 38: Run #22

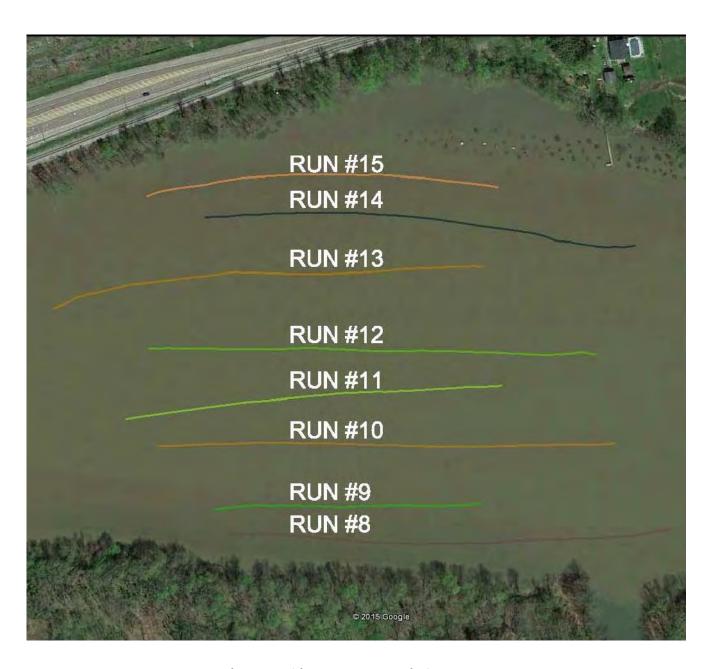

Photo 39: Run #23

Photo 40: Run #24

Photo 41: Run #25

Photo 42: Side Scan Sonar Track Lines

Photo 43: Run #8

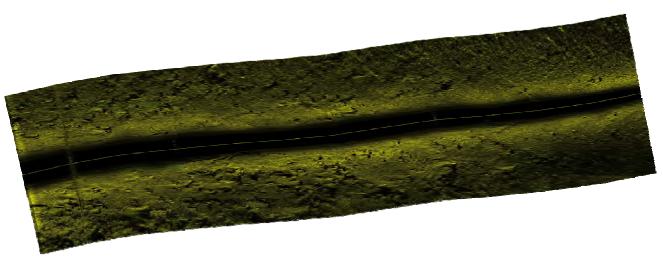


Photo 44: Run #9

Photo 45: Run #10



Photo 46: Run #11

Photo 47: Run #12

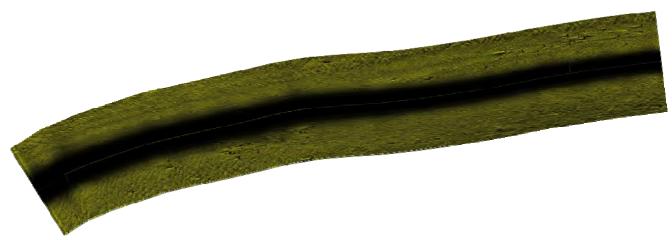
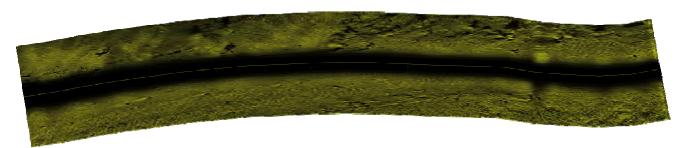
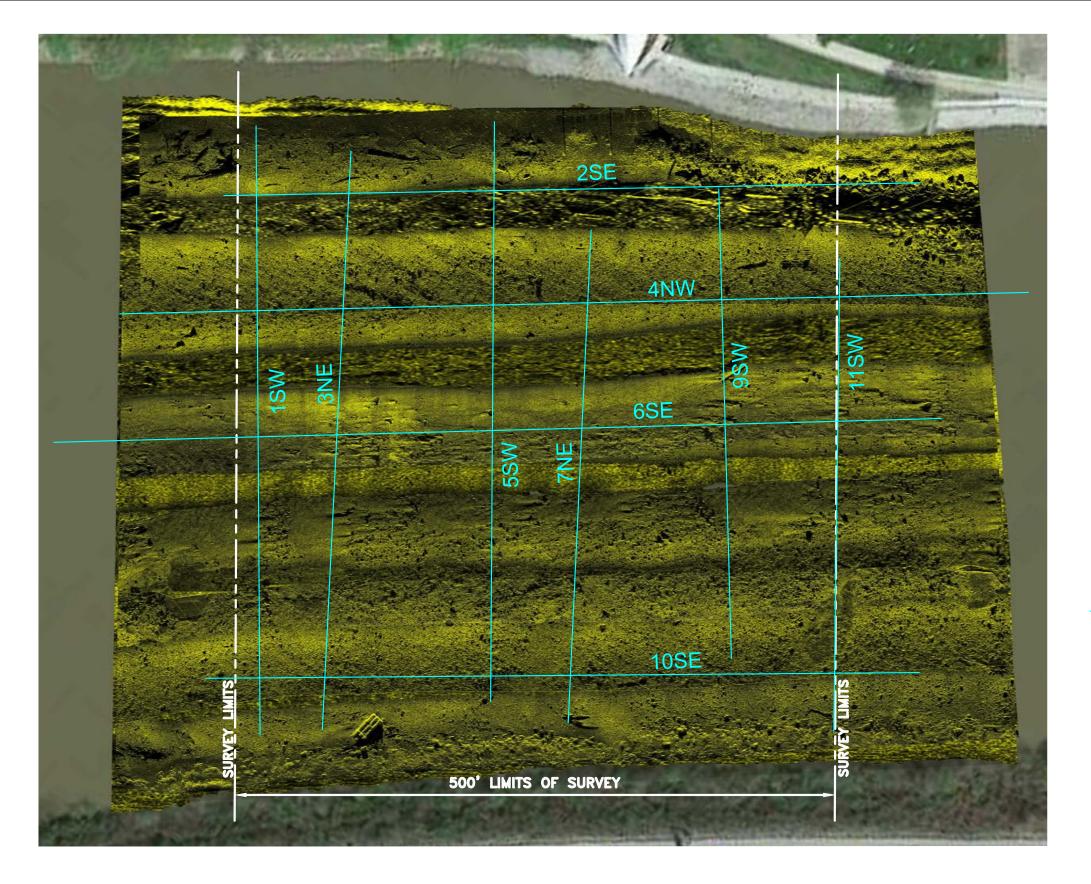


Photo 48: Run #13




Photo 49: Run #14

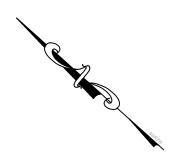


Photo 50: Run #15

2015 KANAWHA RIVER SEDIMENT STUDY

APPENDIX B: SUB-BOTTOM PROFILE RAW IMAGES

LEGEND:

DENOTES LOCATION OF SUB-BOTTOM PROFILER RUN.

GENERAL NOTES:

1. THE SUB-BOTTOM PROFILER WAS PERFORMED ON AUGUST 19, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.

REVISIONS BY DATE NO.

SED01 SUB-BOTTOM TRACKS

WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

CHECKED BY AS SHOWN W.J.C. 10-2211-15 10/16/15

SUB-BOTTOM TRACK PLAN SCALE: 1" = 80'

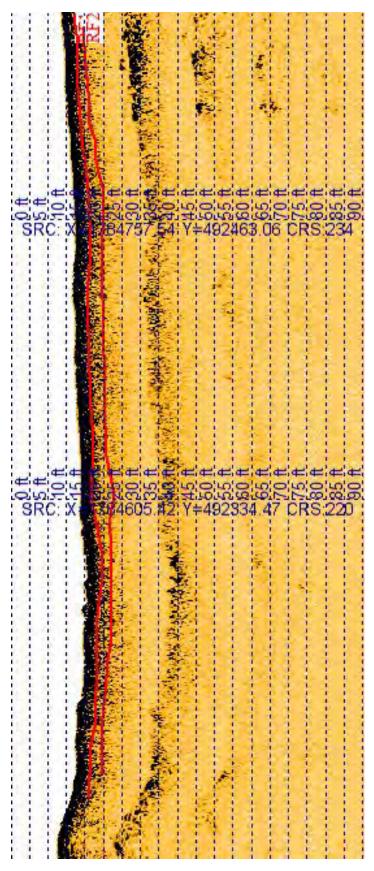


Photo 1: 1SW

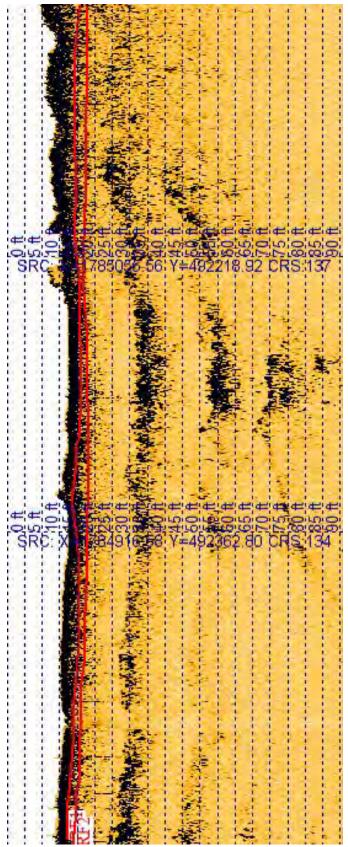


Photo 2: 2SE

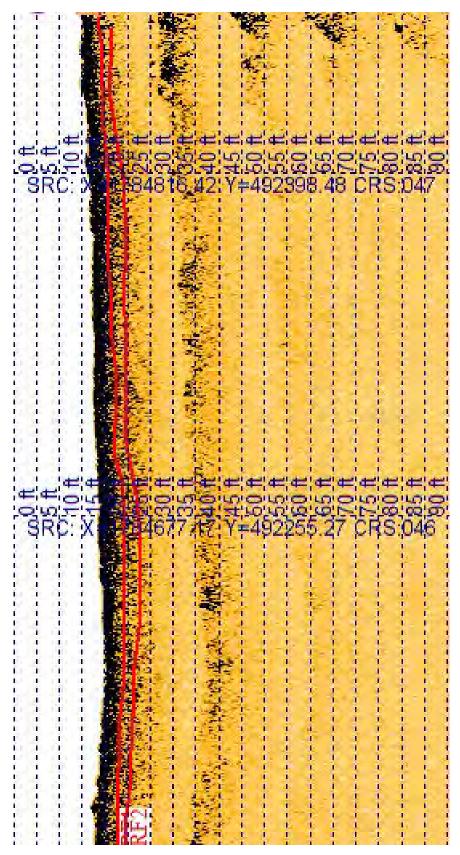


Photo 3: 3NE

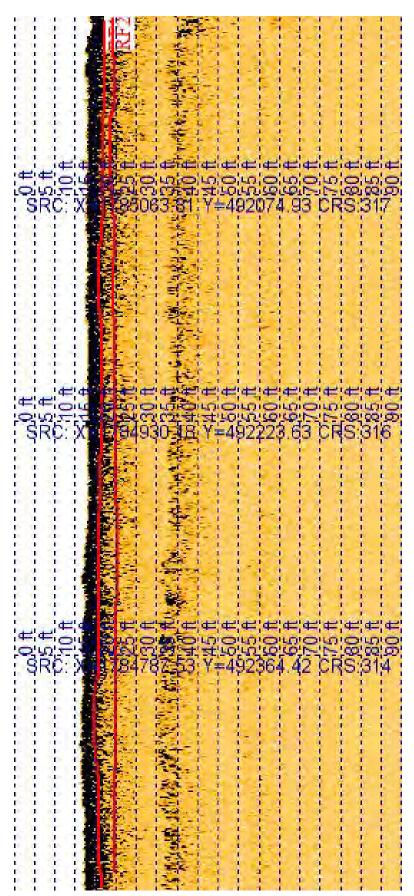


Photo 4: 4NW

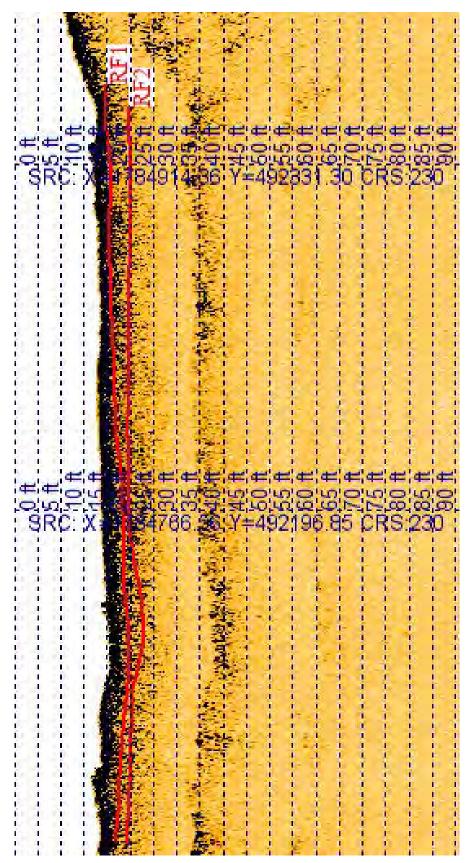


Photo 5: 5SW

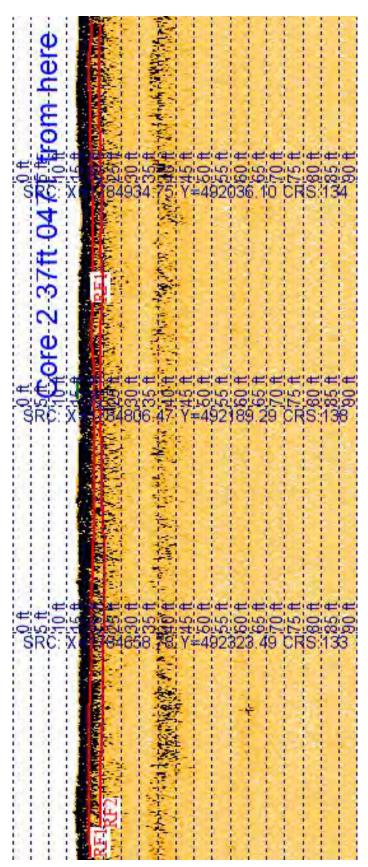
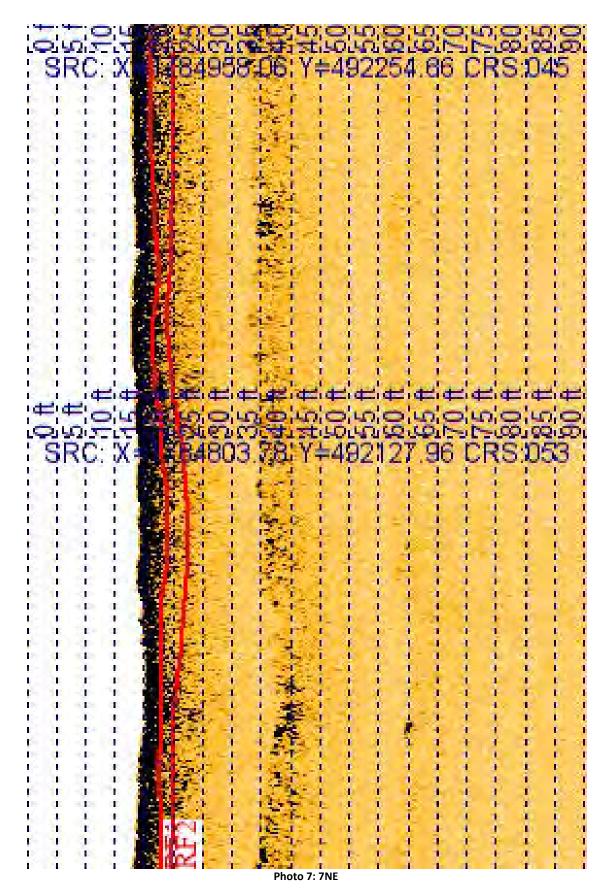
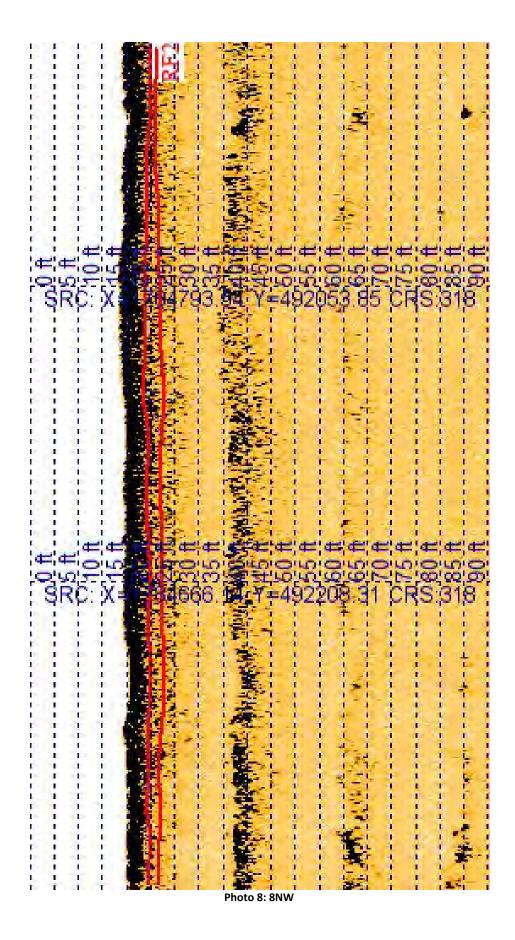
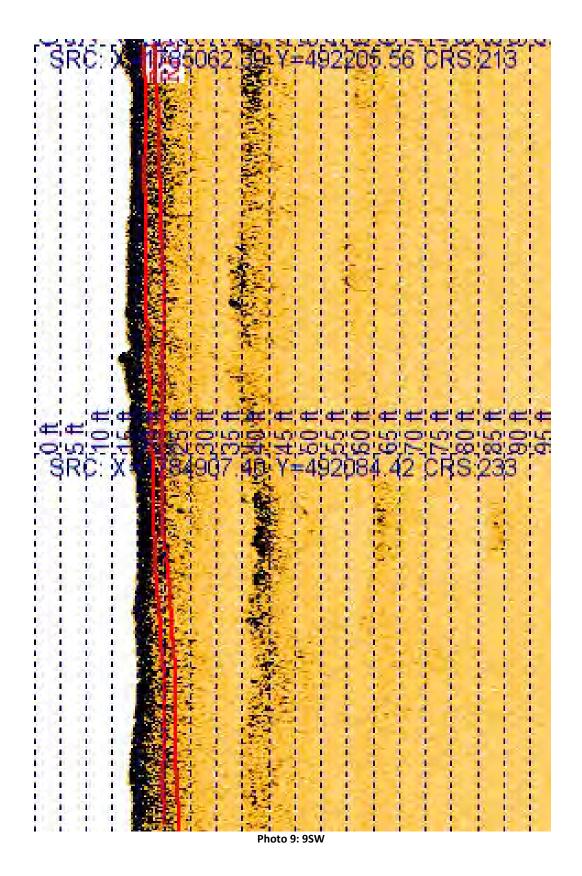
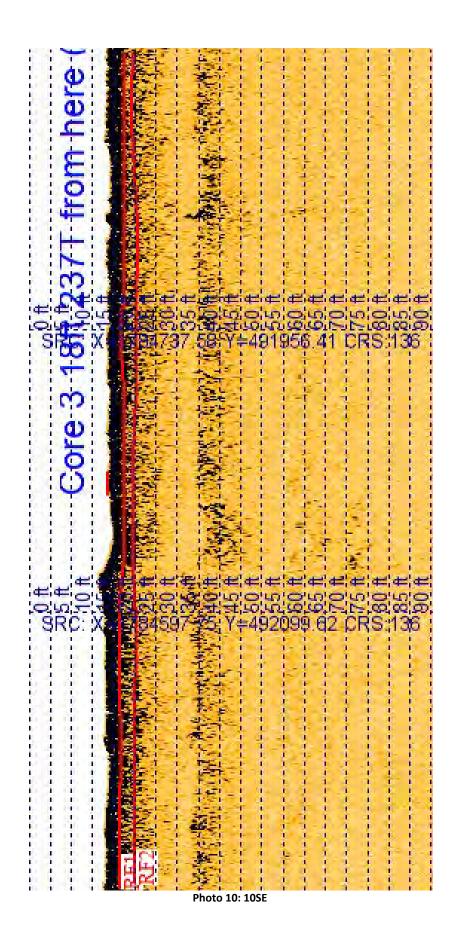






Photo 6: 6SE

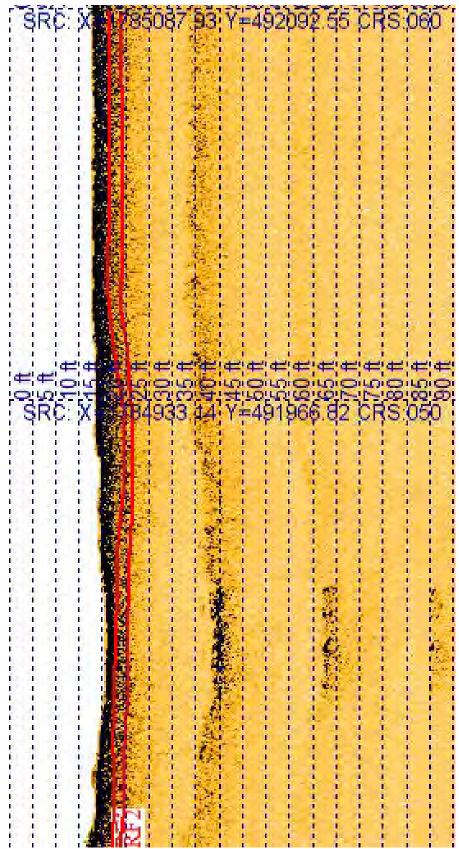
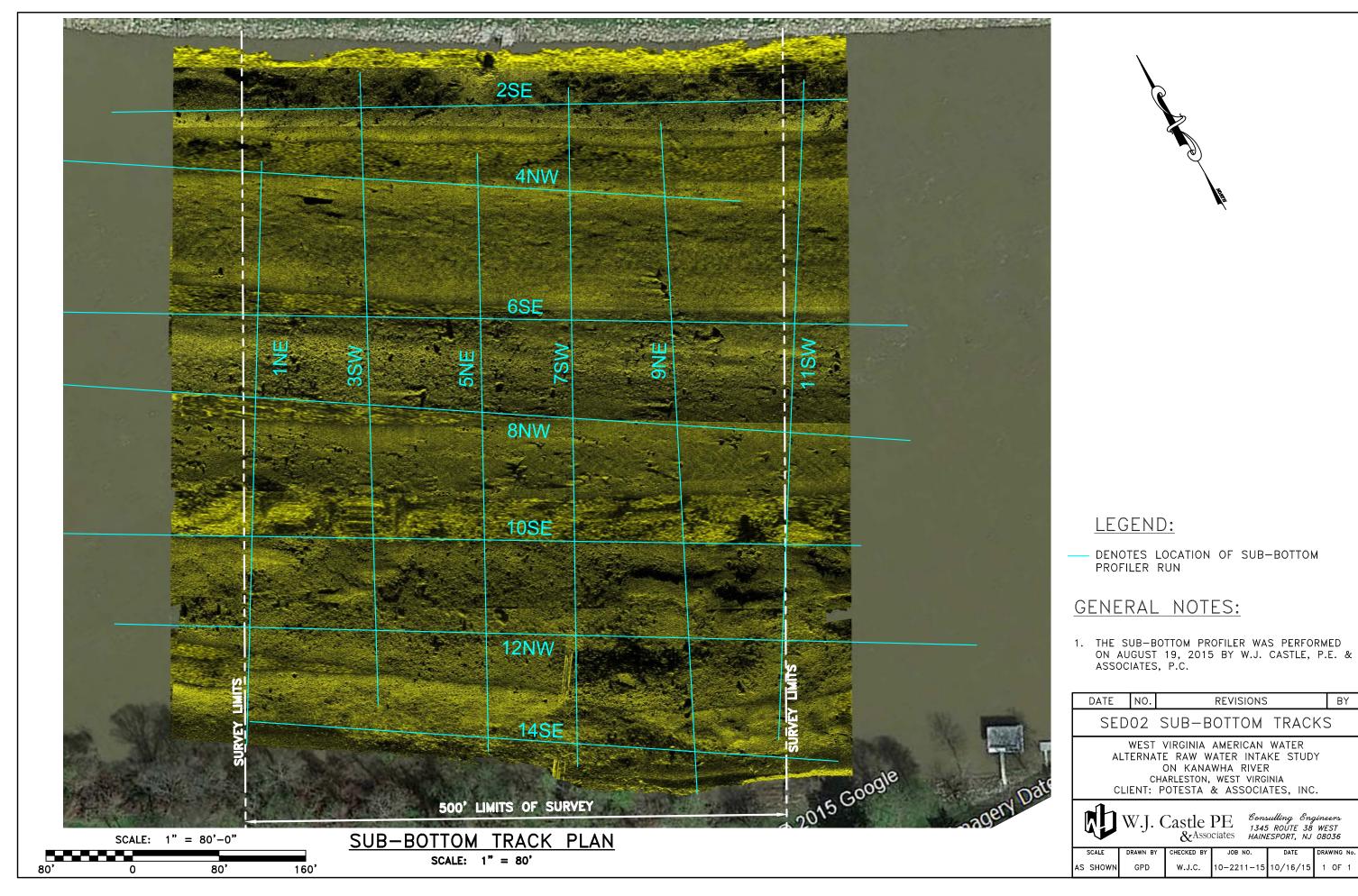



Photo 11: 11NE

SED02

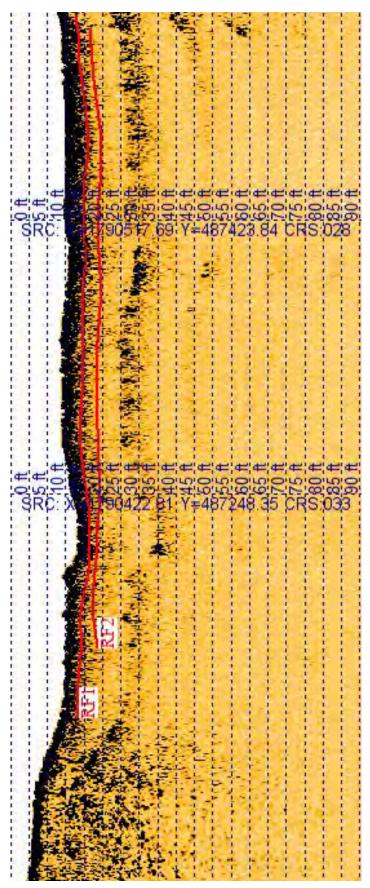


Photo 12: 1NE

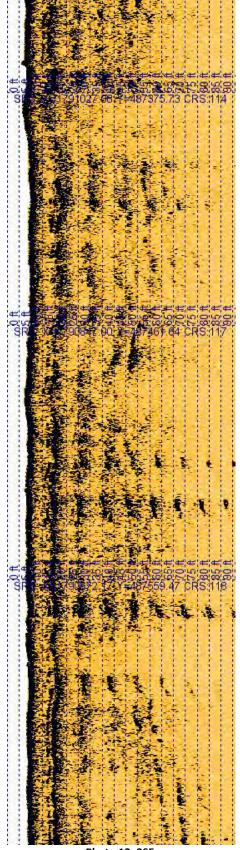


Photo 13: 2SE

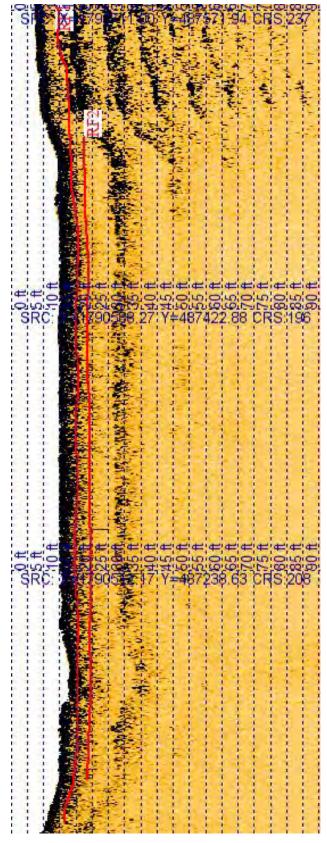


Photo 14: 3SW

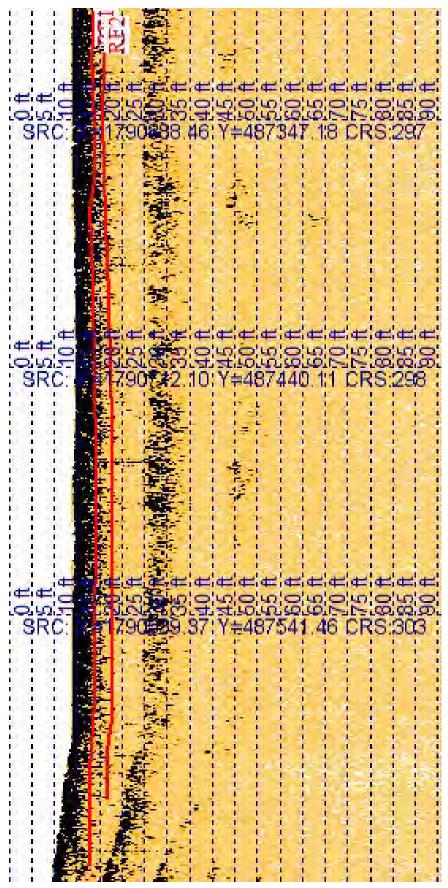


Photo 15: 4NW

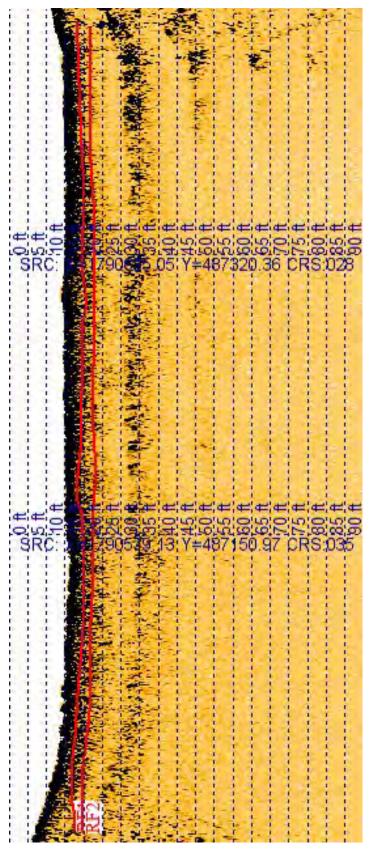


Photo 16: 5NE

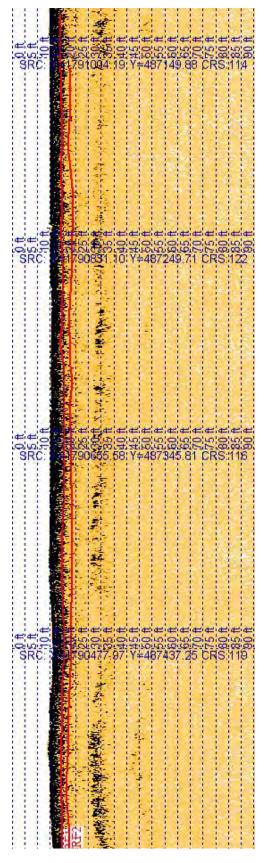


Photo 17: 6SE

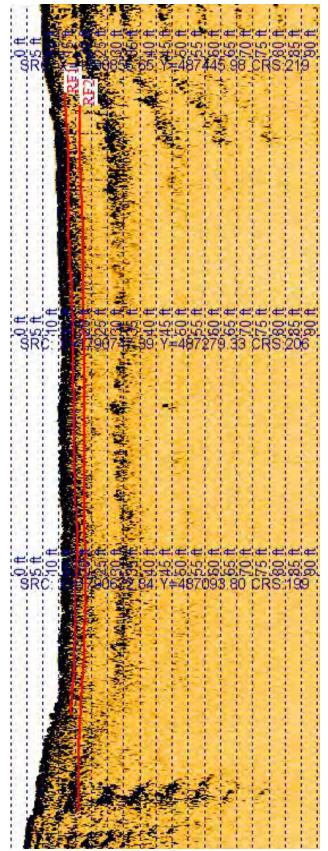


Photo 18: 7SW

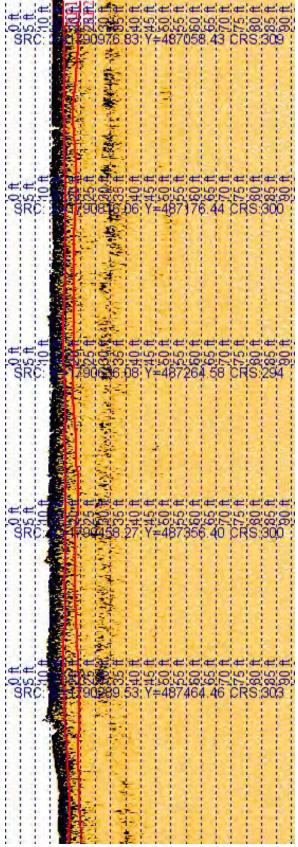


Photo 19: 8NW

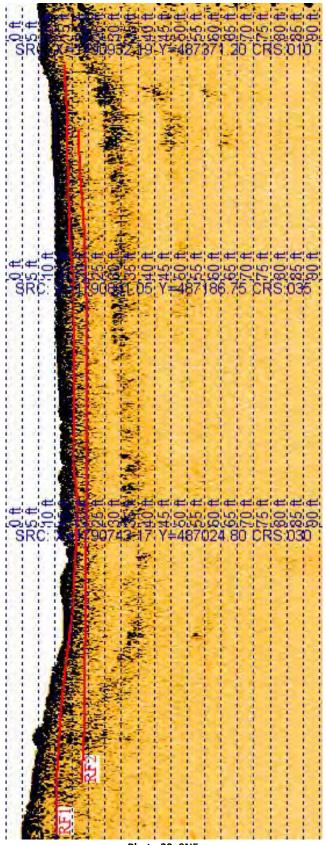


Photo 20: 9NE

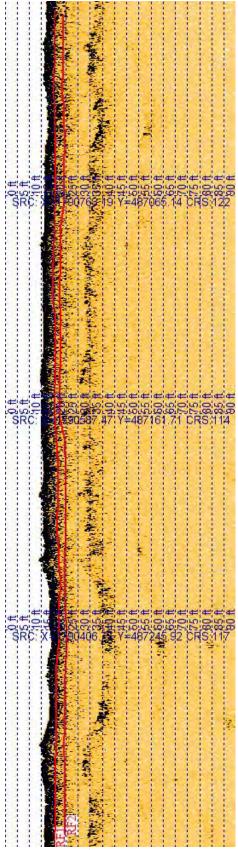


Photo 21: 10SE

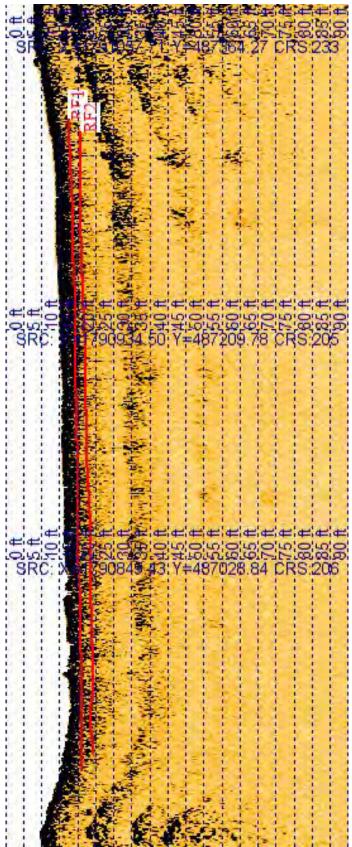


Photo 22: 11SW

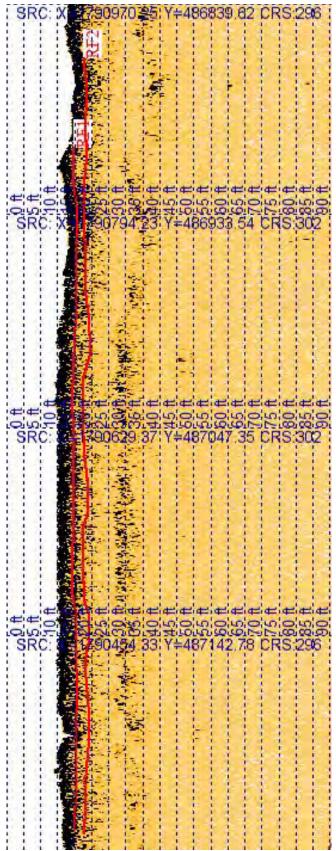


Photo 23: 12NW

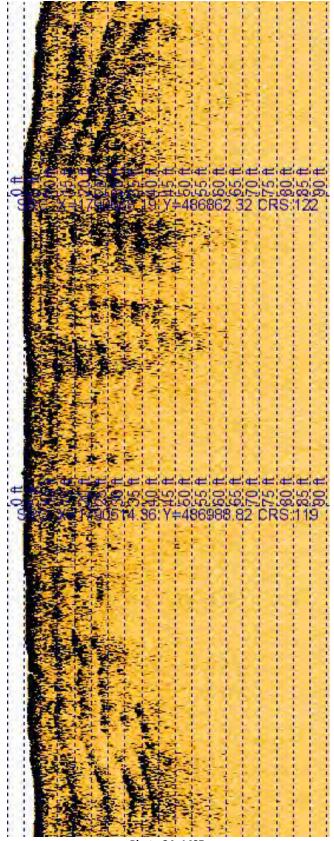
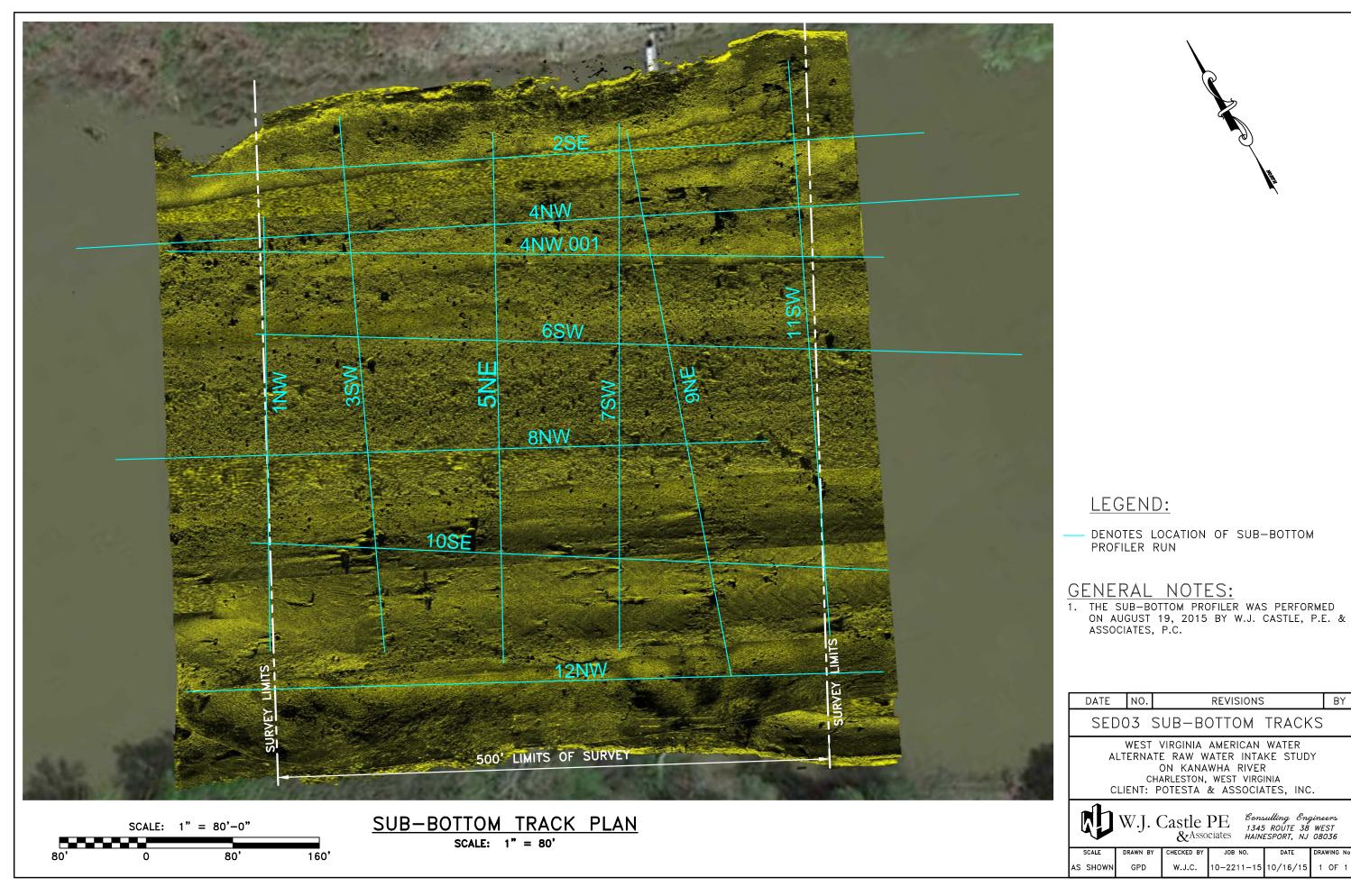



Photo 24: 14SE

SED03

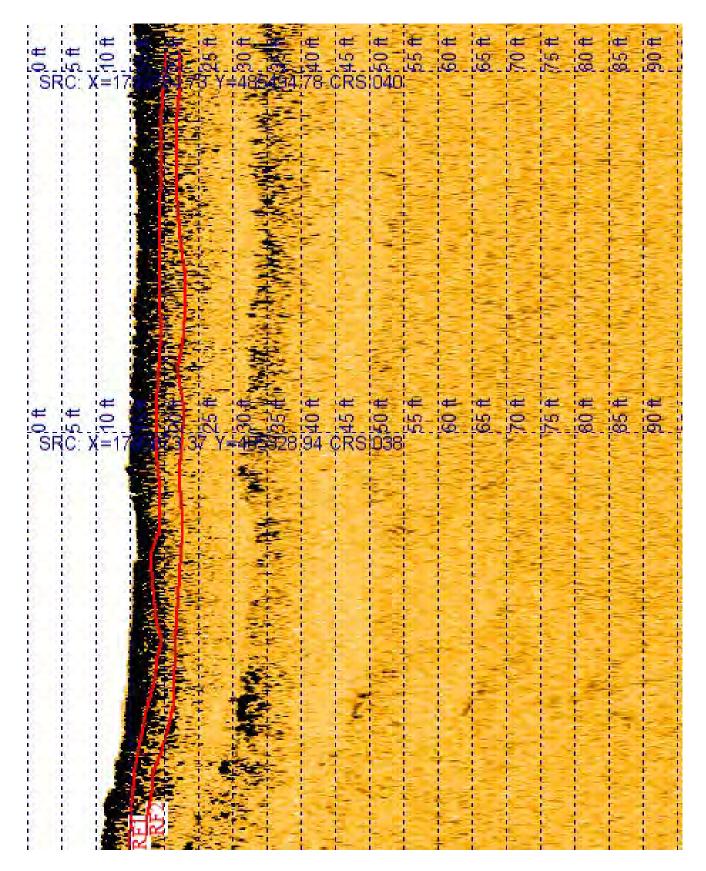
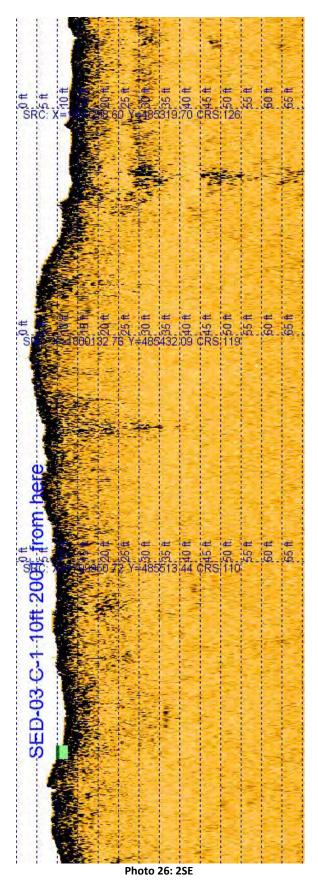



Photo 25: 1NW

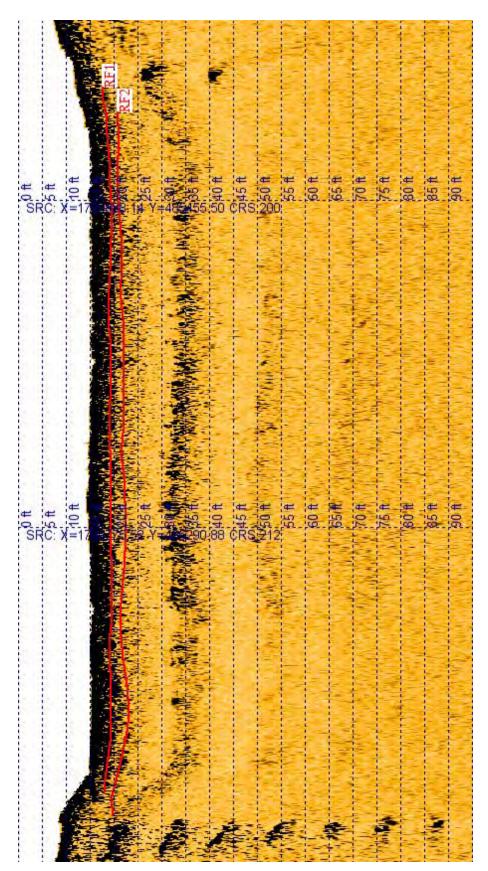


Photo 27: 3SW

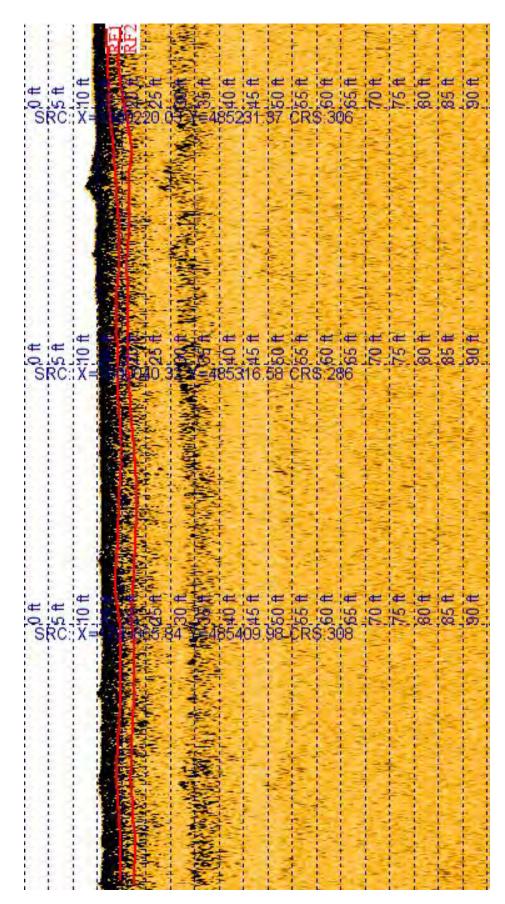


Photo 28: 4NW.001

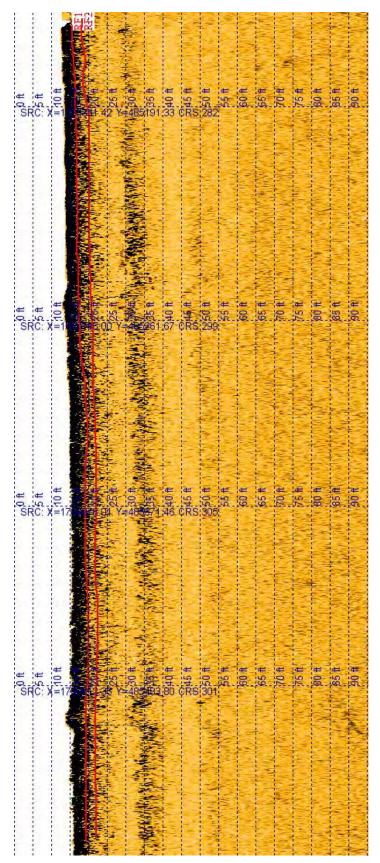


Photo 29: 4NW

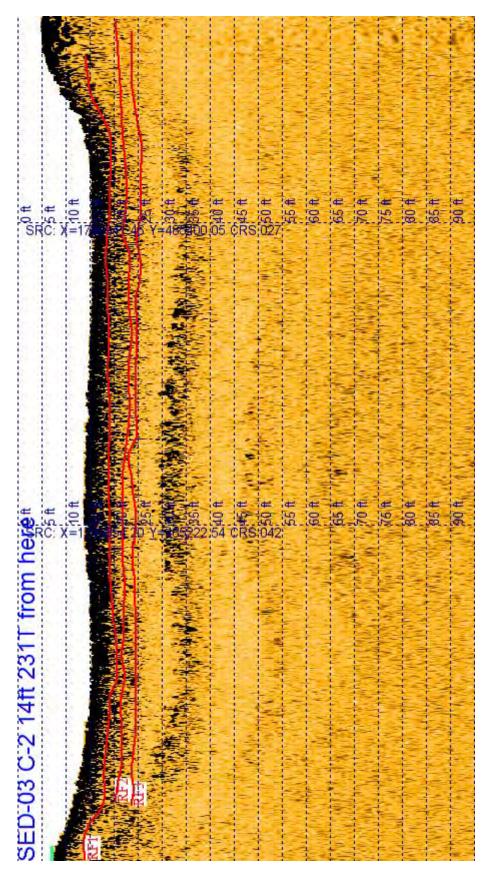


Photo 30: 5NE

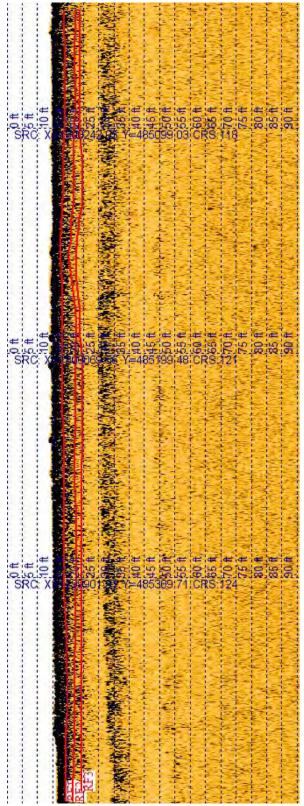
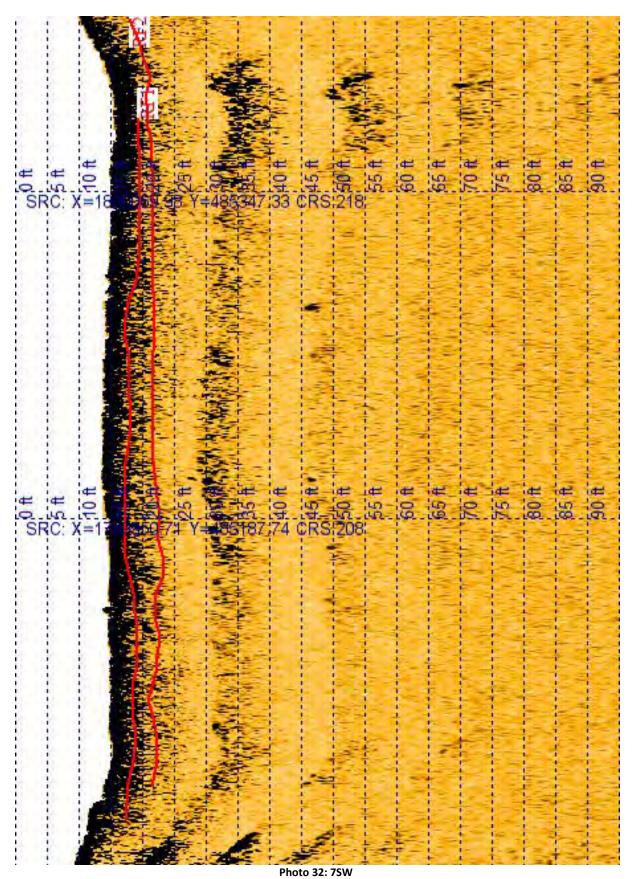



Photo 31: 6SW

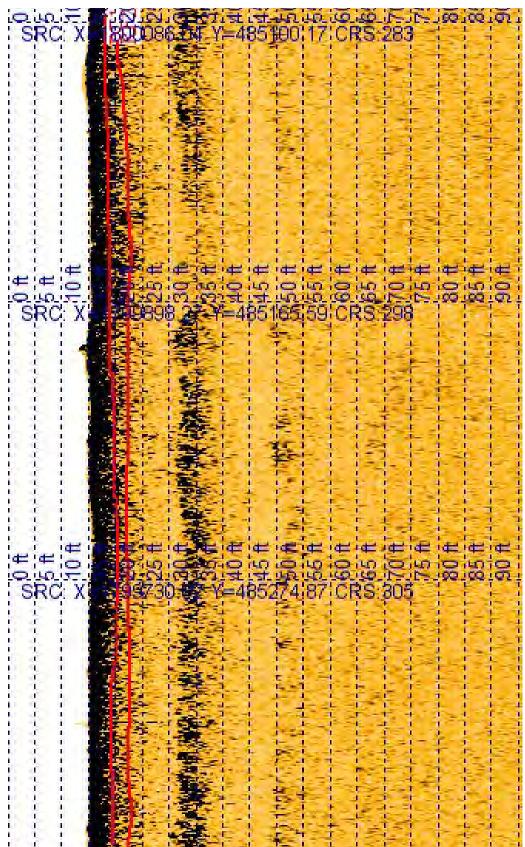


Photo 33: 8NW

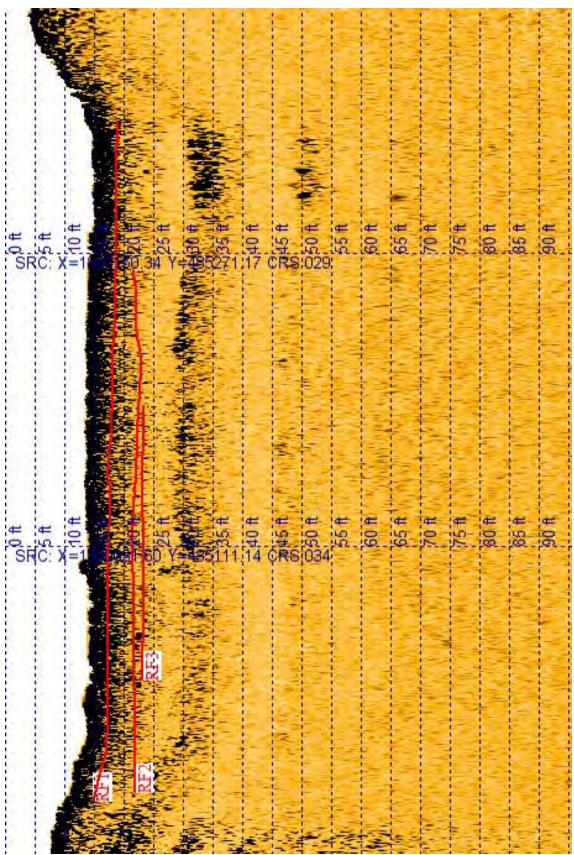
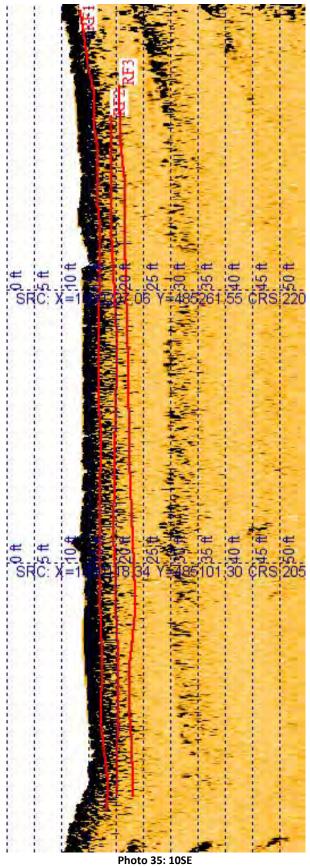



Photo 34: 9NE

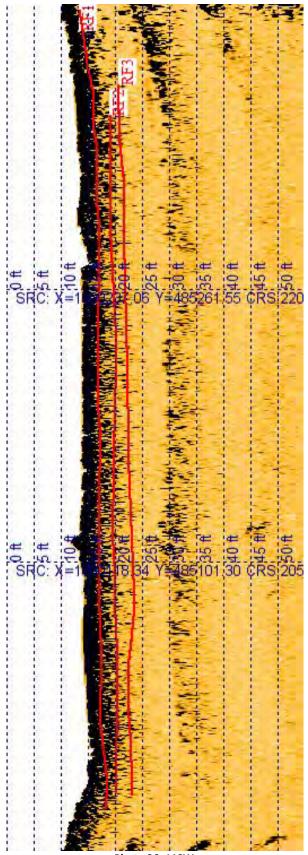
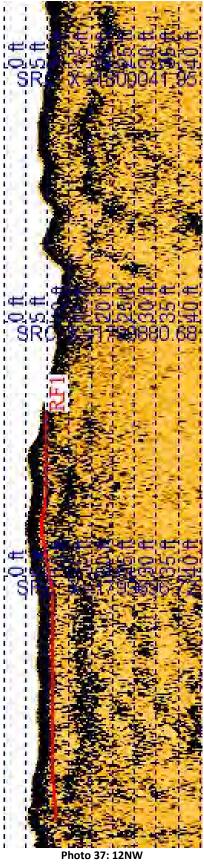
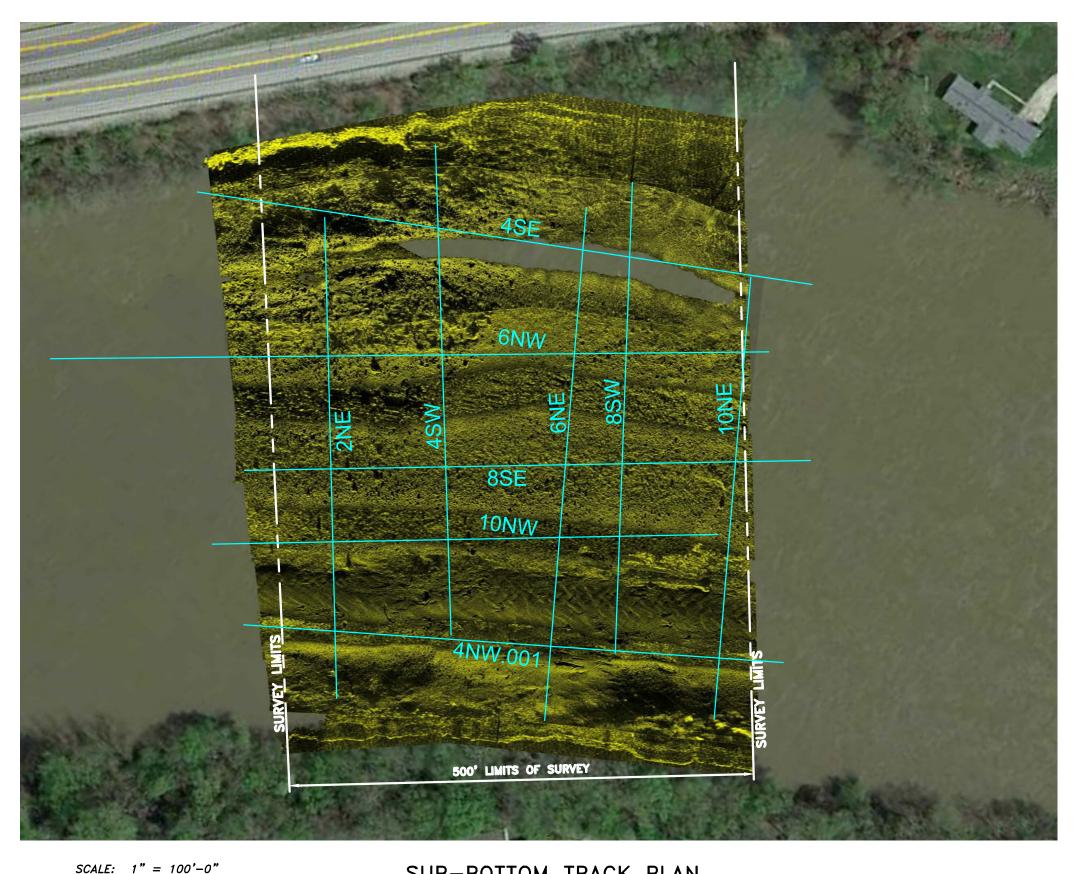
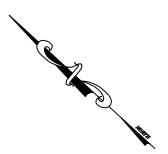
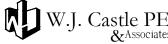





Photo 36: 11SW

SED04

LEGEND:

DENOTES LOCATION OF SUB-BOTTOM PROFILER RUN.


GENERAL NOTES:

1. THE SIDE SCAN SONAR WAS PERFORMED ON AUGUST 18, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.

REVISIONS BY DATE NO.

SED04 SUB-BOTTOM TRACKS

WEST VIRGINIA AMERICAN WATER ALTERNATE RAW WATER INTAKE STUDY ON KANAWHA RIVER CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

W.J. Castle PE & Consulting Engineers 1345 ROUTE 38 WEST HAINESPORT, NJ 08036

CHECKED BY W.J.C. 10-2211-15 10/16/15

100'

100'

200'

SCALE: 1" = 100'

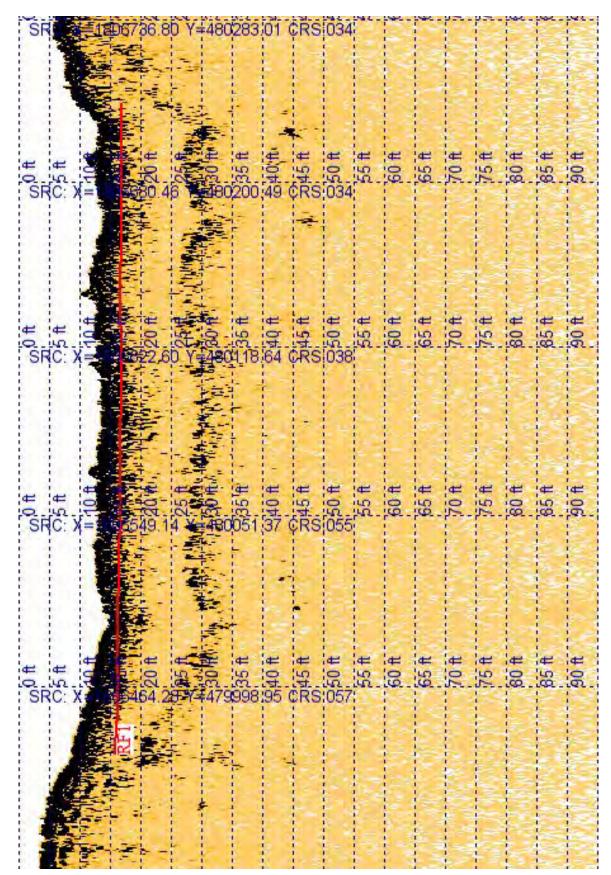


Photo 38: 2NE

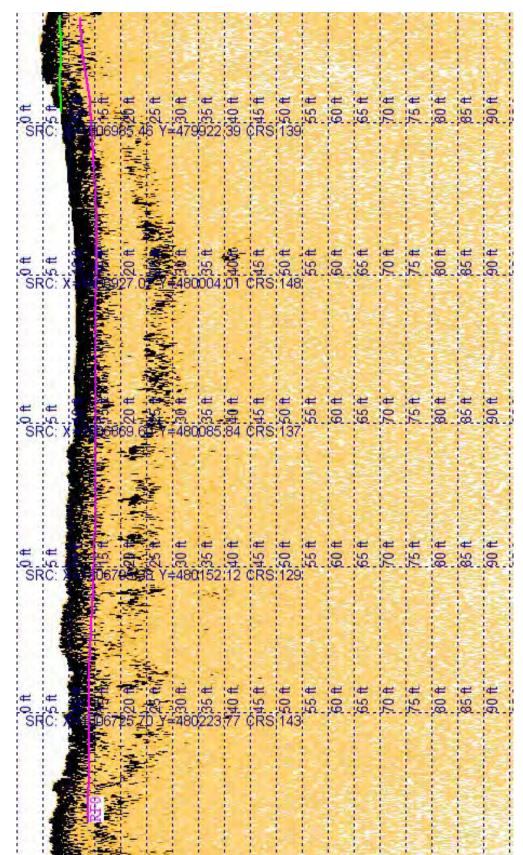


Photo 39: 4SE

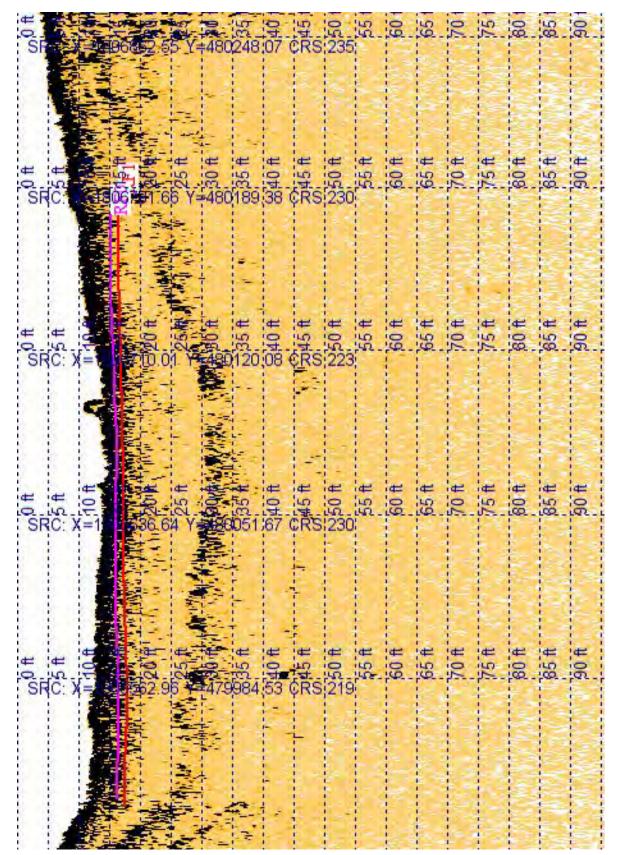


Photo 40: 4SW

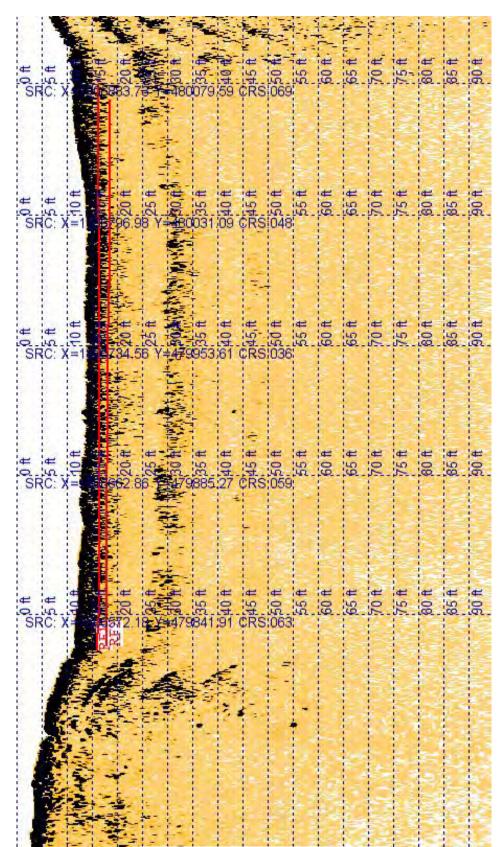


Photo 41: 6NE

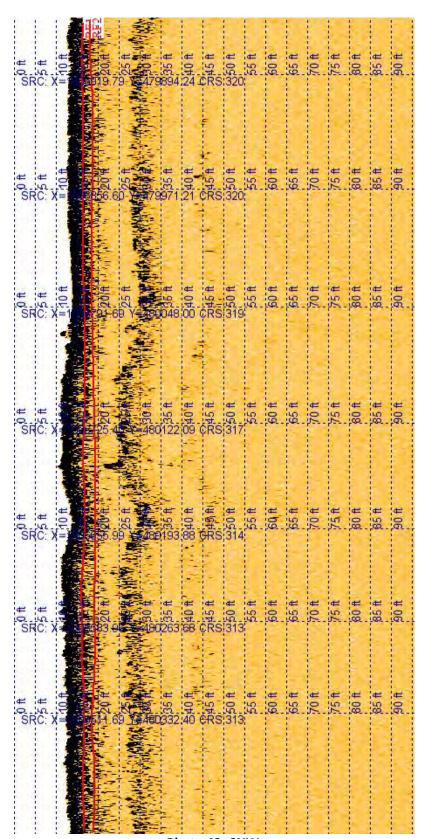


Photo 42: 6NW

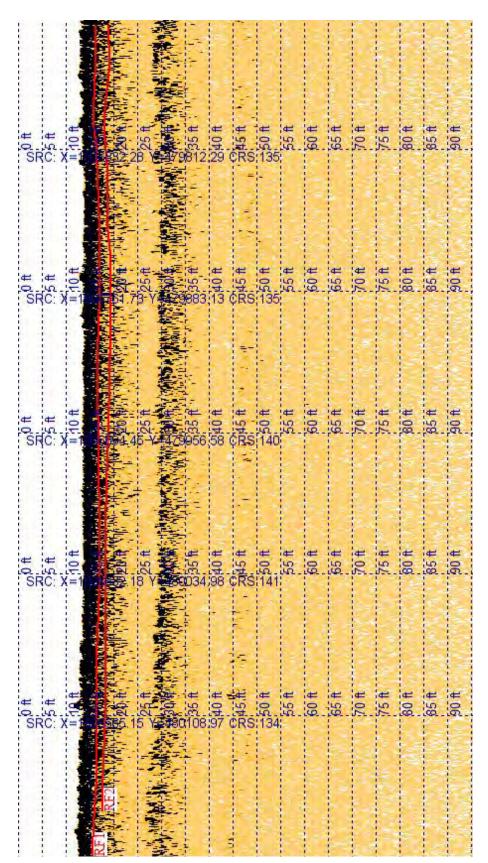


Photo 43: 8SE

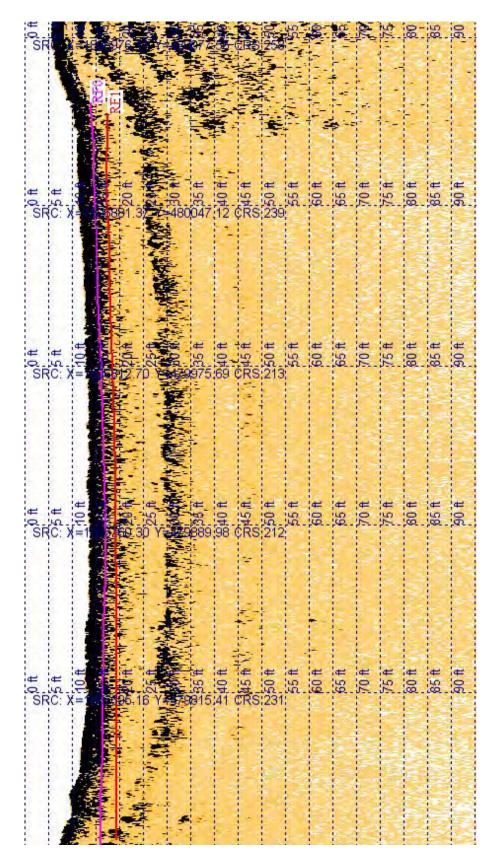


Photo 44: 8SW

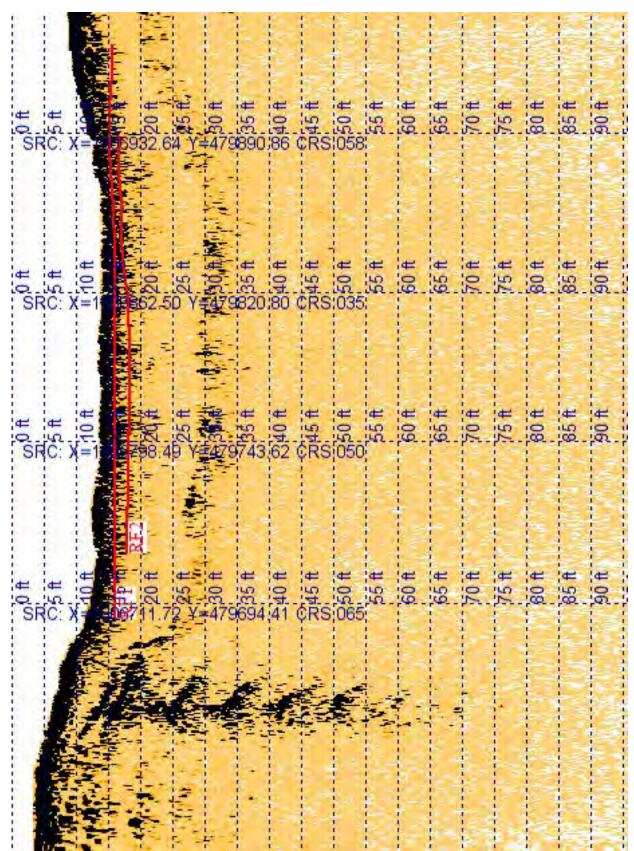
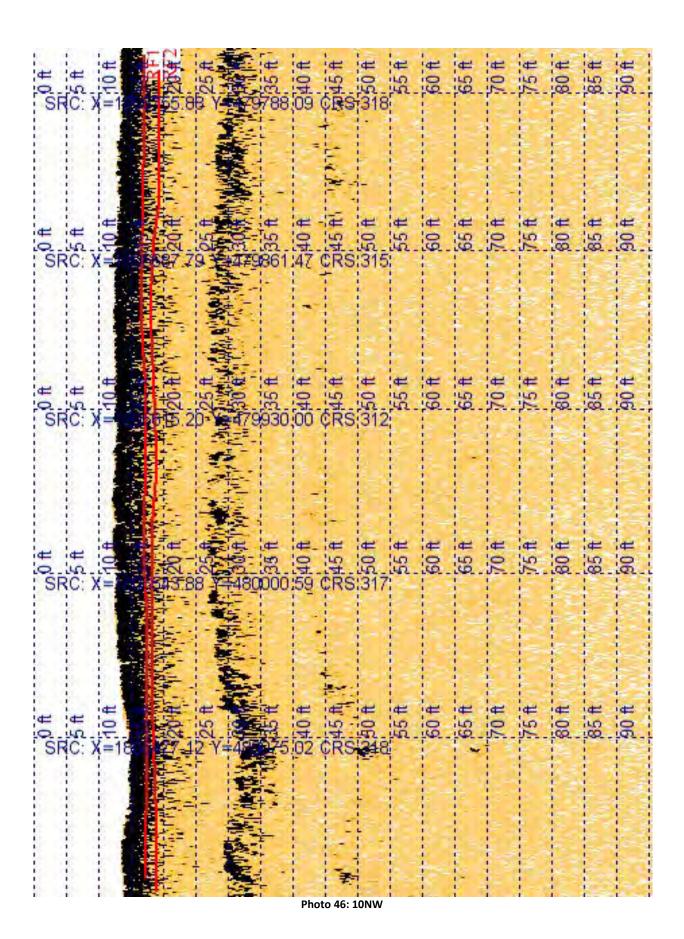



Photo 45: 10NE

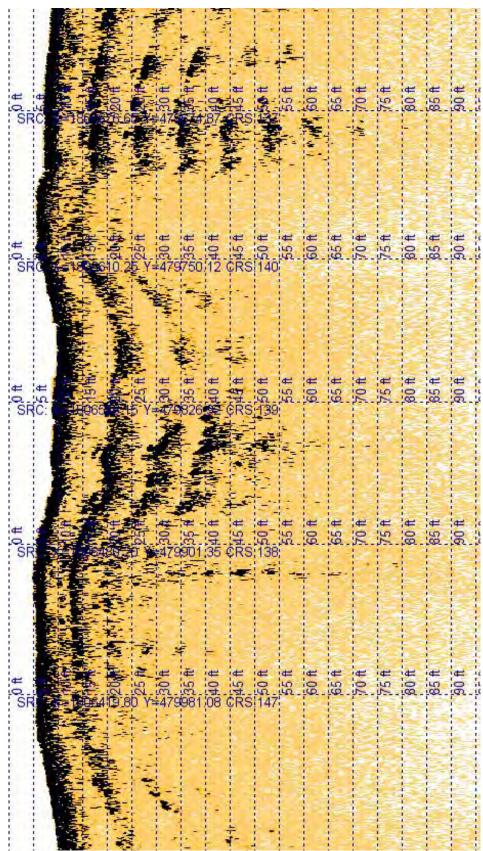


Photo 47: 12SE

SED05

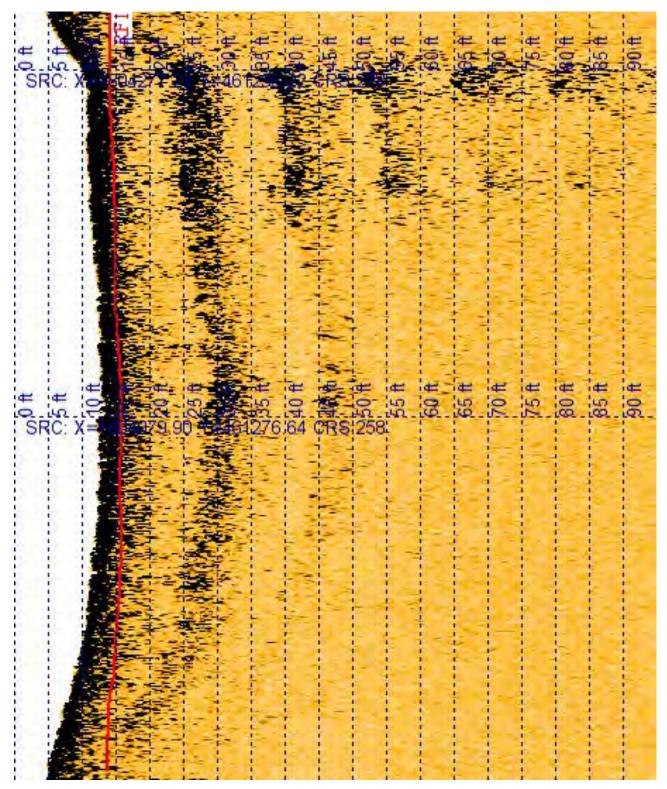


Photo 48: 1W

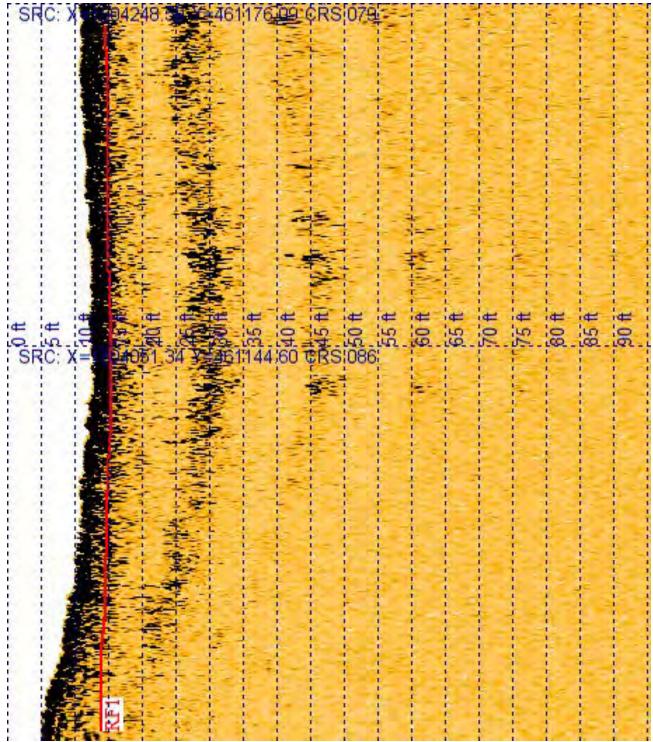


Photo 49: 3E

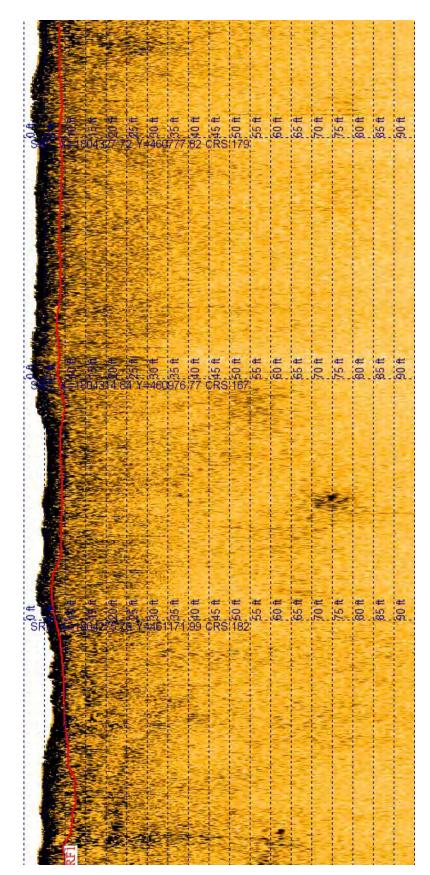
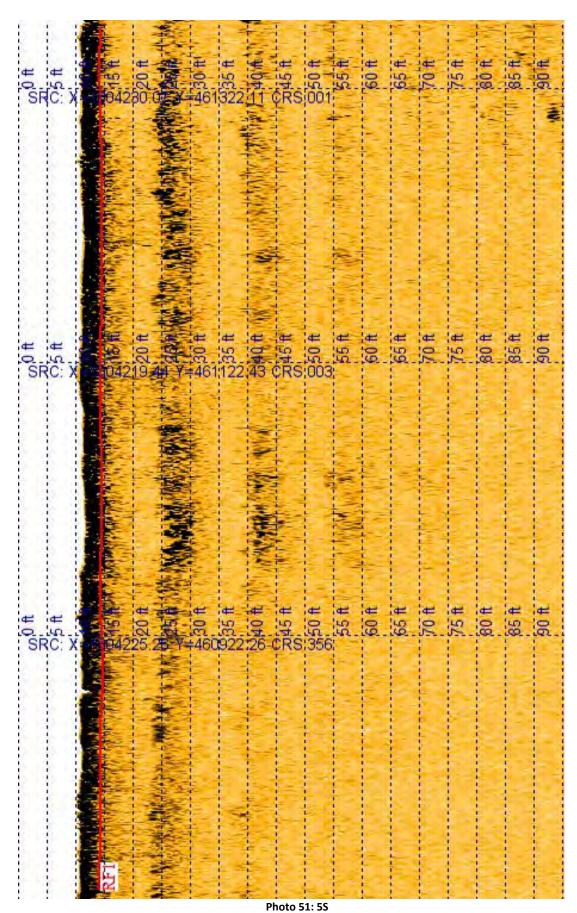



Photo 50: 3N.002

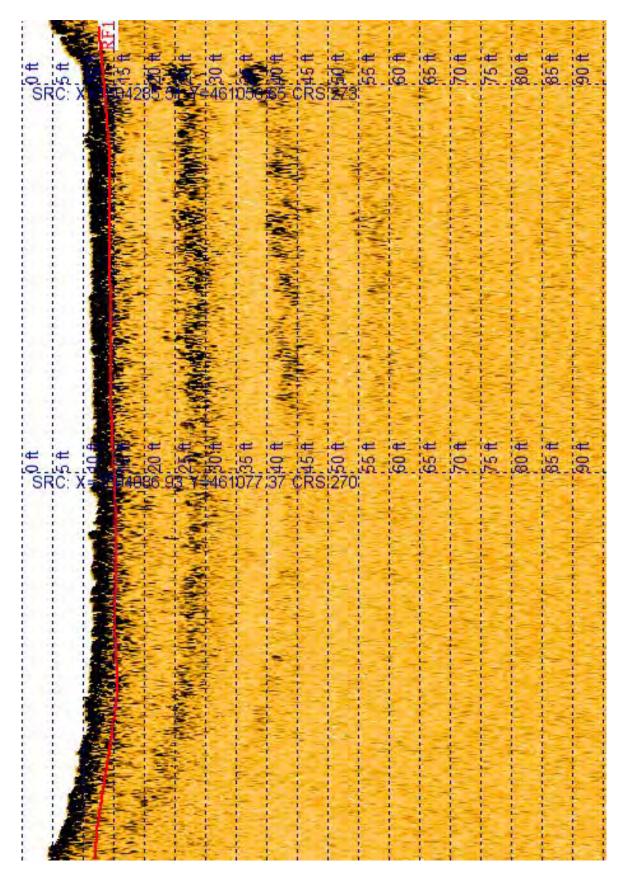


Photo 52: 5W

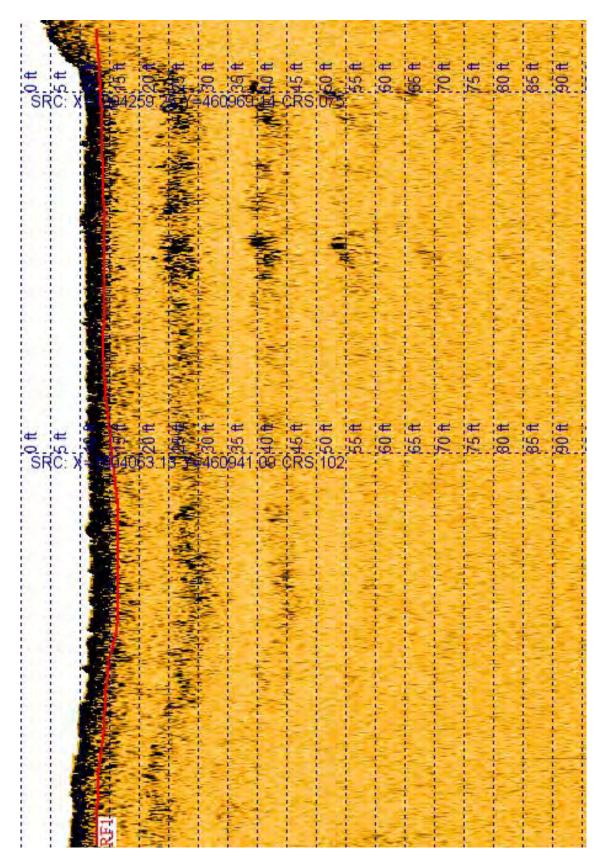
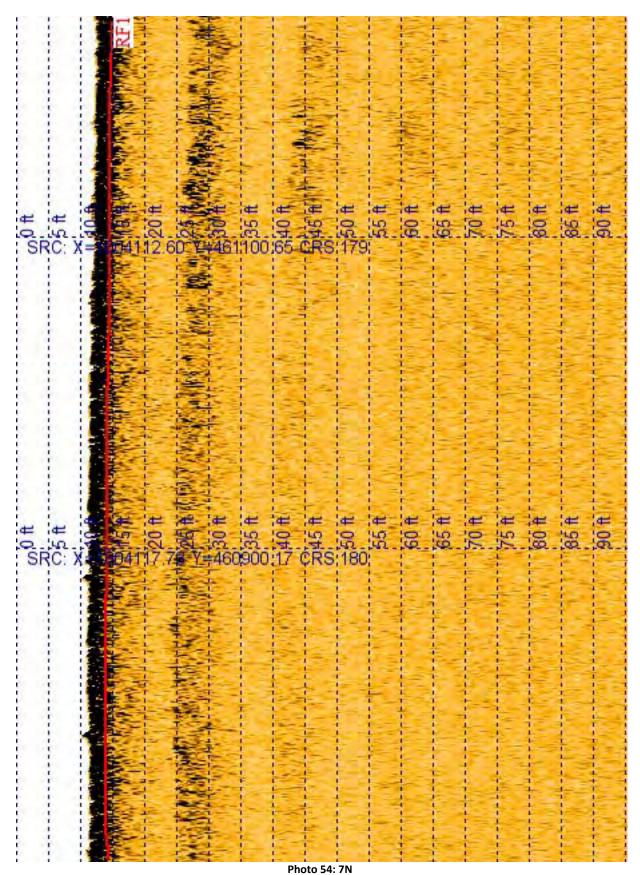



Photo 53: 7E

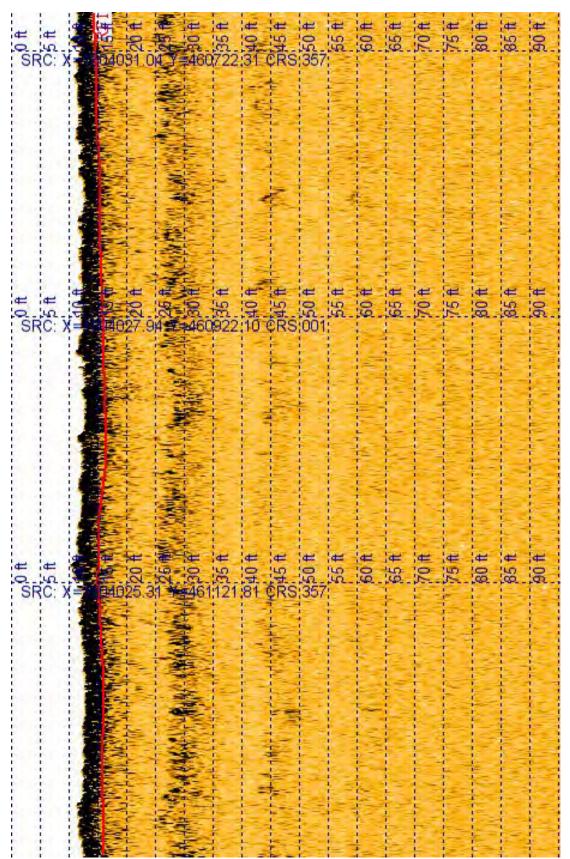


Photo 55: 9S

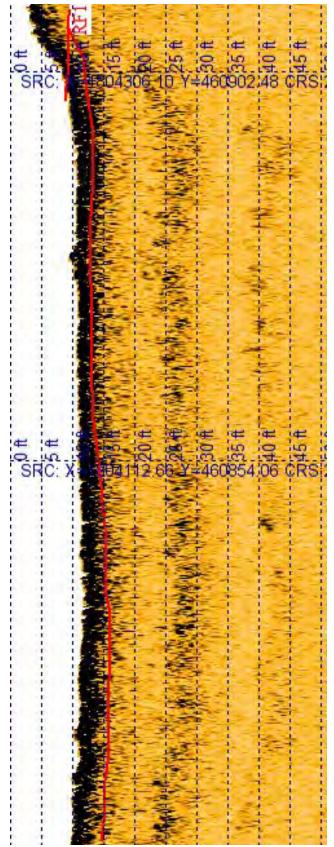


Photo 56: 9W

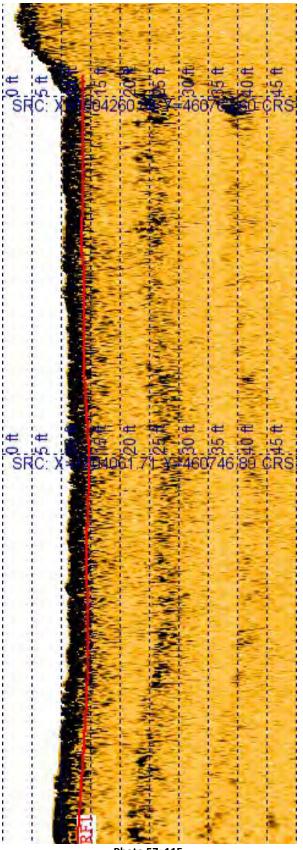


Photo 57: 11E

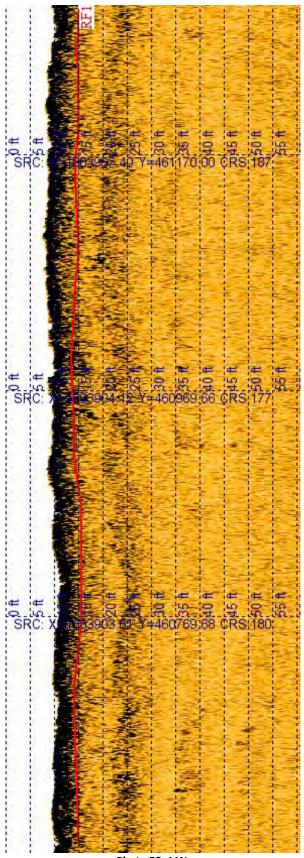
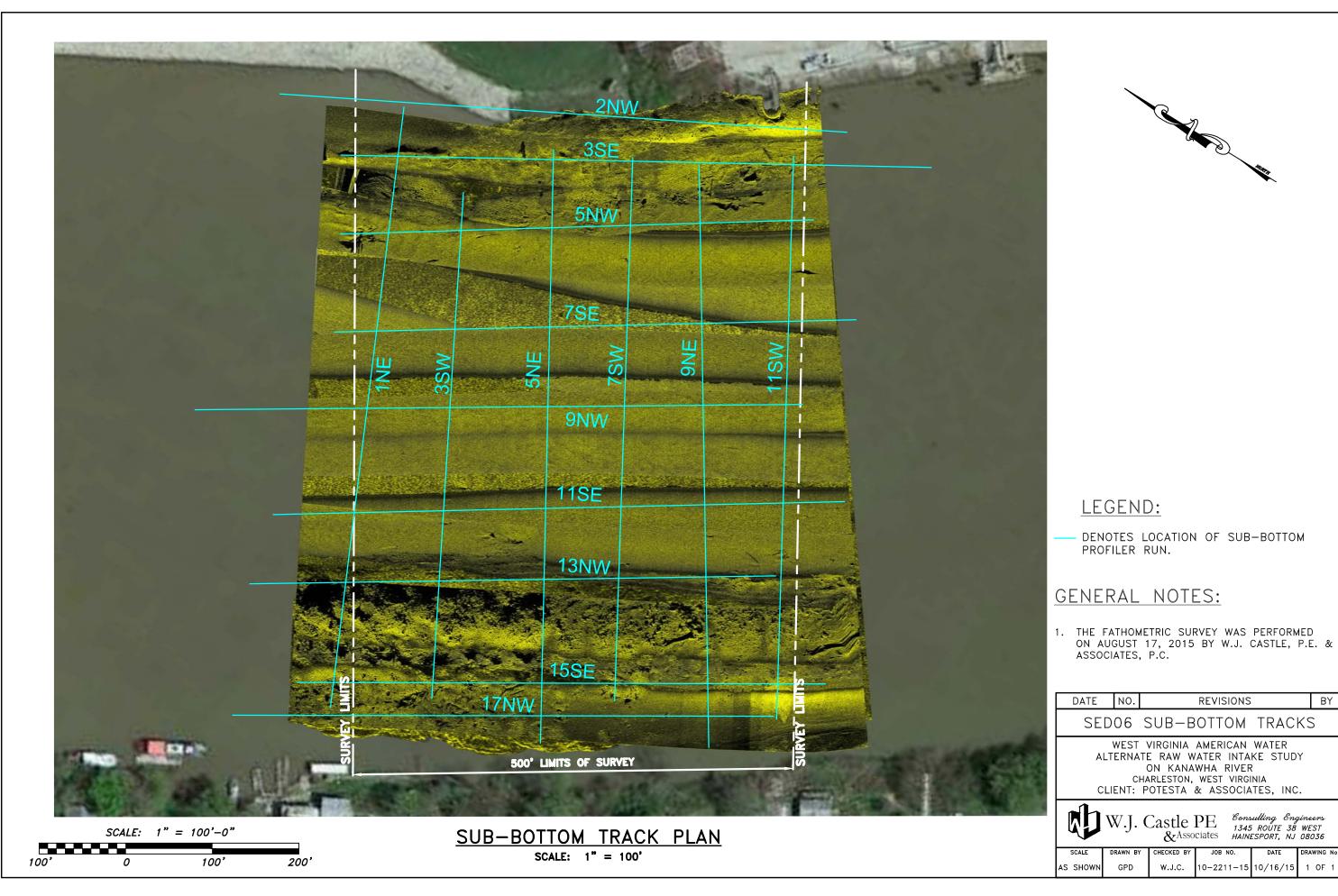



Photo 58: 11N

SED06

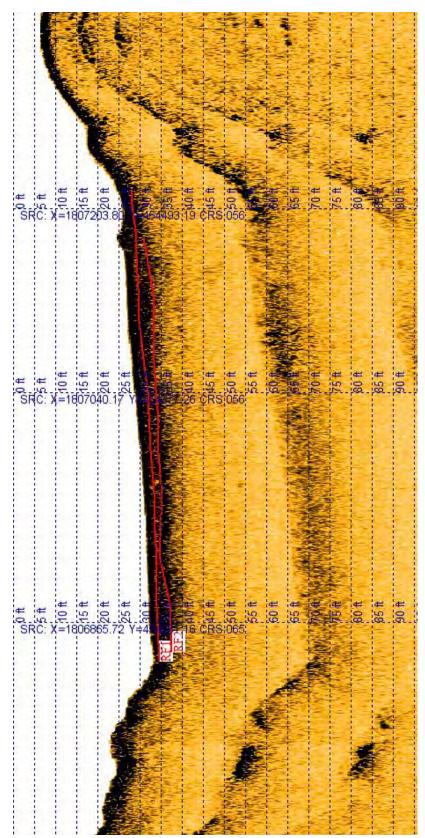


Photo 59: 1NE

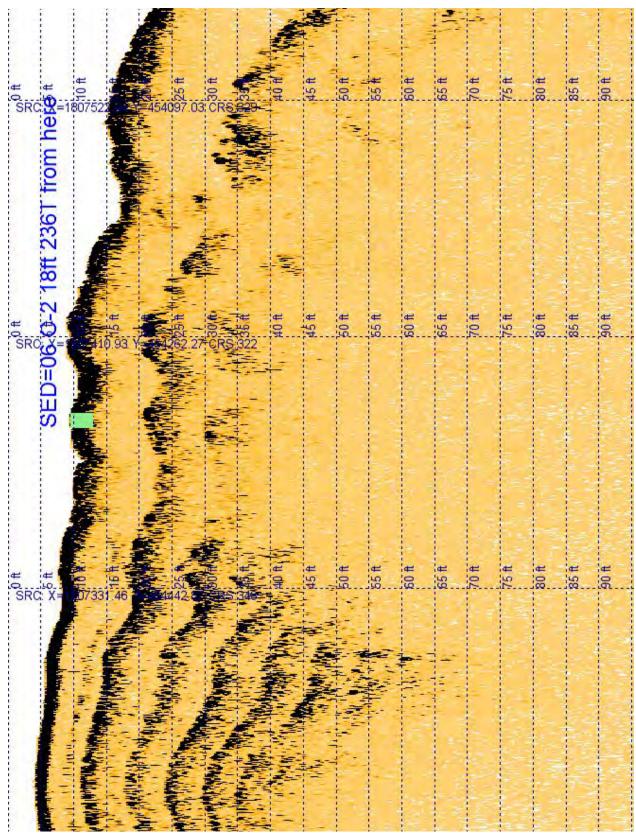


Photo 60: 2NW

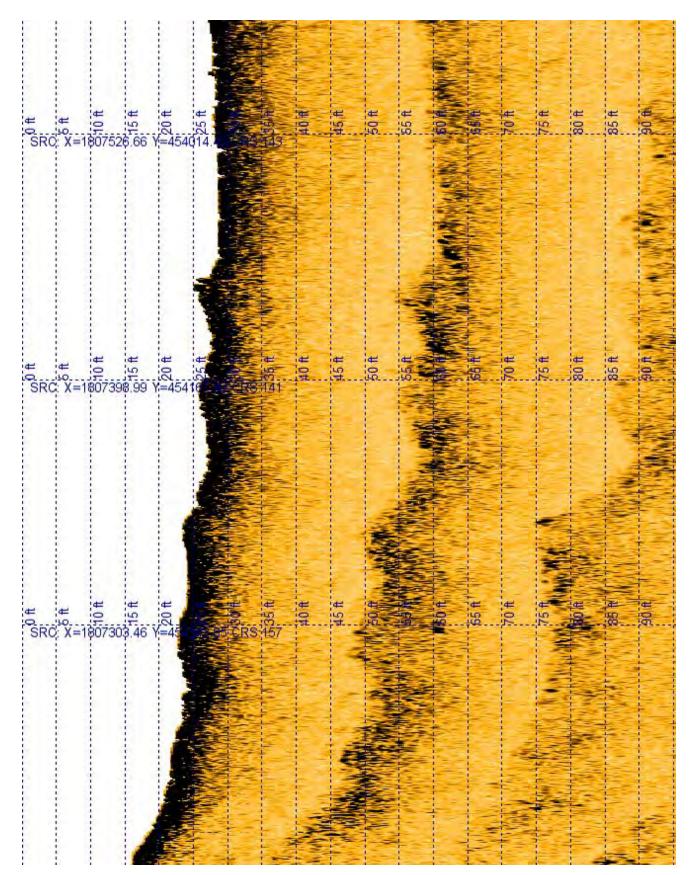


Photo 61: 3SE

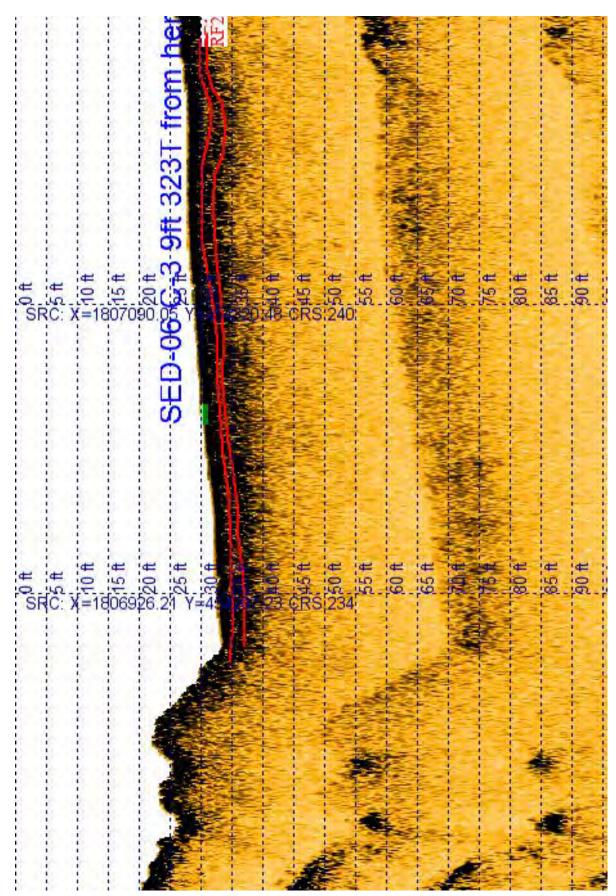


Photo 62: 3SW

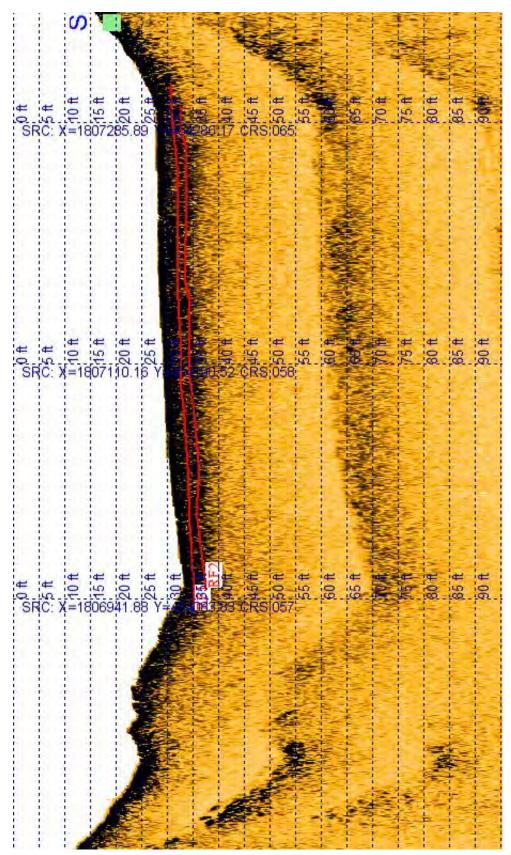


Photo 63: 5NE

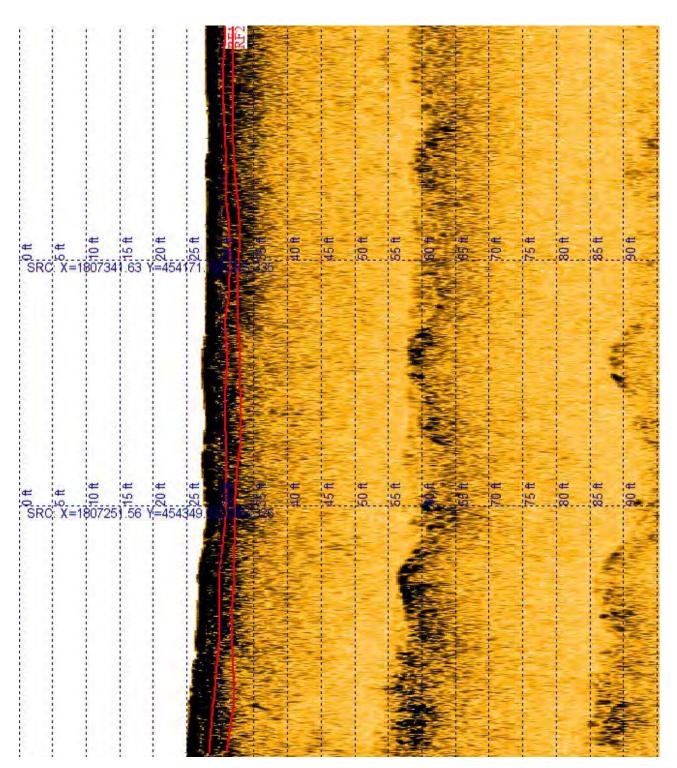
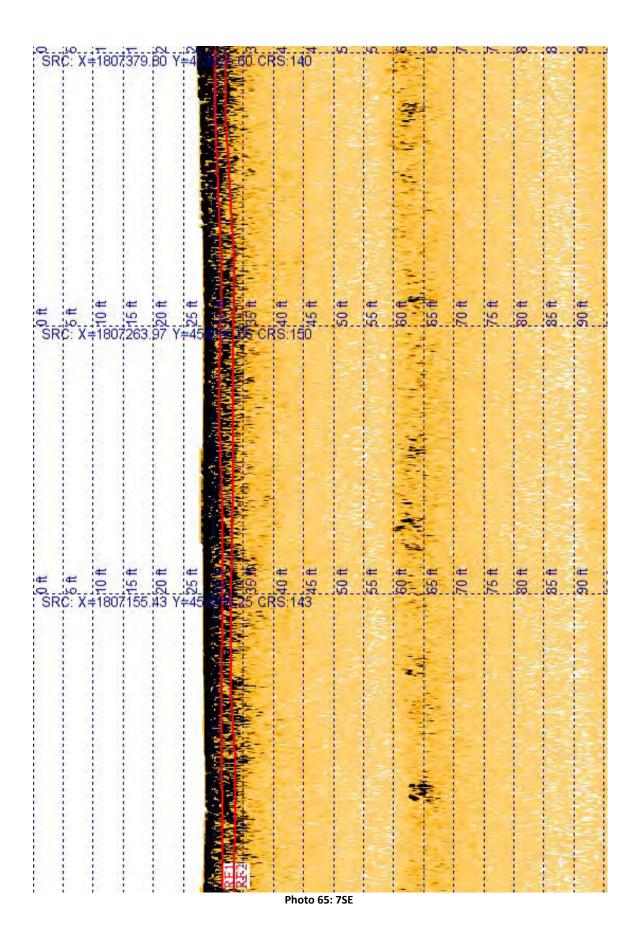
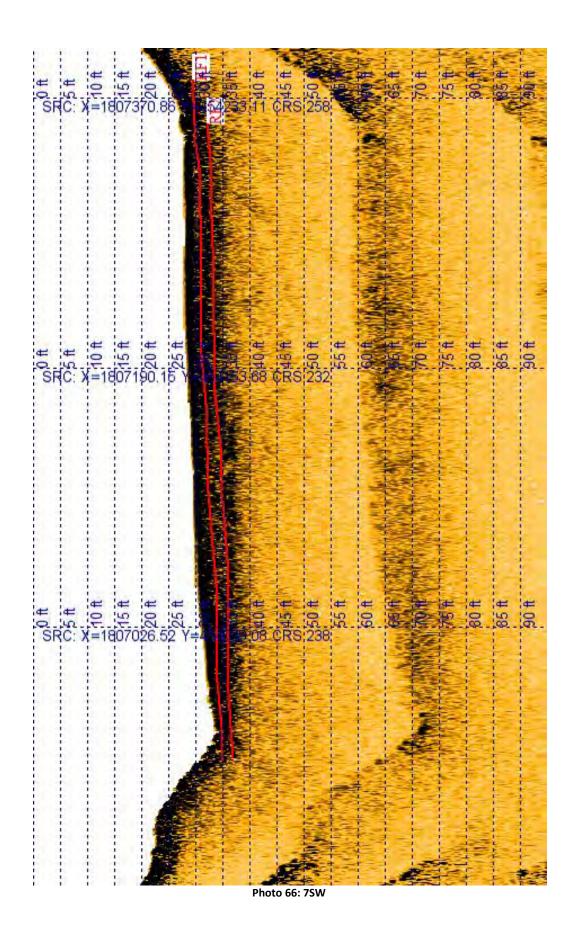




Photo 64: 5NW

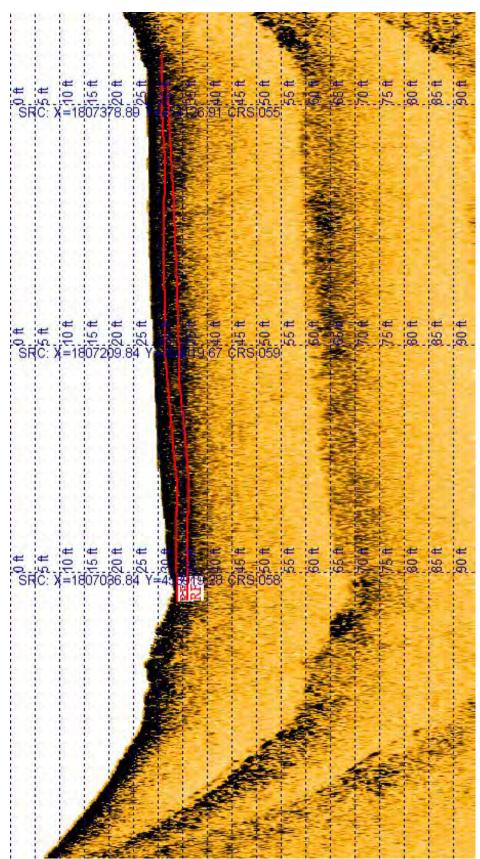


Photo 67: 9NE

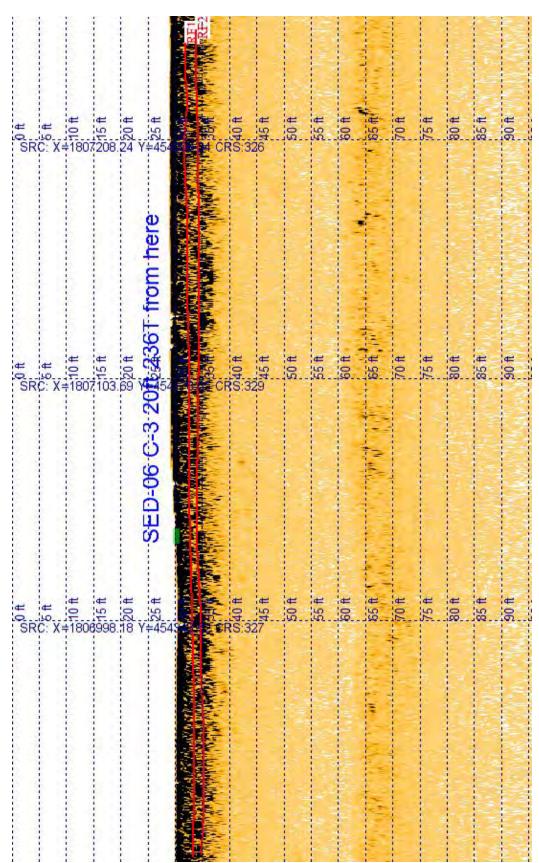


Photo 68: 9NW

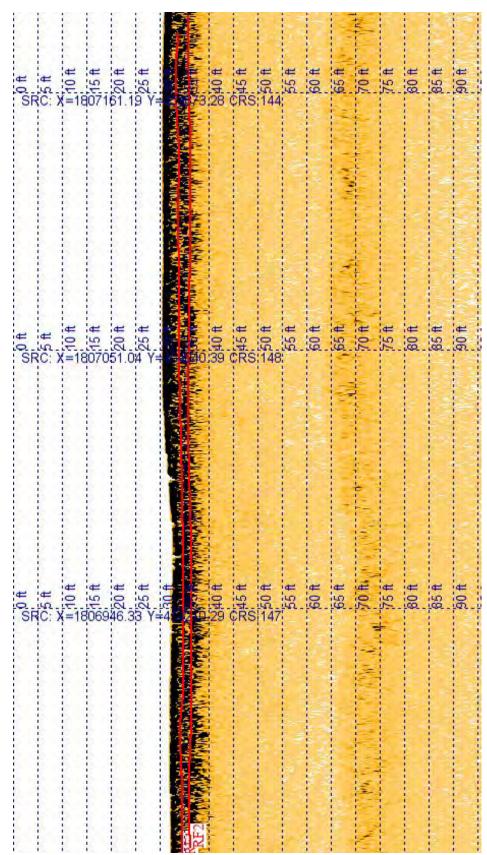


Photo 69: 11SE

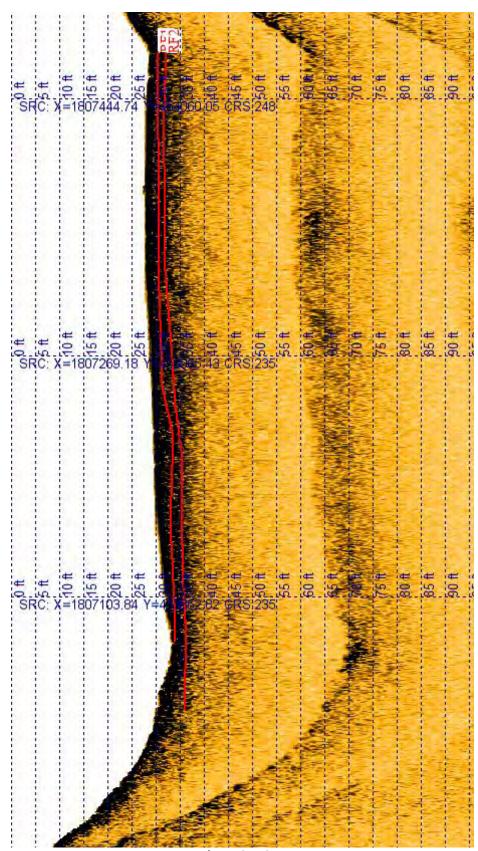


Photo 70: 11SW

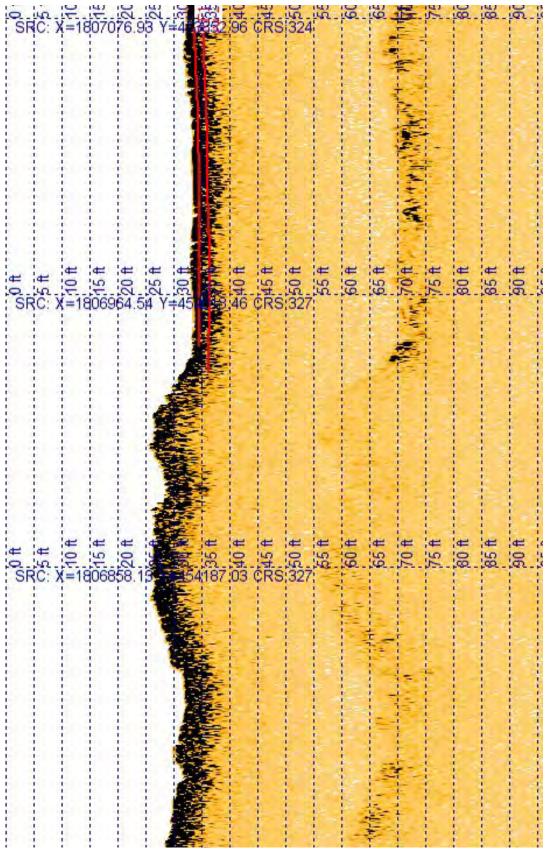


Photo 71: 13NW

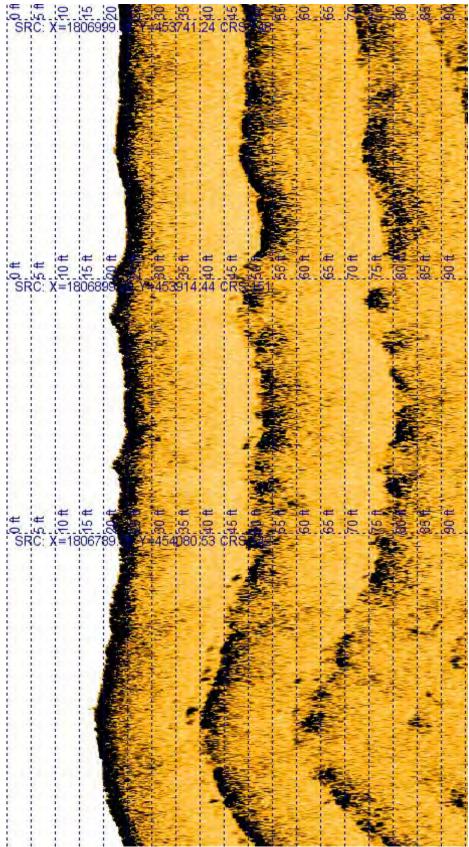


Photo 72: 15SE

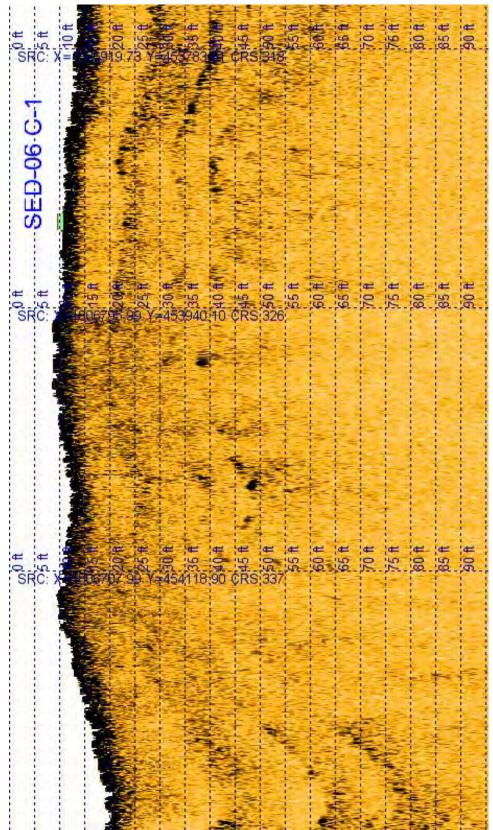
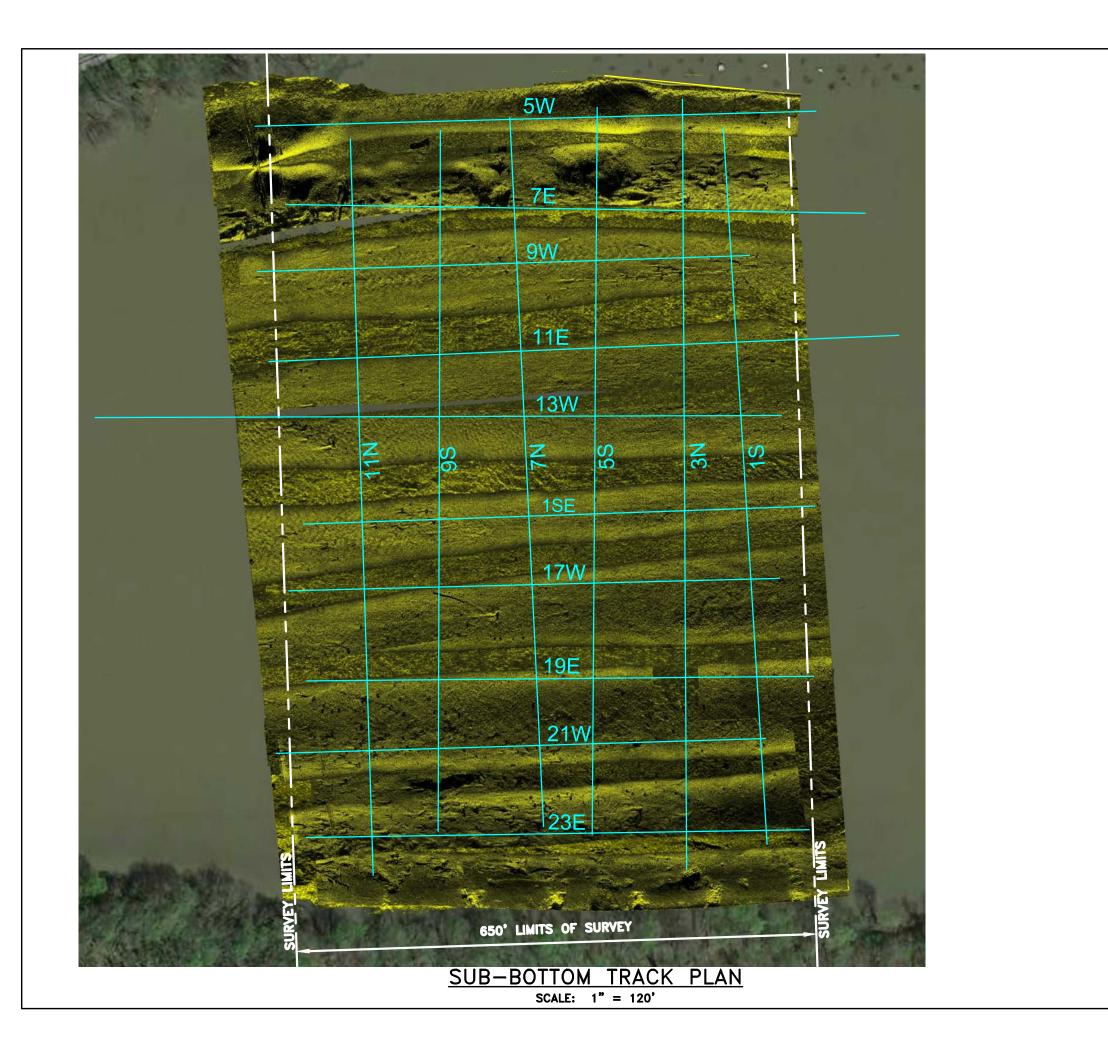
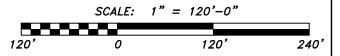



Photo 73: 17NW

SED07



LEGEND:

— DENOTES THE LOCATION OF SUB-BOTTOM PROFILER RUN.

GENERAL NOTES:

1. THE SUB-BOTTOM PROFILER WAS PERFORMED ON AUGUST 17, 2015 BY W.J. CASTLE, P.E. & ASSOCIATES, P.C.

DATE NO. REVISIONS BY

SED07 SUB-BOTTOM TRACKS

WEST VIRGINIA AMERICAN WATER

ALTERNATE RAW WATER INTAKE STUDY
ON KANAWHA RIVER
CHARLESTON, WEST VIRGINIA
CLIENT: POTESTA & ASSOCIATES, INC.

 SCALE
 DRAWN BY
 CHECKED BY
 JOB NO.
 DATE
 DRAWING No.

 AS SHOWN
 GPD
 W.J.C.
 10-2211-15
 10/16/15
 1 OF 1

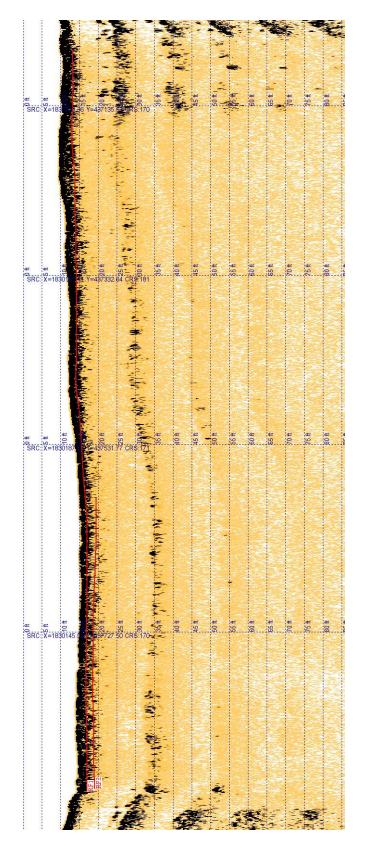


Photo 74: 1S

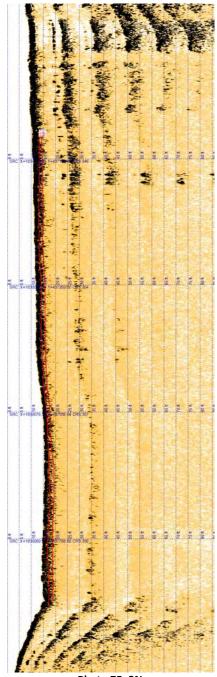


Photo 75: 3N

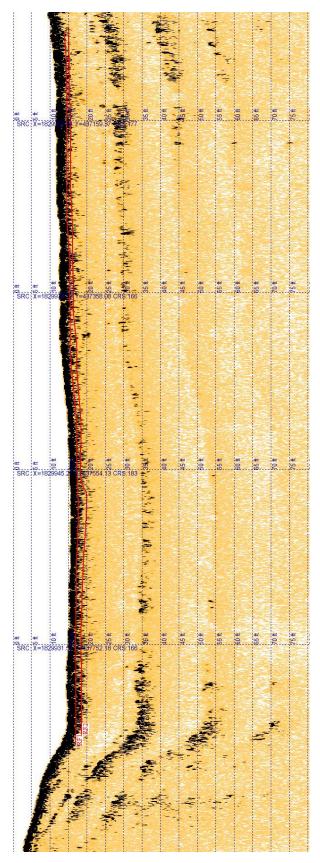


Photo 76: 5S

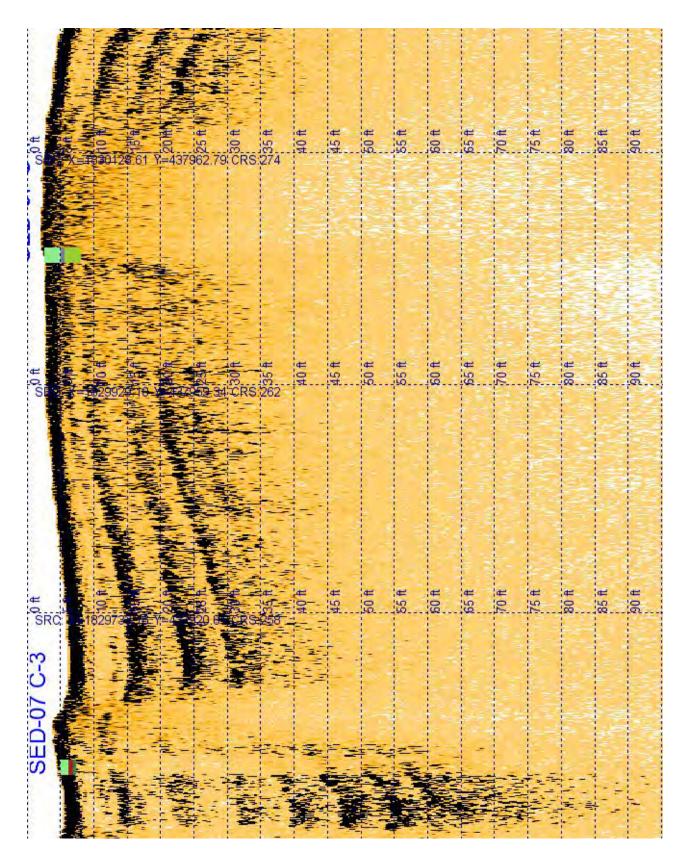


Photo 77: 5W

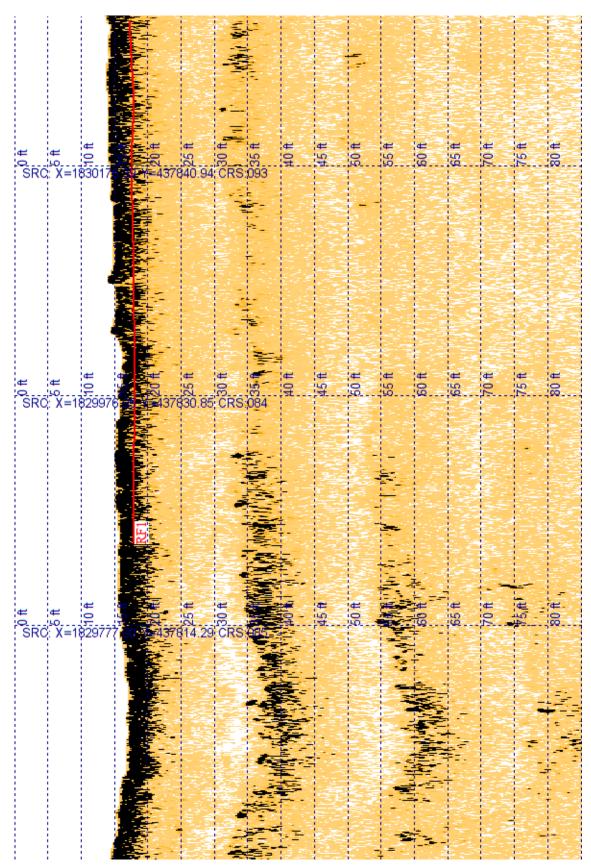


Photo 78: 7E

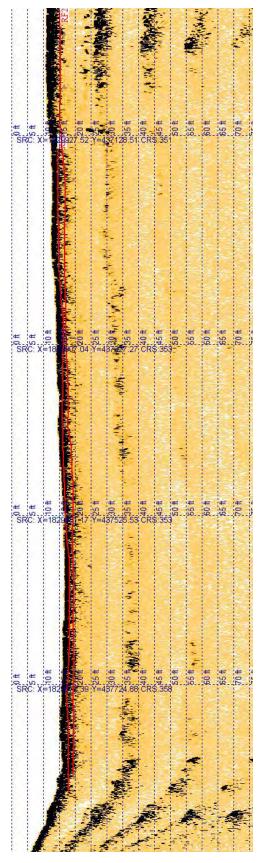


Photo 79: 7N



Photo 80: 9S

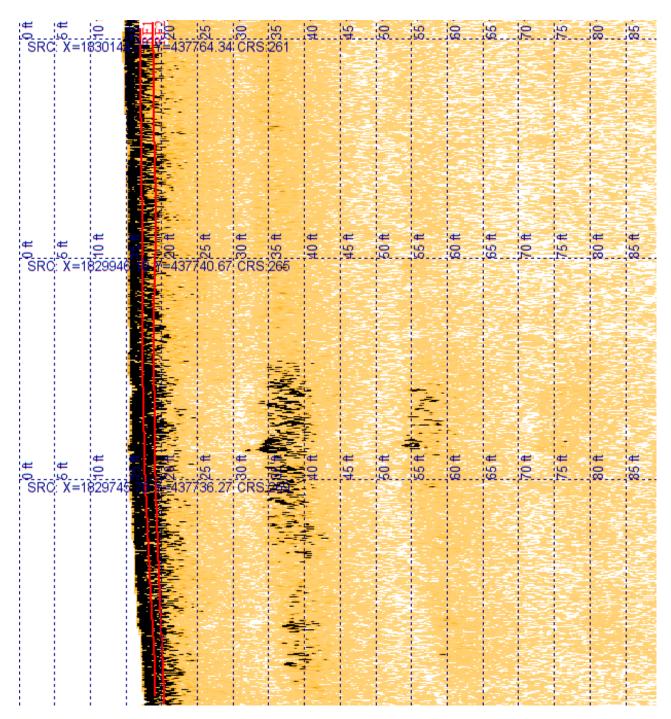
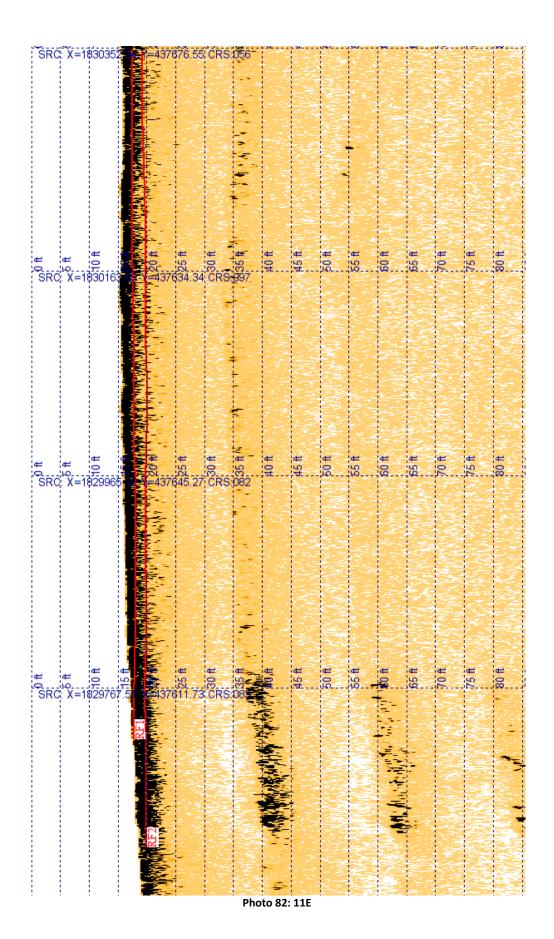
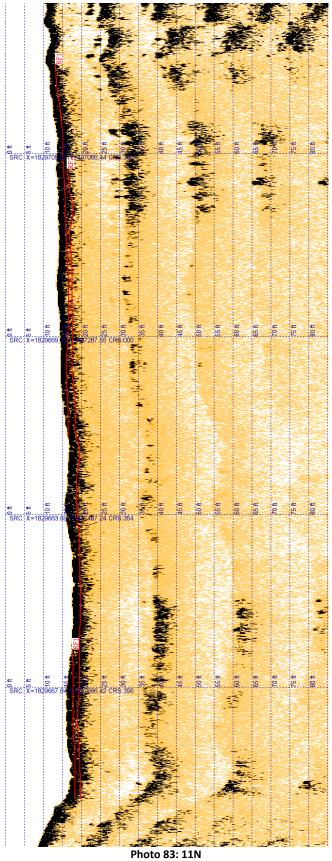




Photo 81: 9W

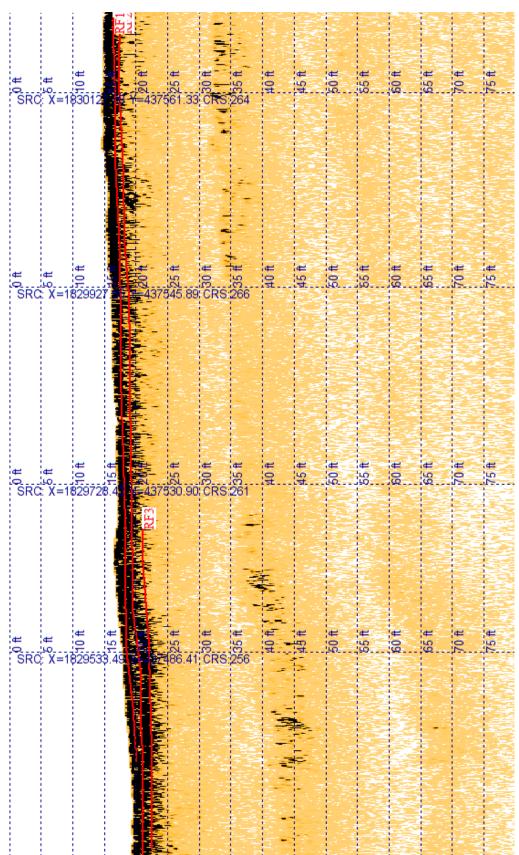


Photo 84: 13W

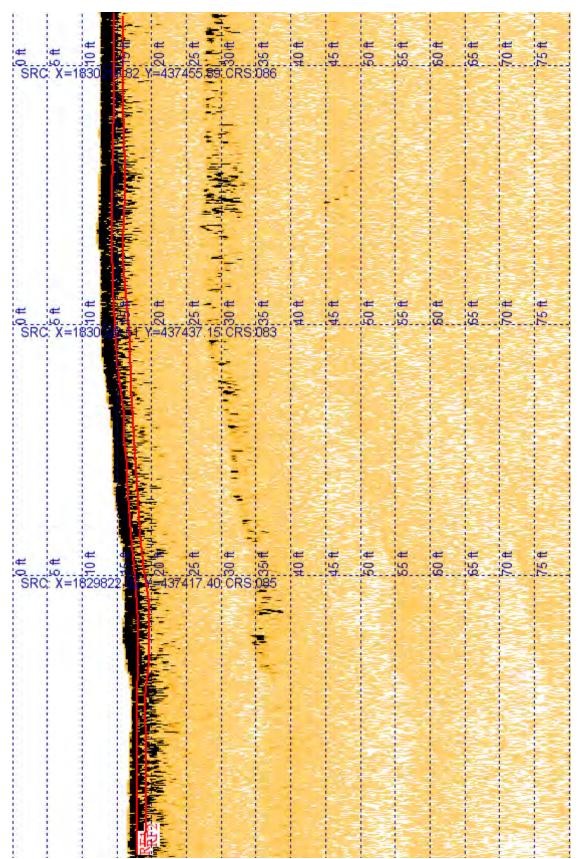
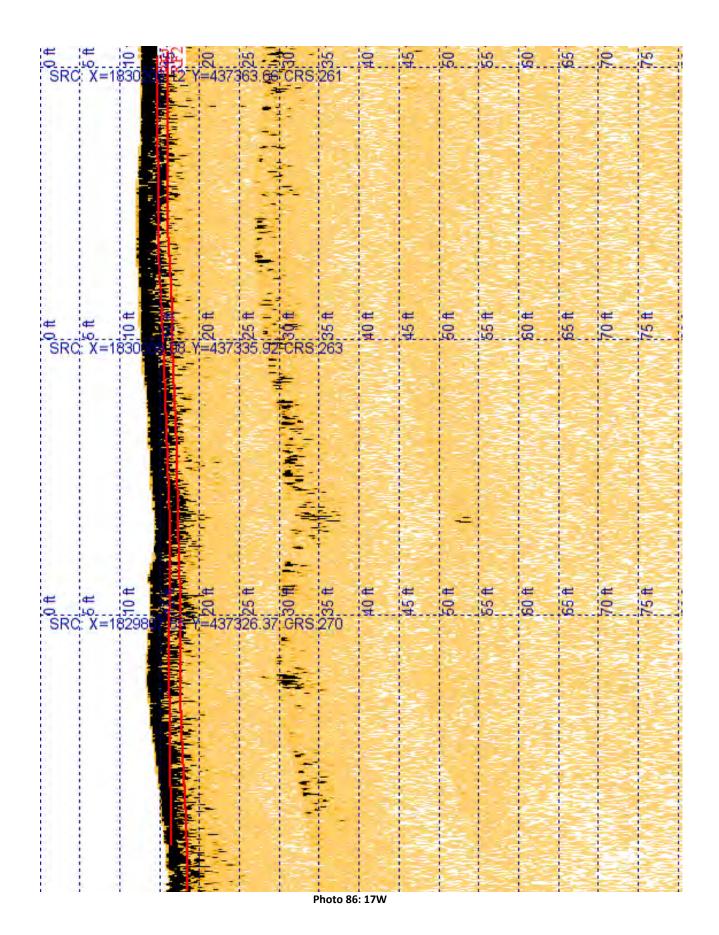



Photo 85: 15E

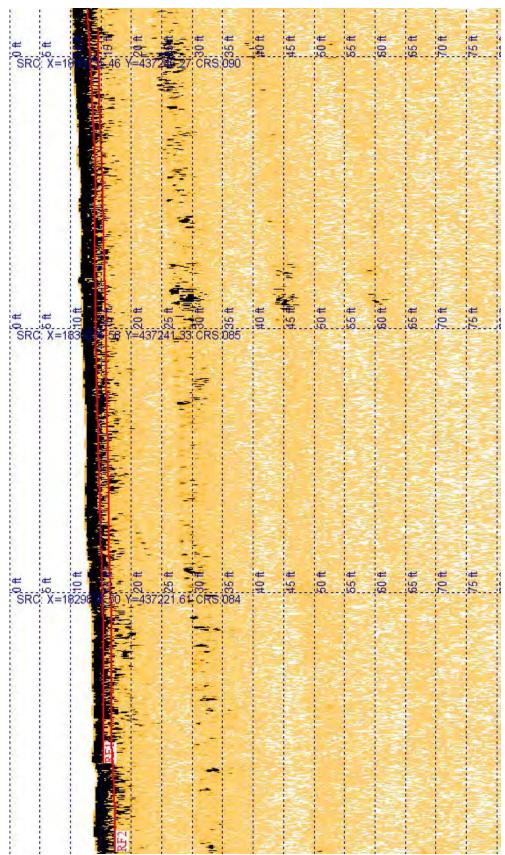


Photo 87: 19E

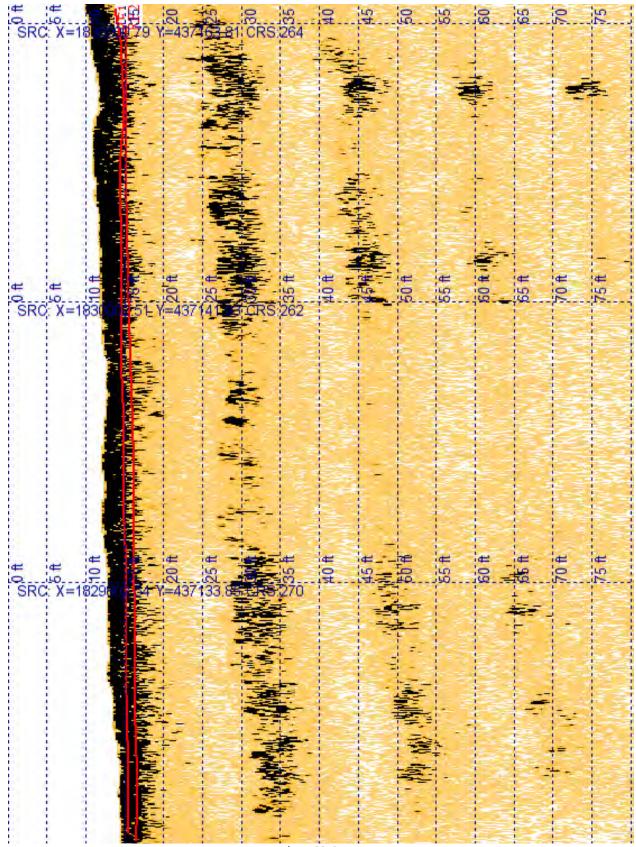


Photo 88: 21W

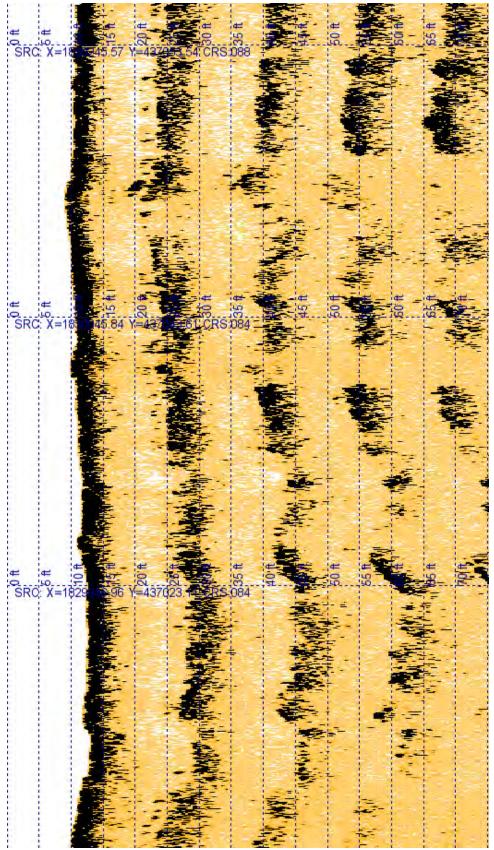


Photo 89: 23E

APPENDIX E

Abbreviations and Acronyms

mg/Kg	Milligram per Kilogram
mg/Kg-dry	Milligram per Kilogram - Dry
wt%	Percent Moisture
μg/Kg	Microgram per Kilogram
ng/Kg	Nanogram per Kilogram

Data Qualifiers

NA	No data; sample was either not collected or was not analyzed.
В	Analyte detected in method blank.
E	Result exceeded instrument calibration.
I	Interference present.
J	Estimated value between the PQL and the MDL.
U	Analyte not detected at the MDL or MRL.

Total Organic Carbon

	Consensus	-Based PEC			SS1			S	S2				881				664				665				0.6					
	Probable Effect	Max Reported	RI	.DH	L	DB	R	DB	1	LDB	R	DB	1	.hr		DDD	77	np.		nnn	335	- Para		S	\$6		—	SS	57	
Analyte Units	Concentration		041 2020	May 2016	Oct 2015	Way 2016	Oct 2015	Mov 2016	Out 7016	24 12 2014	0.43016	May 2016	Out 2015	May 2016	Oct 2015	В	Out 2015	May 2016	On 2015	ЭВ										
Organic Carbon mg/Kg-dr	y N/A	115,000	73,500	12.700	71,000	18,000	93,300	13 100	109 000	13.600	4 320	8,520	115,000	6,220	21.000	8.910	1.040	0.440	0 400	3.020	Oct 2015	Wiay 2016	Oct 2013	May 2010	00.2073	May 2016	0612013	May 2016	OCI 2013	May 2016
					1	,	20,000	10,100	102,000	12,000	4,320	0,320	115,000	0,220	21,000	8,910	1,940	9,440	3,470	3,020	21,400	17,900	107,000	28,600	80,000	25,900	84,900	38,900	88,500	38,700

Metals by ICP

														000																	
		Probable Effect	Max. Reported	RI	DB.	<u> </u>	DB	1	RDR		TAR	+	RDB	SS3	* * * * * * * * * * * * * * * * * * * *			SS4		J		SS5			S	S6			SS	S7	
Analyte	Units	Concentration	Concentration	Oct 2015				+	5 May 2016		May 2016				LDB		RDB		LDB		DB		.DB		DB	1	_DB		RDB		LDB
Aluminum	mg/Kg	N/A	9.080	3,890	3.010	3,260	5,390	4,910	4 560	7 720	4.580	0 11 2 12	May 201				15 May 201			0.44.000	May 2016				May 2016		May 2016	Oct 2015	May 2016	Oct 2015	May 2016
Anumony	mg/Kg	N/A	2.00 (ID	2.00 (r)	2.00 /(ii)	2.00 (1)	D 2.00 ar	2.00 /	10 2.00 an	2.00 (1	n 200 di	3,160	2,660	4,550	1,770	2,790	3,740	2,880	1,580	2,340	3,210	3,120	4,280	9,080 (E)	4,090	3,840	2,990	6,010 (E)	3 4,160	5,240 (E	E) 4,380
Arsenic	mg/Kg	33.00	3.81 (I)	2.00 (1)	2.00 (1)	2.00 (0	2.00 (U)	3.40	(D) 3.81 (D)	3.01 (2.00 (0	2.00 (U) 2.00 (1	J) 2.00	U) 2.00	(U) 2.00	(U) 2.00	(U) 2.00	(U) 200 (U	2.00 (U	2.00 (U)	2.00 (U	2.00 (0)	2.00 (U	2.00 (U) 2.00 (U	D) 2.00 (U)	2.00 (0)) 2.00 (U)	2,00 (U	U) 2.00 (U)
Barium	mg/Kg	N/A	95.1	38.3	49.4	33.9	68.6	46.1	52.7	36.5	641	2.00 (1	2.00 (0	J) 2.95	(1) 2.00	(U) 2.00	(U) 2.00	(U) 2.20	(J) 2.00 (C) 2.26 (J)	2.00 (U)	2.00 (U) 2.04 (Л)	2.60 (7)	2.00 (U) 2.00 (L	J) 2.00 (U)	2.55 (J)) 2.00 (U)	2.91 (J	(J) 2.00 (U)
Boron	mg/Kg	N/A	4.84 (J)	2.00 (ID	4.00 (ID	2.00 di	0.0 0.4.84 (D	2.00 (ID 400 (D	2.00	04.1	2.00 //	15.1	46.8	32.2	38.9	45.3	24.7	29 %	34.3	42.7	28.3	59.8	92.9	95.1	32.8	34 3	53.8	49.3	51.8	49.6
Cadmium	mg/Kg	4.98	1.380	0.228 (J)	0.200 (D)	0.221 (0	0.294 (J)	0.559 ((b) 4.00 (b)	0.222 (1	0 221 (0	0.200 (t	J) 4.00 (I	2.00	U) 4.00	(U) 2.00	(U) 4.00	(U) 2.00	(U) 4.00 (U	2.00 (U	4.00 (U)) 4.00 (U)	2.02 (J)	4.00 (U)) 3.43 (J) 4.00 (U)	2.00 (U) 4.00 (U)	2.00 (U	U) 4.00 (U)
Calcium	mg/Kg	N/A	74,400 (E)	868 (B)	906 (B)	2 100 OB		74 400 (E) 1.230 (B)	1.350 (B	1 1.150 (D)	721 (J) 0.209 (.	0 259	D 0.200	(U) 0.202	(J) 0.200 ((U) 0.200	(U) 0.200 (U	0.200 (U	0.200 (J)	0.200 (U) 0.224 (J)	0.354 (J)	1.68	0.208 (J) 0.200 (U)	0.306 (J)) 0.233 (J)	0.279 (J)	J) 0.214 (J)
Chromium	mg/Kg	311.00	73.60	6.17	5.84	7.70	7.20	24.50	638	6.13	7.74	4.39 (3) 319	1,160	B) 408	1,390	(B) 1,470 ((B) 460	(B) 402	919 (B	877 (B)	917 (B	1,460 (B)	1,040 (B)	2,440 (B)	1,070 (B) 898 (B)	1,240 (B)) 1,720 (B)	1,280 (B	B) 1,930 (B)
Cobalt	mg/Kg	N/A	13.80	6,34	6.26	5.57	9.79	7.55	7.52	6.21	7.99	5.66	0) 6.17	7.16	3.53	(J) 5.24	5.99	5.85	10.00	5.58	5.88	4.62 (J)	6.47	12.30	73.6	5.64	4.55 (J).	8.25	6.42	6.79	5 71
Copper	mg/Kg	149.00	193.00		5.27	4.26	9.66	18.1	8.97	4.51 ()	1177	4.89 (6.19 D 3.95 G	7.15 9.02	3.80	(J) 5.88	8.28	4,98	(J) 3.75 (J	4.01 (J)	6.22	5,27	8.38	7.75	13.8	6.06	6.83	8.99	7.87	8.64	9.07
Iron	mg/Kg	N/A	64,700		8.140	11.100 Œ	7100	48.300	9,490		10.300		B) 8.140	7	2.66	(J) 7.20	7.05	3.26	(J) 3.21 (I	4.01 (J)	5.47	4.69 (J)	7.73	7.20	193	6.61	6.04	9.21	7.87	9.14	9.42
Lead	mg/Kg	128.00	31.10	9.03	8.86	17.90	12.70	16.00	15.40	8 73	12.50	8.17	10.80	12,700	5,740 5,57	22,000	(E) 9,550	11,200	1-/ - 1	10,800 (E)		10,200 (E)	10,500	15,900 (E)	64,700	9,600 (E	6,360	13,400 (E)	8,330	14,300 (E	E) 9,400
Magnesium	mg/Kg	N/A	7.130 (E)	802	689	1,040	969	7 130 (E) 762	820	915	617	589	11.4	2131	7.80	11.2	31.10	15.50	16.3	9.55	7.26	11.60	14.6	21.1	9.02	9.75	12.4	10.7	11.30	10.1
Manganese	mg/Kg	N/A	377	147	267	182	665	413 (E) 414	230	498	170	207	828	483	805	1,030	508	385	598	663	537	943	1,450	1,110	797	698	1,010	1,050	1,080	981
Molybdenum	mg/Kg	N/A	11.10	1.00 an	1.00 (ID	100 01	1.00 (11)		D 1.00 (D	1.00 (U	1.00 GF	1.00 /7	D 1.00 (I	325 (B) 146	164	306	190	109	105	310	202	471	271 (E)	377	151	178	272 (E)	296	268 (E	E) 529
Nickel	mg/Kg	48.60	74.20	10.30	10.30	9.23	15.90	12.50	11.40	10.20	12.90	8.85	2.00 (0)) 1.00 (6.38	(U) 1.00	(U) 1.00 ((U) 1.00	(U) 1.00 (U	1.00 (U)	1.00 (U)	1.00 (U	1.00 (U)	1.00 (U)	11.1	U) 00.1	n 1.00 (U)	1.00 (U)) 1.00 (U)	1.00 (U	U) 1.00 (U)
Potassium	mg/Kg	N/A	854	504	522	516	746	766	854	526	711	476	10.10	11.50	0.10	10.60	14.0	8.42	6.56	7.61	10.9	8.64	14.00	13.90	74.20	9.95	9.61	14.60	12.2	14.90	18.60
Selemun	mg/Kg	N/A	3.38	2.00 (10)	3.00 (ID	2.00 (1)	3.00 (ID	2.00 rt	D 3.00 (D	2.00 (II	3.00 (TD	2.00 IT	DI 3.00 /I	2.00 (375 D 3.00	441	641	450	351	407	536	434	688	790	641	497	489	611	610	678	668
Silica (as Si02)	mg/Kg	N/A	1.910 (E)	1.230 (E)	1 330	1.130 Œ	, ,,,,,,	1.910 (t	07 2:00 (0)	1.160 (E	1.590	1.030	1.180	1.00 (0, 2,00	(U) 2.00	(U) 3.00 (U) 2.00	(U) 3.00 (U	2.00 (U)	_3.00 (LI)	2.00 (U)	3,00 (U)	2.00 (U)	3.38	2.00 (U) 3.00 (U)	2.00 (U)	3.00 (U)	2.00 (U	(U) 3.00 (U)
Silicon	mg/Kg	N/A	892 (E)	574 (E)	622	530 (E)	701	892 11	E) 822	542 (E	745	1,030	1,160	1,240 (E) 1,250	897	1,470	986	1,090	947	1,390	-10.10 (11)	1,480	1,840 (E)	1,290	1,260 (E) 1,070	1,410 (E)	1,270	1,130 (E	E) 1,460
Silver	mg/Kg	N/A	0,200 (th	0.200 (L)	0.200 (II)	0.200 (II)	0.200 (ID	0.200 /1	D 0.200 (D)	0.200 (H	0.200 (10	0.200 (I	D 0.200 a	580 (0.200 (E) 583	419	689	461	508	442	649	501 (E)	693	862 (F)	603	587 (E	500	657 (E)	594	528 (E)	E) 682
Sodium	mg/k.g	N/A	111.0	361 (n)	45.5 (I)	37.5 (D)	47.5 (D	111.0	43.2 (3)	35.1 (1)	45 % (D)	36.9 (I	32.2	7	U) 0.200	(U) 0.200	(U) 0.200 (U) 0.200	(U) 0.200 (U	0.200 (U)	0.200 (U)	0.200 (U)	0.200 (U)	0.200 (U)	0.200 (U)) 0.200 (U)	0.200 (U)) 0.200 (U)	0.200 (U	U) 0.200 (U)
Strontium	mg/Kg	N/A	46.10	5.47	8.44	5.87	113	46.1	12.7	4.83 (I)	9.65	5.21	5.81	9.61	J) 31.5	(J) 40.3	(J) 40.4 (J) 34.7	(J) 38.2 (J)	88.2	42.3 (J)	64.1	34.5	56,0	54.7	38.1	33.8 (J)	44.2 (J)	40.2 (J)	42.5 (J)	J) 58.7
Thallium	mg/Kg	N/A	4.18	1.00 (ID	1.00 (D)	1.00 dr	1.00 (ID	1.00 a	D 100 (ID	1.00 (11	1.00 00	1.00 0	2.01	9.61	4.40	(1) 10.1	10.9	4.27	(J) 6.62	5.18	7.37	6.94	11.6	7.24	18.0	6.37	6.48	<u>8.5</u> 7	10.1	8.92	20.5
Vanadium	mg/Kg	N/A	14.50	5.19	5.61	4.67 (I)	8 84	8.02	7.58	5.13	7.98	1.00 (0	7) 1.00 (0	1.00 (J) 1.00 ((0) 1.00	(U) 1.00 (TD 1.00	(U) 1 00 (U	1.00 (U)	1.00 (U)	1.00 (U)	1.00 (U)	100 (U)	4.18	1.00 (U) 1.00 (U)	1.00 (U)) 1.00 (U)	1.00 (U)	U) 1.00 (U)
Zinc	mg/Kg	459.0	75.5	53.0	41.4	63.5	65.6	75.5	49.5	45.2	54.0	4.30 (J	5.10	6.32	3.43	(J) 4.67	(J) 6.72	4.09	(J) 3.32 (J)	3.92 (J)	0.77	_4.16 (J)	7.70	14.50	7.88	5.02	5.44	7.80	7.61	6.77	6.92
							00.0	123	1 72	173 2	p-41,57	#6.9	144.6	31.7	28.9	41.4	54.8	38.3	31.3	32.1	45.3	35.9	54.7	47.1	53.1	49.6	45.6	58.1	54.2	59.9	57.7

Mercury

	Consensus-Base	d PEC		\$8	1			S	\$2		1		SS3		T -	S	34					664				\neg
Ambha	Probable Effect Ma	Reported	RD	В	LI	В	RI	В	1	.DB	F	DB		LDB	RDB	ĺ	LDB	RDB	LDR		RDR	330	LDB	RDB	LDB	
Mercury mg/Kg	Concentration Co	o osi	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2010	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015 M:	ay 2016	Oct 2015 May 2016	Oct 2015 May 2016	Oct 2015	May 2016 Q	Oct 2015 May	2016 Oct	2015 May 2016	Oct 2015 May 2016	Oct 2015 May 20	116
mg/kg	1.000	0.051	0.022	0.024 (J)	0.020 (U)	0.020 (U)	0.022 (J)	0.020 (U)	0.020 (U	<u>) 0.020 (t</u>	0.025	0.020 (U	0.020 (1	J) 0.019 (U)	0.020 (U) 0.0	20 (U)	0.020 (U) 0.020 (U)	0.022 0.020 (J)	0.023 (1)	0.019 (ID	0.025 0.0	50 (ID 0.05	1 0.020 (IP	0.029 [gp] 0.020 (lp	0.028 0.020	(ID

Percent Moisture

	IL.	Consensus	-Based PEC			Si			S	82				SS3			5	SS4				55									$\overline{}$
Analyte	T1=44.	Probable Effect	Max Reported	R	DB	LI)B	R	DB	I	DB	R	DB	L	OB .	R	DB	L	DB	RI	DB I	1.1)B	- RI)R	T.	DR	D'	me J	LDI	an e
Percent Moisture	un %	Concentration N/A	Concentration	Oct 2015	May 2016	Oct 2015	May 2015	Oct 2015	May 2016																						
	W.C. 70	IVA		33	46	20	49.	19	18	23	47	37	31	32	35	20	38	24	39	37	27	38	45	26	7	46	49	55	57	39	47

PCBs

		Consensus-	Based PEC		SS1	1		\$	S2				563			ee4		005				,			
		Probable Effect	Mat. Reported	RDB		LDB	1	RDB	1.08		Dr)B	355	DB	PDP	334		585		SS6				.S7	
Analyte	Units	Concentration	Concentration	Oct 2015 Ma	2016	Oct 2015 May 20	6 Oct 2015	Mrs 2016	Out 2015 Mar	2016	0.43015	34 - 2016	0 1 2015	DB COT	RDB	LDB	RDB	LDB	RDB		LDB	R	DB	<u>L</u> J	ÐВ
Aroclor 1016	mg/Kg			0.00822 (ID 0.01	56 (ID (1 00817 (10 0 0164	ID 0.00822 a	D 0.0164 GD	0.00807 (U) 0.016	2010	00016 00	May 2016	Oct 2015	May 2016	Oct 2015 May 2016	Oct 2015 May 201	6 Oct 2015 May 201	6 Oct 2015 May 201	Oct 2015 May	2016 Oct 20	5 May 2016	Oct 2015	May 2016	Oct 2015	May 2016
Aroclar 1221	mg/Kg			0.0082 (0) 0.01	6 (D) (0.00017 (0) 0.0164	0) 0.00027 (0	(I) 0.0164 (II)	(L009) (U) 0.010	2 (0) 0	0.00815 (0)	0.0163 (U	0.0083 (U)	0.0165 (U)	0.00809 (U) 0.0166 (U	0.00817 (U) 0.0166 (U) 0.0083 (U) 0.0165 (U) 0.00821 (U) 0.0161 (J) 0.00812 (U) 0.016	2 (U) 0.0082 i	U,S 0.0163 (U	0.00825 (U)	0.0163 (U)	(U) 11800.0) 0.0166 (U)
Aroclor 1232	mg/Kg			0.0002 (U) 0.01	6 (D) 0	0.0002 (0) 0.0104	0) 0.0063 (0	U) 0.0164 (U)	0.0081 (U) 0.916	2 (U) (0.0082 (0)	0.0163 (U	0.0083 (U)	0.0165 (U)	0.0081 (U) 0.0166 (U	0.0082 (D) 0.0166 (2 (U) 0.0082 (0.0083 (U)	0.0163 (U	0.0081 (U) 0.0166 (U)
Aroclor 1242	mg/Kg			0.00822 (O) 0.01	(U) U	0.00817 (U) 0.0164	0,00827 (1	U) 0.0164 (U)	0.00807 (D) 0.016	2 (0) 0	0.00815 (U)	0.0163 (U) 0.0083 (ປ)	0.0165 (U)	0.00809 (U) 0.0166 (U	0.00817 (U) 0.0166 (U) 0.0083 (U) 0.0165 (U) 0.00821 (U) 0.0161 (D) 0.00812 (U) 0.016	2 (U) 0.0082 (U,S 0.0163 (U	0.00825 (U)	0.0163 (U	0.00811 (U	0.0166 (U)
Aroclor 1248	mg/Kg					0.0082 (U) 0.0164		U) 0.0164 (U)	0.0081 (U) 0.016	2 (U) (0.0082 (U)	0.0163 (U	0,0083 (U)	0.0165 (U)	0.0081 (U) 0.0166 (U	0.0082 (U) 0.0166 ((U) 0.0083 (U) 0.0165 (U) 0.0082 (U) 0.0161 (1	0.0081 (U) 0.016	2 (U) 0.0082 (U.S 0.0163 (U	(U) \$300.0	0.0163 OU	0.0081 (U	0.0166 (T)
Aroclor 1254						0.00817 (U) 0.0164			0.00807 (U) 0.016		0.00815 (U)	0.0163 (U	0.00 8 3 (U)	0.0165 (U)	0.00809 (U) 0.0166 (U	0.00817 (U) 0.0166 (U) 0.0083 (U) 0.0165 (U) 0.00821 (U) 0.0161 (1	D 0.00812 (U) 0.016	2 (U) 0.0082 :	U.S. 0.0163 (U	0.00825 (th	0.0163 (II	0.00811 (II	0.0166 (ID
Aroclor 1260	mg/Kg mg/Kg					0.0082 (U) 0.0164			0.0081 (U) 0.016	2 (U) (0.0082 (U)	0.0163 (U	0.0083 (U)	0.0165 (U)	0.0081 (U) 0.0166 (C	0.0082 (U) 0.0166 (D 0.0083 (D 0.0165 (0 0000 45 00141 0	D 0.0081 an 0.014	an Anger	T C D 01/2 / 07	0.0002 (73	0.0162 (77)	0.0001 (77)	0.0164 00
Alociol 1260	mg/Kg			0.00822 (U) 0.01	6 (U) 0	0.00817 (U) 0.0164	U) 0.00827 (t	J) 0.0164 (U)	0.00807 (U) 0.016	2 (U) 0	0.00815 (U)	0.0163 (U	0.0083 (U)	0.0165 (U)	0.00809 (U) 0.0166 (U	0.00817 (t) 0.0166 (D 0.0083 (D 0.0165 (U) 0.00821 (U) 0.0161 (1	D 0.00812 (D) 0.014	2 (ID 0.0082 :	US 0.0163 (U	0.00825 (1)	0.0163 (1)	0.0001 (E)	0.0166 (0)
TI DGD									1			_					, (5) (5) 210.1121 (8) 0.0101 (1	7 0.00012 (0) 0.010	(0) 0.0002 (0,5 0.0105 (0,	0.00025 (0)	1 0.0102 (0)	0.00811 (0)	0.0100 (0)
Total PCBs	mg/Kg	0.6760	0.1162 (U)	0.05754 (U) 0.11	2 (U) 0	0.05719 (U) 0.1148	U) 0.05789 (U	J) 0.1148 (U)	0.05649 (U) 0.113	4 (U) 0	0.05705 (U)	0.1141 (U)	0.0581 (U)	0.1155 (U)	0.05663 (U) 0.1162 (U	0.05719 (ID 0.1162 (n 0.0578 (in 0.1155 (ID 0.05747 (ID 0.1127 (I	N 0.05684 (TN 0.113	((D) 0.0574 (US 0.1141 ar	0.05775 (ID	0.1141 (2)	0.05677 07	0.1162 (7)

Semivolatile Organic Compounds

		Consensus	-Based PEC			SSI		1	\$\$2					CC2											
		Probable Effect	Max Reported	RD)B	1	LDB	RDB	T.	LDB		DI	DB	35 <i>a</i>	18	+	RDR I	S4LDI		RDR	885		SS6		SS7
Analyte	Units	Concentration	Concentration	Oct 2015	May 2016		May 2016			Oct 2015 N	day 2016		May 2016		May 2016		CDD .			1000	LDB	RDB	LDB	RDB	LDB
Acenaplithene	mg/Kg	N/A	0.202 (J)					0.066 (ID) (0.066 (U) 0.		0.066 (U)			0.133 (U.	0.066 (1		Oct 2015	0.130 (III		Oct 2015 May 2016	Oct 2015 May 20			
Acenaphthylene	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U	0.067 (U	0.132 (U	0.066 (U) (0.103 (7) 9	1		0.133 (U)		0.133 (U				0.130 (U)	0.202 (J) 0.132 (U	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U	0.066 (U) 0.132 (U	0.067 (U) 0.133 (U)
Anthracene	mg/Kg	0.845	0.133 (U)	0.067 (U)	0.065 (U	0.067 (U		4	(4)	0.066 (U) 0.	30/	0.066 (U)	(-/	0.066 (L)	0.133 (U)	0.000 (t	41		0.130 (U)	0.066 (U) 0.132 (U 0.066 (U) 0.132 (U	0.065 (U) 0.132 (U)	0.065 (U) 0.128		0.066 (U) 0.132 (U	0.067 (U) 0.133 (U)
Benzidine	mg/Kg	N/A	0.332 (U)	0.167 (U)	0.164 (U	0.167 ru	0.332 IU	0.164 (U) (0.166 (U) 0.	1-50 (0)	0.166 (U)	0.532 (U)	0.066 (U)	0.133 (U)	0.165 (t		1 1 1 1	0.325 (U)		0.065 (U) 0.132 (U)	0.065 (U) 0.128	(0) 01001 (0) 01210 (0		(0)
Benzo(a)anthracene	nig/Kg	1.050	0.260 (J)	0.084 (1)	0.081 (л	0.067 (U	0.132 (U	0.066 (U) (0.133 (D)			0.10.5 (t		0.066 (D)	0.323 (U) 0.130 (LD	0.066 (II) 0.330 (U	0.164 (U) 0.330 (U)	0.164 (U) 0.320		0.165 (U) 0.330 (U	0.167 (U) 0.332 (U)
Benzo(a)pyrene	mg/kg	1.450	0.354 (J)	0.083 (J)	0.207 (Л	0.067 (U		0.066 (U) 0				0.067 (J)	0.135 (C)	0.112 (D	0.349 (J)	0.066 (1	D 0.347 (D	0.166 (U)	0.130 (0)	0.066 (U) 0.132 (U	0.071 (0) 0.102 (0)	0.065 (U) 0.128	(U) 0.180 0.133 (U	0.071 (J) 0.132 (U	0.067 (U) 0.133 (U)
Benzo(b)fluoranthene	mg/Kg	N/A	0.373	0.122 (J)	0.116 (J)	0.067 (U	0.132 (U					0.089 (J)	0.133 (U)	0.160 (I)	0.133 (U)	0.066 (t	7 (-7	0.066 (U)		0.066 (U) 0.132 (U	0.065 (U) 0.351 (J) 0.080 (J) 0.132 (U)	0.065 (U) 0.128	(U) 0.206 0.330 (I) (U) 0.329 0.133 (I)	0.066 (U) 0.344 (J	
Benzo(g,h,i)perylene	mg/Kg	N/A	0.193	0.067 (U)	0.065 (U	0.067 (U	0.132 (U	0.066 (U) 0	0.130 (U) (0.152 (D) 0		0.066 (th	0.133 (th	0.077 (D	0.133 (10	0.066 (t			0.130 (0)	0.066 (U) 0.132 (U	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(10)	0.088 (J) 0.132 (U	(0) 01220 (0)
Benzo(k)fluoranthene	mg/Kg	N/A	0.146 (J)	0.067 (U)	0.065 (U)	0.067 (U	0.132 (U	0.066 (1) 0			1.7	0.066 (U)	0.133 (U)	0.066 (U)	0.133 (1)	0.066 (1	D 0.133 (17)		0.130 (D)	0.066 (D) 0.132 (D	0.065 (U) 0.132 (U)		(U) 0.193 0 133 rU (U) 0.114 0.133 rU	0.066 (U) 0.132 (U	0.067 (U) 0.133 (U)
Bis(2-chloreethoxy)methane	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U	0.132 (U	0.066 (U) 0		0.066 (ID) O.		0.066 (U)		0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U	0.065 (U) 0.132 (U)	0.065 (1) 0.128	(D) 0.114 0.133 (U	0.066 (U) 0.132 (U	0.067 (U) 0.133 (U) 0.067 (I) 0.131 (II)
Bis(2-chlorotethyl)ether	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U) 0.132 (U) 0.066 (U) 0	.130 (U) (0.066 (U) 0.	.132 (U) (0.066 (U)	0.133 (U)	0.066 (II)	0.133 (1)	0.066 (1			0.130 (t)	0.066 (U) 0.132 (U	0.065 (U) 0.132 (U)		1-7 111- (-7) (4	(-/	107 01101
Bis(2-chlorossopropyl)ether	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	.130 (U) (0.066 (U) 0.	132 (U) (0.066 (1))	0.133 (U)	0.066 (I)	0.133 (1)	0.066 (1	7 (-7		0.130 (t)	0.066 (U) 0.132 (U	0.065 (U) 0.132 (U)	0.065 (U) 0.128 0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U (U) 0.067 (D) 0.133 (U	0.066 (U) 0.132 (U 0.066 (U) 0.132 (U	0.067 (U) 0.133 (U)
Bis(2-ethylhexyl)phthalate	mg/Kg	N/A	0.517 (J)	0.167 (1)	0.277 (J)	0.167 (U) 0.332 (U)	0.164 (U) 0).448 (J) (0.166 (U) 0.	.460 (J) (0.166 (U)	0.440 ())	0.165 (U)	0.517 (J)	0.165 (L) 0.477 (J)		0.448 (J)	0.166 (U) 0.442 (J)	0.164 (U) 0.491 (J)	0.164 (U) 0.421	(D) 0.167 (D) 0.133 (O	0.165 (U) 0.132 (U	100 (D)
4-Eromophenyl phenyl ether		N/A	0.133 (U)	0.067 (tt)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) ().066 (U) 0.	.132 (U) (0.066 (U)	0.133 (U)		0.133 (U)	0.066 a			0.130 (U)	0.066 (U) 0.132 (U	0.065 (D) 0.132 (D)	0.065 (U) 0.128	(D) 0.067 (D) 0.133 (U	(0) 0,000 (0	1.11. (0)
Butyl benzyl phthalate	mg/Kg	N/A	0.332 (U)		0.164 (U)	0.167 (U)	0.332 (U)	0.164 (U) 0	.325 (U) ().166 (U) 0.	.331 (U) C	0.166 (U)	0.332 (U)	0.165 (I)	0.133 (U)	0.165 (1	0.332 (U)		0.325 (U)	0.166 (U) 0.330 (U	0.164 (U) 0.330 (U)	0.164 (U) 0.320		0.066 (U) 0.132 (U 0.165 (U) 0.330 (U	0.067 (U) 0.133 (U) 0.167 (U) 0.332 (U)
4-Chloro-3-methylphenol	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) ().066 (U) 0.	.132 (U) ().066 (U)	0.133 (U)	0.066 (1)	0.133 (U)	0.066 it	0 133 (U)		0.130 (3)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U	0.066 (ID 0.132 (II	0.067 (U) 0.332 (U)
2-Chloronaphthalene	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	.130 (U) C	0.066 (U) 0.	.132 (U) (0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (1		0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U	0.066 (U) 0.132 (U	0.067 (U) 0.133 (U)
2-Chlorophenol	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	.130 (U) 0	0.066 (U) 0.	132 (U) U).066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)		0 130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U	0.066 (U) 0.132 (U	
4-Chlorophenyl phenyl ether		N/A	0.133 (U)	· · · · ·	0.065 (U)		, (2)				132 (U) (0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U)		0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U	0.066 (D) 0.132 (U	
Chrysene	mg/K.g	1.290	0.301		0.090 (J)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0).234 (J) 0	132 (U) 0).078 (J)	0.133 (U)	0.133 (J)	0.133 (U)	0.066 (U	0.133 (0)		0.130 (U)	0.066 (U) 0.132 (U)	0.077 (D) 0.132 (D)	0.065 (U) 0.128	(D) 0.301 0.133 (U	0.073 (D) 0.132 (U	0.067 (U) 0.133 (U)
o-Cresol	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)		.130 (U) 0	0.066 (U) 0.	132 (U) C).066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (1:	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(D) 0.067 (D) 0.133 (U)	0.066 (U) 0.132 (U	
m,p-Cresol	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)			130 (U) 0	1.066 (U) 0.	132 (U) ().066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.125	(U) 0.067 (L) 0.133 (U)	0.066 (D) 0.132 (U	
Dibenzo(a,h)anthracene	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	, 01202 (0)	0.066 (U) 0.	.130 (U) 0	1.066 (U) 0.	132 (U) 0).066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	(U) 0.067 (U) 0.133 (U)	0.066 (ID) 0.132 (U	0.067 (U) 0.133 (D)
Di-n-butyl phthalate	mg/Kg	N/A	0.332 (U)		0.164 (U)	0.167 (U)			325 (tt) 0	1.166 (U) 0	331 (U) 0).166 (U)	0 332 (U)	0.165 (U)	0.133 (U)	0.165 (U	0.332 (U)	0.166 (U)	0.325 (U)	0.166 (U) 0.330 (U)	0.164 (U) 0.330 (U)	0.164 (U) 0.320	(U) 0.167 (U) 0.332 (U)	0.165 (D) 0.330 (U)	
1,2-Dichlorobenzene	mg/Kg	N/A	0.133 (U)	11111	0.065 (U)	0.067 (U)				.066 (U) 0.:	132 (U) 0).066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (II) 0.128	(U) 0.067 (U) 0.133 (U)	0.066 (D) 0.132 (U)	0.067 (U) 0.133 (U)
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0		1.066 (U) 0.3		0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U) 0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 9.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
3,3'-Dichlorobenzidine	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)			(2/)		(U) 660.0	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0,128	(U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
2,4-Dichlorophenol	mg/Kg		0.332 (U)	91201 (0)	0.164 (U)	0.167 (0)	0002 (0)	0.164 (U) 0		166 (U) 0	(6/	.166 (U)	0.332 (U)		0.133 (U)	0.165 (U	(U)	0.166 (U)	0.125 (U)	0.166 (U) 0.330 (U)	0.164 (U) 0.330 (U)	0.164 (U) 0.320	U) 0.167 (U) 0.332 (U)	0.165 (U) 0.330 (U)	0.167 (ID 0.332 (ID
Diethyl phthalate	mg/Kg	N/A N/A	0.133 (U) 0.133 (II)		0.065 (U)	0.067 (U)	01752 (0)	0.066 (U) 0.		.066 (U) 0.1	152 (0)	0.066 (U)	_0,133 (U)	0.066 (U)		0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Dimethyl phthalate	mg/Kg mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)		0.066 (U) 0		(0)		1.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
2.4-Dimethylphenol	mg/Kg	N/A	0.133 (D)	(-/	0.065 (U)	0.067 (U)						1.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)	0.066 (U)	0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.070 0.133 (U)	0.066 (U) 0,132 (U)	0.067 (U) 0.133 (U)
4,6-Dinitro-2-methylphenol	mg/Kg	N/A	0.133 (D)	(-/	0.065 (U)	0.067 (U)	0.132 (U)					.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)		0.130 (U).	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
2.4-Dmitrophenol	mg/Kg	N/A	0.133 (b)		0.065 (U)	0.067 (U) 0.067 (U)	0.132 (U)			.066 (U) 0,1	-0- (0) 0	1.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
2,4-Dinitrotoluene	mg/Kg	N/A	0.133 (D)		0.065 (D)	0.067 (U)	0.132 (U)	0.066 (U) 0.		066 (U) 0.1	-02 (0) 0	.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)		0 130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.06? (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
2.6-Dinitrotoluene	mg/K.g	N/A	0.133 (U)	0.067 (U)		0.067 (U)	0.132 (U)			.066 (U) 0.1		.066 (U)	0.133 (U) 0.133 (U)		0.133 (U)	0.066 (U			0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Di-n-octyl phthalate	mg/Kg	N/A	0.333 (U)	0.167 (U)		0.167 (U)			3 - 7	.166 (U) 0.3	(0) 0	(2)	0.133 (U) 0.332 (ID	0.066 (U)	0.133 (U)	0.066 (U	, ,		0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
1,2-Diphenylhydrazine	mg/Kg	N/A	0.133 (U)	0.067 (U)		0.067 (II)	0.132 (U)	- 177		.166 (U) 0.1		.066 (U)	0.332 (U)	0.165 (U) 0.066 (I)	0.333 (U)	0.165 (U	0.332 (U)		0.325 (U)	0.166 (U) 0.330 (U)	0.164 (U) 0.330 (U)	0.164 (U) 0.320	<u>ເກີ 0.167 (ເກີ 0.332 (ເກ</u>	_0.165 (U) 0.330 (U)	0.167 (U) 0.332 (U)
Fluoranthene	mg/Kg	2,230	0.371		0.175 (J)	0.067 (U)	0.152 (b)						0.133 (0)	0.066 (0)	0.133 (U) 0.146 (I)	0.066 (U			0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Fluorene	mg/kg	0.536	0.172 (J)		0.065 (1)	0.067 (D)	0.132 (U)				147 0	.116 (J) (OS)	0.133 (U)	(10.01	0.146 (J)	0.066 (U	0.143 (J)			0.173 (J) 0.132 (U)	0.124 (J) 0.174 (J)	0.065 (U) 0.128	U) 0.282 0.133 (U)	0.132 (J) 0.147 (J)	
Hexachlorobenzene	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (II)	0.132 (1)					.066 (U)			0.133 (U)	0.066 (U			0.130 (U)	0.172 (J) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128		0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
He. achlorobutadiene	mg/Kg	N/A	0 133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	120 (0)	.066 (D) 0.1		.066 (U)	0.133 (0)		0.133 (U)	0.066 (U	(-/		0.130 (U)	0.066 (U) 0.132 (U) 0.066 (U) 0.132 (II)	0.065 (U) 0.132 (U)	0.065 (U) 0.128	U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Hexachlorocyclopentadiene	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)				.066 (U) 0.1		.066 (U)	0.133 (D)	0.066 (U)		0.066 (U		,,,,,	0.130 (U) 0.130 (U)	0.066 (U) 0.132 (U) 0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Hexachloroethane	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)		0.132 (U)			.066 (U) 0.1		127	0.133 (U)	0.066 (U)		0.066 (U	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U) 0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U) 0.065 (U) 0.132 (U)	0.065 (U) 0.128 (U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Indeno(1,2,3-cd)pyrene	mg/Kg	N/A	0.352 (J)	0.067 (U)	0.200 (J)	0.067 (U)	0.351 (J)			391 (D) 0.3		.066 (U)	0.342 (J)		0.352 (J)	0.066 (U	0.350 (D)		0.335 (1)	0.066 (D) 0.326 (D)	1.7	(0)	07 0100: (D) 011BE (C)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Isophorone	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.		.066 (U) 0.1		.066 (U)	0.133 (U)	(17)	0.133 (U)	0.066 (U)			0.130 (U)	0.066 (U) 0.326 (J)	0.065 (U) 0.346 (J) 0.065 (U) 0.132 (II)	0.065 (U) 0.128 (0.066 (U) 0.335 (J)	0.067 (U) 0.341 (J) 0.067 (D) 0.133 (D)
Naphthalene	mg/Kg	0.561	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)			.066 (U) 0.1		.066 (U)	0.133 (U)		0.133 (U)	0.066 (U	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U)	0.065 (th 0.132 (th	0.065 (U) 0.125 (U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U) 0.066 (II) 0.132 (III	
Nitrobenzene	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0.	066 (1) 0.1		.066 (U)	0.133 (U)		0.133 (U)	0.066 (U			0.130 (L)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (U) 0.067 (U) 0.133 (U)	(0)	0.067 (U) 0.133 (U)
2-Nitrophenol	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	066 (U) 0.1	132 (U) 0.	.066 (U)	0.133 (U)		0.133 (ID	0.066 (U	0.133 (10)		0.130 (0)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (I)	0.065 (U) 0.128 (0.066 (U) 0.132 (U) 0.066 (U) 0.132 (U)	0.067 (U) 0.132 (U)
4-Ninophenol	mg/kg	N/A	0.133 (U)		0.065 (τη	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0.	066 (U) 0.1	132 (U) 0.	066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U	0.000 (0)		0.130 (U)	0.066 (I) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U) 0.067 (D) 0.133 (D)
N-Nitrosodimethylamine	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	066 (U) 0.1			0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U			0.130 (D)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (17	0.066 (U) 0.132 (U)	(2)
N-Nitrosodiplicnylamine	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0.	066 (U) 0.1		.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)		0.130 (th	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (D) 0.132 (D) 0.066 (D) 0.132 (D)	0.067 (U) 0.133 (U) 0.067 (U) 0.133 (U)
N-Nitrosodi-n-propylamine	mg/Kg	N/A	0.133 (U)		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	066 (U) 0.1	132 (U) 0.	(U) 800.	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)			0.066 (ID) 0.132 (ID)	0.065 (II) 0.132 (II)	0.065 (U) 0.128 (U) 0.067 (U) 0.133 (U)	0.066 (th) 0.132 (th	0.067 (th 0.133 (th
Pentachlorophenol	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	066 (U) 0.1			0.133 (U)	0.066 (U)	0.133 (U)	0.066 (1)	0.133 (U)			0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (U) 0.067 (U) 0.133 (U) U) 0.067 (U) 0.133 (U)	0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
Phenanthrene	mg/Kg	1.170	0.343		0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	113 (J) 0.1	32 (U) 0.	.069 (J)	0.133 (U)	(-/	0.133 (U)	0.066 (U)	0.133 (t)			0.343 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U) 0.067 (U) 0.133 (U)
Pirenol	mg/Kg	N/A		0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0.	066 (U) 0.1	32 (U) 0.	.066 (U)	0.133 (U)		0.133 (U)	0.066 (U)				0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (1) 0.128 (0.066 (U) 0.132 (U) 0.066 (D) 0.132 (D)	
Pyrene	mg/Kg	1.520		0.144 (J)	0.132 (J)	0.067 (U)	0.132 (U)	0.077 (J) 0.1	130 (U) 0.	357 0.1			0.133 (U)		0.133 (U)	0.066 (U)		0.066 (U) (0.130 (ID	0.121 (J) 0.132 (U)	0.109 (J) 0.132 (U)	0.065 (U) 0.128 (0.066 (D) 0.132 (U) 0.116 (J) 0.132 (U)	1
1,2,4-Trichlorobenzene	mg/Kg	N/A			0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0	130 (U) 0.	066 (U) 0.1	32 (U) 0.	.066 (U)	0.133 (U)		0.133 (U)	0.066 (U)	0.133 (U)		0.130 (U)	0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (U) 0.132 (U)	1111
2,4,5-Trichlorophenol	mg/Kg	N/A			0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.	130 (U) 0.	066 (U) 0.1	32 (U) 0.	.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)	0.066 (U)	0.133 (U)			0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (U) 0.132 (D)	
2 4,6- Frichlerophenol	mg/Kg	N/A	0.133 (U)	0.067 (U)	0.065 (U)	0.067 (U)	0.132 (U)	0.066 (U) 0.1	130 (U) 0.	066 (U) 0.1	32 (U) 0.	066 (U)	0.133 (U)	0.066 (11)				0.066 (I) (0.066 (U) 0.132 (U)	0.065 (U) 0.132 (U)	0.065 (U) 0.128 (0.066 (U) 0.132 (U)	0.067 (U) 0.133 (U)
													/		,.,	(0)	(0)			0.000 (0)	0.000 (0)] 0.132 (0)	10/1 U.120 (ο ρη οισον (ο ρη σ.135 (θ)	0.000 (0) 0.132 (0)	(U) 6.135 (U)

The column The	Volatile Organic Compo	Julius	Consoneus	s-Based PEC	T-		201														
See					Dr.	DB	331	DP			D.D.				SS4		585		SS6	SS7	
STATE	Analyte	Units													200	100	LDB		LDB		
Mary	Acetone																				15 May 2016
AMERICAN AND STATE OF THE PROPERTY OF THE PROP	Acrolem		N/A	22.00 (U)					0017 BOD	307	15.2 (7)	(1/	107							-3 3-7 -1-10	
## Section	Acrylonitrile		N/A	22.0 (U)	20.0 (U)					1 10 (0)	15.2 (II)		(0)		(6/ (
Heller He	Benzene	µg/Кg	N/A		2.00 (U)	2.20 (U)	1.94 (U)	2.00 (0)		1.90 (U)		(0)	(-) (0)						<u> </u>		1-7 11
Materials	Bromobenzene					2.20 (17)) 1.94 (U)	2.00 (U)			1.52 (U)		(0)		1.50 (0) 1.00 (0						(0) 2:32 (0
September 1985 -							1 94 (U)	2.00 (U)	1.72 (U) 1.88 (U)	1.90 (U)	1.52 (U)	1.90 (U) 1.72 (U)	1.56 (U) 1.70 (U)	1.90 (U) 1.30 (U							1-7 -11- 11
Section 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.													1.56 (U) 1.70 (U)	1.90 (U) 1.80 (U						F10 (0) B100 (0) 1.00 (0	
Series Se							, -, , , , , , ,	200						190 (U) 180 (U	1.88 (U) 1.89 (T						(U) 1.92 (U
September 1985 1985 1985 1985 1985 1985 1985 1985													2100 (0)		1100 (0)) 1.62 (U) 1.92 (J) 2.00 (U) 1.72 (U)				
September 1965 196 196 196 196 196 196 196 196 196 196							7211 (0)	30.0 (0)	17 2 (0) 151410					(-/					19.2 (U) 155.0		
Second	sec-Butylbenzene								**** (*/ **** (*/			-17 (O) A17 (O)								1.76 (U) 2.00 (U) 1.80 (I	(U) 1.92 (U
Section 1.	tert-Butylbenzene																	1.76 (U) 1.36		-111 (47 2100 107 1000 10	(U) 1.92 (I
Set Market Marke	Carbon disulfide		N/A								7117	107 107	110 (0)						, , , , , , , , , , , , , , , , , , , ,	1111 (11) 1110 (11)	(U) 1.92 (
Service Methods	Carbon tetrachloride		N/A	2.20 (U)	2.00 (U)						1-1-1	707 0100 107									(0) 1100 (1
Series And						2.20 (U)		2.00 (U)	172 (U) 1.88 (U)	190 (U)	I-52 (U)									(-) - (-) - (-)	/-/ -// /
Septiment May 19 19 19 19 19 19 19 19 19 19 19 19 19	Chloroethane						1.94 (U)	2.00 (U)	1.72 (U) 1.88 (U)	1.90 (U)	1.52 (U)	1.90 (U) 1.72 (U)	1.56 (U) 1.70 (U)		2007 100 10		7 2.00 (0)				
Seguelation 1854 1856 18					- 0.0 (0)	3.30 (0)				-11-0	1.52 (U)	1.90 (U) 1.72 (U)	1.56 (U) 1.70 (U)				7 2100 (0) 1112 (0)	11111 (0) 1/00			101 1125 1
September 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										100	1.52 (U)	107 107	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 1.62 (U) 1.92 (I				100 100 100 100	(U) 1.92 (I
Separate Methods 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					17	10.7		200 (0)		_100 (0)	1.52 (U)		150 10) 110 (0)) 1.62 (U) 1.92 (I					
15. Heller								-100 (0)			147) 1.62 (U) 1.92 (U	D 2.00 (U) 1.72 (U)				(U) 1.92 (I
Semente MAS No. 130 0 76 0 175 0 76 0 175 0 76 0 175 0 76 0 175 0 76 0 175 0 1	DBCP									2170 (0)	(40)		(-/				2 107 107			1.76 (U) 2.00 (U) 1.80 (L	(U) 1.92 (t
Segondary 1985. 1985.						(2)	-11 . (47	\/					-11 (4) -11 (4)				7 (0)			100 100 10	(U) 1.92 (I
September Sept	Dibroniomethane							(-7			(0,7						7 - 0.0 (0)			(-) (-) 2.00 (-	(U) 192 (t
Self-steel self-self-self-self-self-self-self-self-	1,2-Dichlorobenzenc							-100 (0)		1130 (07)	1.02 (0)	(0)								107 100 (0	(U) 1.92 (I
Separate Market No. 13 10 10 10 10 10 10 10 10 10 10 10 10 10	1,3-Dichlorobenzene		N/A					2.00 (U)		217.0 (177	7 (0)	100	7-7 (-7				7 (0)			110 (c) 2100 (t) 1.00 (c	(U) 1.92 (U
September 1985 1985 1985 1985 1985 1985 1985 1985	1 4-Dichlorobenzene	μg/Kg		2.20 (U)	2.00 (0)	2.20 (U)	1.94 (U)	2.00 (U)	1.72 (U) 1.88 (U)	1.90 (t)	1.52 (U)									1110 (C) 2100 (O) 1100 (t.	
September 1965 1965 1965 1965 1965 1965 1965 1965						2.20 (U)	1.94 (U)	2.00 (U)	1.72 (U) 1.88 (U)	1.90 (U)	1.52 (U)									210 (0) 200 (0) 3.00 (0	
Separate No. Sepa						2.20 (U)	1.07	2.00		1.90 (0)	1.52 (U)	1.90 (U) 1.72 (U)						(-,		1.00 (8)	
1. September 1. Se						2.20 (U)	14.7				1,55 (0)		1.56 (U) 1.70 (U)					(-,			(U) 1.92 (U
Sept May 1. Sept M						2.20 (U)	1.94 (U)		(0) 10- (0)		, - /) 1.62 (U) 1.92 (U		1.76 (U) 1.86			(t) 1.92 (t)
September Sept	trans-1.2-Dichloroethene				1 7 7	2.20 (U)	1,94 (U)				1/) 1.62 (U) 1.92 (L	2.00 (U) 1.72 (U)	1.76 (U) 1.86	(U) 1.92 (U) 2.00 (U)	(-) (-)	(U) 1.92 (L
December Part Par					2000 1007	2.20 (0)	1.94 (U)	100 (0)													(U) 1.92 (U
	1 3-Dichloropropane					2.20 (D)		2100 (0)													(U) 1.92 (U
Part September 1985 1986 1986 1986 1986 1986 1986 1986 1986	2,2-Dichloropropane		N/A	2.20 (U)	2.00 (U)	2.20 (U)	1.94 (U)												(-7 (+7 (0)	170 (0) 200 (0) 100 (0	(U) 1.92 (U
9-1	1,1-Dichloropropene	μg/kg	N/A	2.20 (U)	2.00 (U)	2.20 (U)	1.94 (U)	2.00 (U)						100 (0)							(U) 1.92 (U
series se	cis-1,3-Dichloropropene			-1-0 (0)		2.20 (0)	1.94 (U)	2.00 (U)						1-7			/ 100 (0)			(b) (c)	
Septiment of the period of the							1.5 - (4)	2.00 rU)	1.72 (U) 1.88 (U)	1.90 (U)	1.52 (U)			190 (U) 180 (U)							
Sensor Se							1121 (0)	-100 (0)	(-) (-)				1.56 (U) 1.70 (U)	1.90 (U) 1.80 (U)				(47)			
					100									1.90 (U) 1.80 (U)	1.88 (U) 1.88 (U	1.62 (U) 1.92 (L	2.00 (U) 1.72 (U)	1.76 (U) 1.36 (1100 (0)	(U) 1.92 (U
## Part No. 1	lodomethane													1-7				17.6 (U) 18.6 ((U) 19.2 (U) 20.0 (U)		(U) 19.2 (U
Support plane Support							22.1 (0)	11.7									70 2010 (0) 272 (0)	176 (U) 156 ((U) 19.2 (U) 20.0 (U)	17.6 (U) 20.0 (U) 18.0 (U	(U) 19.2 (U
physical phy	o-Isopropyltoluene				2100	2120 (0)						2170 (17) 1715 107							(U) 1.92 (U) 2.00 (U)	1.76 (U) 2.00 (U) 1.80 (U	(U) 1.92 (U
deply-2-paramone greek N/A 22.0 Ul 20.0 Ul	Methylene chloride										1-7										
	-Methyl-2-pentanone	μg/Kg	N/A	22.0 (U)	20.0 (U)		19.4 (U)							-11 (4) -100 (0)	11.7 11.00 10.						
Part	MTBE			12100 (0)	10.00 (U)	11.00 (U)	9.70 (U)							2010 (0)							
5971-00-00-00-00-00-00-00-00-00-00-00-00-00	.,,							NA (U)	1.72 (U) NA (U)			1.90 (U) NA (U)	1.56 (U) NA (U)		(4)						
Let Pernelmone place with a pla					3.07							1.90 (U) 1.72 (U)	1.56 (U) 1.70 (U)	1.90 (U) 1.80 (U)		(.)					
2.2 Freuchforethame pkg NA 220 (U) 2.00 (U) 1.2 (U) 1.0 (U) 1.													1.56 (U) 1.70 (U)	190 (U) 130 (U)	1.85 (U) 1.88 (U)	1.62 (U) 1.92 (U					(1) 1.92 (1)
Tachioredime														107		1.62 (U) 1.92 (U					(U) 1.92 (L
Horse Fig. Ng Ng Ng Ng Ng Ng Ng Ng												(20)		(-) (0)				1.76 (U) 1.86 (U) 1.92 (U) 2.00 (U)		(U) 1.92 (U
3.Trichlorobazane	Folucie						-10 / (0)					1111 (11)			1100 (0) 1100 (0)			1.76 (U) 1.86 (U) 1.92 (U) 2.00 (U)	1.76 (U) 2.00 (U) 1.80 (U	(U) 1.92 (L
4-Trischloroschance 1g/Kg N/A 2.20 (U) 2.00 (U) 2.00 (U) 2.00 (U) 2.00 (U) 1.94 (U) 2.00 (U) 1.72 (U) 1.88 (U) 1.90 (U) 1.52 (U) 1.96 (U) 1.95 (U) 1.96 (U) 1.96 (U) 1.95 (U) 1.96 (U) 1.96 (U) 1.95 (U) 1.96 (U) 1.95 (U) 1.96 (U) 1.95 (U) 1.96 (U) 1.96 (U) 1.95 (U)	,2,3-Trichlorobenzene										- (0)		107 -107		- In (11) 1.00 (Q)					122	(U) 192 (U)
1-Trichlorodame µs/Kg N/A 2.20 (I) 2.00 (I) 2.00 (I) 2.00 (I) 2.00 (I) 1.72 (I) 1.88 (I) 1.92 (I) 1.90 (I) 1.90 (I) 1.92 (I) 1.90 (I)	2.4 Trichlorobenzene								2172 (0) 2100 (0)				()							100 (0) 100 (0)	(U) 1.92 (U
2-Trinderodame ug/Kg N/A 2.20 (U) 2.00 (U) 2.00 (U) 2.00 (U) 2.00 (U) 2.00 (U) 2.00 (U) 1.94 (U) 2.00 (U) 1.72 (U) 1.88 (U) 1.90 (U) 1.72 (U) 1.96 (U) 1.90 (U) 1.92 (U) 1.90 (U) 1.90 (U) 1.92 (U) 1.90 (U) 1.90 (U) 1.92 (U) 1.90 (U) 1.92 (U) 1.90 (U) 1.90 (U) 1.92 (U) 1.90	,1,1-Trichloroethane														-: (0)					(e) 4:00 (b) 1:00 (c)	(U) 1.92 (L
therefore the grant of the problem o	,1,2-Trichloroethane						1.94 (U)								1-7					(-) (0) (0	1-7
Edisorbatic Harmonic Line gKg N/A 2.20 U 2.00 U 2.20 U 1.94 U 2.00 U 1.72 U 1.88 U 1.90 U 1.72 U 1.86 U 1.90 U 1.72 U 1.86 U 1.90 U 1.72 U 1.86 U 1.90	richloroethene						1.94 (U)						-18-0 (C) x /0 (C)	1.07	(0)		(0)			7-10 (C) 2:00 (C) 1:00 (C	
-Stringelingeropane Ig/Kg N/A 2.20 (U) 2.00 (U) 2.00 (U) 2.00 (U) 1.94 (U) 2.00 (U) 1.72 (U) 1.88 (U) 1.90 (U) 1.72 (U) 1.86 (U) 1.90 (U) 1.72 (U) 1.86 (U) 1.90 (U)							7 1 1 1 1 1		1.72 (U) 1.88 (U)	1.90 (U)	1.52 (U)	1.90 (U) 1.72 (U)		200 (0) 200 (0)			(0)			2110 (0) 2100 (0) 2.00 (0	(0) 1,72 (0
#History distribution of the control	2.4. Trumothylling						1171 (0)		124 (-4			**** (4) ****	1.56 (U) 1.70 (U)								
Find the displayment of the part of the pa	3.5. Trimethylbenzene								(-)			1 50 (0) 1 2 (0)									107 7172 10
Section Sect	ind acetate						-10 . (-7					100 (0)	110 (0)	100 (0) 1,00 (0)						(0) (0) 100 (0)	(U) 1.92 (U
ylanc 18/Kg N/A 2.20 CD 2.00 C	/inyl chloride												-6 4 (6) 31 0 (0)					17.6 (U) 18.6 (17.6 (U) 20.0 (U) 15.0 (U	
Notices 1.70 (c) 1.72 (d) 1.73 (d) 1.75	-Xylene						()										3.18 (J) 1.72 (U)				(U) 1.92 (U)
3.60 (U) 3.44 (U) 3.84 (U) 3.8	a,p-Xylene						3.88 /10	4.00 rm									2.00 (D) 1.72 (U)	1.76 (U) 1.86 (U) 1.92 (U) 2,90 (U)		
					(0/	(0)	2100 (1)	1.00 (0)	2.11 (0)] 3.70	3.00 (U)	7AM (U)	5.60 (O) 3,44	3.14 (U)j_ 3.40	3.60 (U) 3.60 (U)	3.76 (U) 3.76 (U)	5.24 (U) 3.84 (U)	4.00 (U) 3.44 (U)	3.52 (U) 3,72 (U) 3.84 (U) 4.00 (U)	3.52 (U) 4.00 (U) 3.60 (U)	(U) 3.84 (U)

	Consensus	Dastorne		S	S1			SS	2			S	S3			<u> </u>	54	-			555		т.		64			667	_
Am shife	Probable Effect	200	RDB		LI)B		DB	L	OB	RD	В	L	DB	R)B	1	.DB	RI)B	L	.DB	R	DB 3	L	DB	RDB	33/	LDB
Dioxin (2.3.7.8-TCDD) no/Ko	N/A	Concentration	Oct 2015 N	lay 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015	May 2016	Oct 2015 May 2	016 O	et 2015 May 2016
agreg agreg	N/A	0.230	0.10 (0)1 0	096 (L)	0.12 (0)	[0.22(J)	0.11 (U) 0.083 (U)	0.1 (U)	0.07 (3)	0.14 (17)	0.073 (J)	0.2 (U)	0.094 (U)	0.17	0.13 (1)	0.25	0.062 (1,J)	0.18 (U)	0.078 (U)	0.16 (U)	0.13 (1)	0.072 (U)	0.07 (J)	0.17	0.14 (J)	0.25 0.19	(J) 0.	.1 (1,J) 0.14 (J

APPENDIX F

Photo 1: Bomb Sampling Device

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400

Fax: (304) 343-9031

West Virginia American Water Kanawha River Study Summary Report Charleston, West Virginia Project No. 0101-15-0018

Photo 2: LiquiThief Sterile Sampler

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342-1400

Fax: (304) 343-9031

West Virginia American Water

Photo 3: AMS Multi-Sludge and Sediment Sampler

Photo 4: Petit Ponar Sampler

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 5: AMS Multi-Stage Sludge and Sediment Sampler

7012 MacCorkle Avenue, SE Charleston, West Virginia 25304 Phone: (304) 342 1400

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water



Photo 6: Petite Ponar

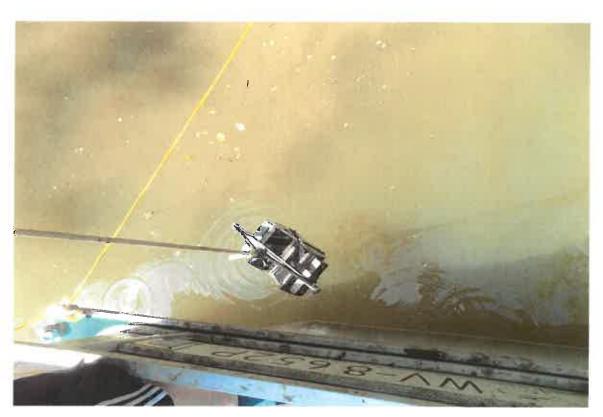


Photo 7: Petite Ponar Being Deployed

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 8: Removing Sediment from Petite Ponar into Metal Can

Photo 9: Removing Sediment from Petite Ponar into Metal Bucket

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 10: Removing Sediment from Petite Ponar into Metal Bucket

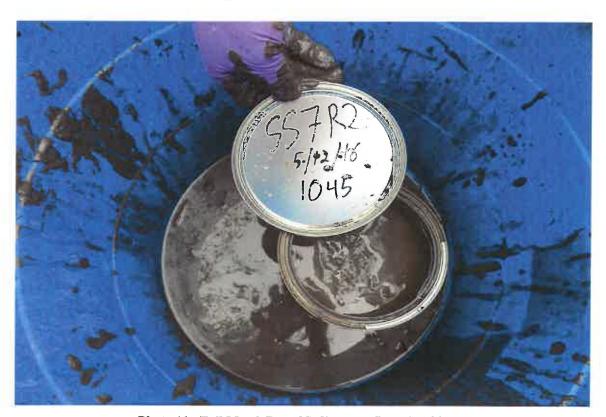


Photo 11: Full Metal Can of Sediment at Location SS7R2

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 12: Decontaminating Steel Bucket with Liquinox® Water Solution

Photo 13: Decontaminating Metal Bucket with Liquinox® Water Solution

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 14: Decontaminating Metal Bucket with Liquinox® Water Solution

Photo 15: Terra CoreTM Sampler

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 16: Terra Core™ Sampler and 40 mL Vial

Photo 17: Placing Sample from Terra Core™ Sampler into 40 mL Vial

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 18: Placing Sample from Terra Core™ Sampler into 40 mL Vial

Photo 19: Sediment Placed in 8-ounce Glass Soil Jar

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 20: Sediment Placed in 8-ounce Glass Soil Jar

Photo 21: Sediment Placed in 8-ounce Glass Soil Jar from Metal Bucket

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 22: Samples Custody Sealed and Placed in Zip-Lock Bag

Photo 23: Samples Placed in Cooler on Ice

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water

Photo 24: Samples Placed in Cooler on Ice

Photo 25: Three 40 ml Sample Jars, Three 8-ounce Sample Jars, and One Metal Can for One Site Location

Phone: (304) 342-1400 Fax: (304) 343-9031

West Virginia American Water